ЛУНА.
ЛУНА.
съ 60 рис. въ текстѣ.

Переводъ съ французскаго П. Т. Егунова.

Цѣна 75 коп.

Книгоиздательство К. И. Тихомирова.
Москва. Кузнецкий Мостъ, д. Захарьина.
1912.
ЛУНА.

ГЛАВА I.

Луна спутник Земли.

Ея видимая величина. Ее разстояние от Земли. Какъ измеряютъ небесный разстояния. Какъ Луна обращается вокруг Земли.

Лунный святъ былъ первымъ святомъ астрономиі. Наука началась на этой зарѣ и мало по малу завоевала звѣзды—неизмѣримую вселенную. Нѣжный, тихій святъ Луны освобождаетъ нашъ умъ отъ земныхъ узъ и заставляетъ насъ думать о небѣ; вслѣдъ за Луной развивается изученіе другихъ міровъ, распространяются наблюдения и Астрономія основана. Это еще не небо, но уже и не Земля. Молчаливое свѣтило ночей—первый этапъ на пути къ безконечности.

Въ древности аркадиане, желавшіе, чтобы на нихъ смотрѣли, какъ на древнейшій изъ народовъ, не нашли ничего лучшаго, какъ довести свое происхожденіе до той эпохи, когда Земля не имѣла еще своимъ спутникомъ Лunu и присвоили себѣ титулъ Proselénes т. е. существовавшіе до Луны. Принимая этотъ вымыслъ за историческій фактъ, Аристотель разказываетъ, что народы, населявшіе въ самомъ началѣ Аркадію, были изгнанны и ихъ земли были заняты греками до появленія на святѣ Луны. Болѣе смѣлый Теодоръ опредѣляетъ самую эпоху сотворенія нашего спутника: "Это, говорить, онъ, было нѣсколько раньше битвы Геркулеса". Въ томъ же духѣ говорить объ Аркадианахъ и Гораций. Риторъ Менандръ вынуживая притязанія грековъ на долгое, какъ міръ, существованіе, писалъ въ III в.: "Аѳины претендуютъ, что произошли одновременно съ Солнцемъ, какъ Аркадія, что произошли до образования Луны, а обитатели Дельфъ ведутъ начало своего происхожденія отъ Потопа. Впрочемъ, не одинъ Аркадиане считали себя свидѣтелями появленія Луны на небесной тверди".

Луна.
Мы видели в книге „Земля“ 1), что Луна дочь Земли, что она родилась, миллионы лет тому назад, на краях земной туманности, за много раньше тъхъ столетий, когда наша Земля приняла свою сферическую форму и стала твердой и обитаемой и что, следовательно, Луна блистала в небе гораздо раньше того, какъ взоръ человеческий поднялся къ ея нѣжному свѣту, слѣдя за ея движеніемъ.

Рис. 1. Свѣтило ночей.

Луна—наиболѣе близкое къ намъ небесное тѣло. Она, такъ сказать, принадлежит намъ и сопутствуетъ намъ въ нашей судьбѣ. Мы какъ бы касаемся до нея пальцемъ. Это земная провинція. Ея разстояніе отъ Земли равняется всего тридцати ширинамъ нашего шара, такъ что тридцать земель

1) „Земля“ К. Фламмаріона, пер. П. Т. Егунова, изд. К. И. Тихомирова. Москва. Цѣна 50 коп.
положенных в ряд одна под другою образовали бы висячий мост достаточно длинный, чтобы соединить оба мира. Это разстояние незначительное и едва ли заслуживает названия астрономического. Не мало моряков, путешественников и даже пешеходов пробрались на судна, железной дороги, или даже пролезли в шкафу разстояние больше длинное, чем то, которое отделяет нас от Луны. Телеграмма дошла бы до Луны в несколько секунд, а световой сигнал пройдет бы это разстояние еще скорее, если бы мы могли сообщаться с обитателями этой, присоединенной к нашей родине самой природой, провинцией. Это разстояние составляет только четвёртую часть разстояния, отделяющего нас от Солнца, и только сто миллионов — от ближайшей звезды! Нужно было бы взять сто миллионов раз этого разстояния до Луны, чтобы прибыть в звезды области, и, следовательно, наш спутник со всех точек зрение является первым этапом в нашем небесном путешествии.

Во время изобретения воздушных шаров, в 1783 г., когда люди впервые могли устремиться в воздух, изобретение бр. Монгофье до такой степени восхитило умы, что люди вообразили уже осуществленными путешествиями с Земли на Луну и возможность непосредственного сообщения между мирами. На одной из многочисленных и интересных гравюр той эпохи можно видеть воздушный шар, достигнувший лунных областей и на лунном диске нарисованные — эскизы Парижской Обсерватории и множество импровизированных астрономов. Сопровождающее гравюру четверостишие
Mais la frayeul est dans la lune
Où le badaud et l'ignorant
Jugent l'aérostat errant
Une planète peu commune.

dополняет мысль.

Не отрицая абсолютно, что прогресс человеческих изобретений в один прекрасный день позволит нам совершить это путешествие, можно сказать теперь же, что оно не может быть совершено на шаре, так как земная атмосфера далеко не наполняет пространства, разстилающегося между Землею и Луной. Как ни близка к нам эта провинция, она всетаки не соприкасается с нами; ея действительное разстояние от Земли равняется 360,000 верстам.

Кто докажет, скажут нам, что эти цифры точны? Кто увреит нас, что астрономы не ошибаются в своих вычислениях? Кто убедит нас, что эти цифры не даются, склонной врить на слово публику, просто для того, чтобы импонировать ей? Таково первое возражение, исходящее от сомневающегося разума, забывающегося о том, чтобы не впасть в заблуждение. Сомнение—одно из главных характерных свойств человеческого духа. Соединенное с любопытством оно составляет одну из плодотворных причин прогресса. Поэтому то позитивная наука, далеко не запрешая сомнений, одобряет его и старается отвратить на его запросы. Поэтому же и мы сейчас же приступим к доказательству, пользуясь методом, которым руководились при обсуждении движения Земли и который состоит в том, чтобы отвратить на возражения, уяснять сомнения и доказывать, что утверждения астрономии являются доказуемыми и неоспоримыми истинами. Может быть некоторые лёгкие умы скорее предпочут сохранить свои сомнения, чем убедиться в действительности. Это их дело. Упрямое сохранение этих отживших идей не помешает миру верить.

Для измерения святить пользуются углами, а не другими какими нибудь установленными мёрками, вроде, напр., метра. Кажущаяся величина предмета зависит от его действительных размеров и разстояния. Выражение, что Луна кажется нам величиною съ тарелку (что я часто слыхал отъ моихъ
слушателей на популярных курсах), не даёт вполне точного представления о том, что под этим выражением понимают. Часто люди, пораженные блеском падающей звезды, или болида, передавая свои наблюдения, говорят, что метеоръ повидимому имелъ съ аршинъ длины и вершокъ ширины въ головъ. Таких выражений нисколько не удовлетворяют условиамъ проблемы.

Не зная разстояния предмета, а это общий случай для всѣхъ свѣтиль, остается прибѣгнуть къ одному средству для выражения его видимой величины—къ измѣренію занимающаго имь угла. Если, затѣмъ, можно измѣрить и его разстояніе, то, комбинируя это разстояніе съ кажущимся величиною свѣтила, можно найти и его дѣйствительную величину.

Измѣреніе всѣхъ разстояній и всѣхъ величинъ тѣсно связано съ величиною угла. Для данного разстоянія дѣйствительная величина точно соответствуетъ измѣряемому углу. Для данного же угла величина не менѣе точно соответствуетъ разстоянію. Не трудно понять, что измѣреніе угловъ является первымъ шагомъ въ небесной геометріи. Старая пословица: „Труденъ первый шагъ“ здѣсь вполнѣ оправдываетъ себя. Въ самомъ дѣлѣ изслѣдованіе угла не представляетъ собою ничего ни поэтическаго, ни мѣтательнаго. Но оно вовсе не является поэтому непріятнымъ и скучнымъ. Всѣ знаютъ, что такое уголъ, какъ напр. тотъ, который представленъ на рис. 3 и всѣ также знаютъ, что величина угла выражается частью окружности. Движущаяся вокругъ центра О линія ОХ (рис. 3) можетъ измѣрять любой уголъ отъ А до М и В и даже, уголъ переходящий за половину круга, продолжая вращаться вокругъ центра. Окружность издавна раздѣлили на 360 равныхъ
частей, которые назвали градусами. Таким образом, полукружность равняется 180 градусам, четверть окружности, или прямой угол — 90 градусам; половину прямого угла является угол в 45 градусов и пр. На полукружности АМВ нанесены деления, соответствующие каждое 10 градусам, а для первых десяти градусов в точке А также нанесены деления, соответствующие каждое одному градусу.

Градус, значит, является просто 360-й частью окружности, и мы измеряем в нем м³ру, независимую от расположения. На каком-нибудь круге в 360 дюймов в окружности градусы являются одним дюймом, наблюдаемый из центра круга; на каком-нибудь водном скоплении, напр., резервуаре в 36 аршин в окружности градус был бы отмечен на трети шестидесятой или одним и шестью десятыми вершка и пр. и пр.

Уголь не м³няется с разстоянием, и будет ли градус изменять на небе, или на этой книге, он всегда будет градусом.

Так как часто приходится измерять углы меньше, чем угол в один градус, то условия разделили этот угол на 60 частей, которые назвали минутами. Каждая из этих частей равным образом была разделена на 60 других частей, которые назвали секундами. Эти названия, впрочем, не изъясняют ничего общего с минутами и секундами, которыми измеряется время и по причине этого двойного их значения весьма неудобны.

Сокращенно градус писалось посредством маленького нуля пом³щааемого вверху справа цифры (°); минута посредством запятой (′), а секунда посредством двух запятых (″). Так, наблюдаемый в настоящее время угол наклонения эклиптики, с которым мы познакомились в книге "Земля" и который равняется 23 градусам 21 минутам и 13 секундам, писается: 23°21′13″. Необходимо разъяснить хорошо, что из этого понимать.

Если прочитать у моих читателей (и особенно читающего) за эти небольшие подробности, но они были не только нужны, а и необходимы. Чтобы говорить на каком-нибудь языке, нужно по крайней м³р³ понимать его. Так как язык...
Измерение состоит из измерений, то нужно, чтобы мы понимали эти измерения. Вещь, как мы видели, не трудная и потребовала от нашего всего только минуту серьезного внимания.

Однажды в время лекции по астрономии тиран Сиракузский приказал знаменитому Архимеду избить его от математики. — «Продолжаем, продолжаем! Вновь начал Архимед, не измения учительского тона, в астрономии нить привилегированных способов изучения для королей».

В астрономии нить привилегированных способов изучения ни для кого и если хотят изучать ее, то прежде всего необходимо хорошо понять принципы геометрических измерений, которые, кстати сказать, весьма интересны сами по себе. Мы узнали, что такое угол. Прекрасно! Лунный диск имеет 31°8′ (31 минуту 8 секунд) в диаметр, т. е., в несколько больше половины градуса. Нужно было бы взять 344 полных луны и уложить их одна под другой, чтобы образовать на небе окружность от одной точки горизонта до другой диаметрально противоположной 1).

1) Мы только что сказали, что градус, измеренный на окружности круга, имеющего 360 дюймов, равен 1 дюйму. Следовательно, видимая величина Луны только немного превосходит маленький кружок в полдюйма в диаметр, который наблюдался на расстоянием 57 дюймов от глаза (помню, что столкнулся 360 дюймов в окружности имел бы 114 дюймов в диаметр). Обыкновенно, кажется, что Луна в несколько больше, чем этот маленький кружок. Беря простой пример, она в действительности равняется маленькой облаку в величию и несколько больше половины
Если мы теперь хотим составить себѣ понятие въ отно-
шениихъ, существующихъ между дѣйствительными размѣрами
предметовъ и ихъ кажущимися величинами, то достаточно
будетъ замѣтить, что всякій предметъ кажется тѣмъ менѣеимъ,
чѣмъ больше отъ насъ удалены и что когда онъ находится
на разстояніи въ 57 разъ большемъ своего діаметра, то его
величина, каковы бы ни были его истинные размѣры, равняется
углу ровно въ одинъ градусъ. Напр., кругъ въ 1 аршинъ въ
dиаметрѣ, наблюдаемый на разстояніи 57-ми аршинъ, равняет-
ся ровно 1 градусу.

Такъ какъ дискъ Луны имѣеть нѣсколько бол资料е полу-
градуса, то уже по одному этому факту намъ известно, что
Луна удалена отъ насъ на разстояніе почти въ 57 разъ боль-
шее своего діаметра, взятаго 2 раза, или на разстояніе въ
110 разъ большее своего діаметра.

Но это еще не дало бы намъ никакого понятія относи-
тельно дѣйствительного разстоянія и дѣйствительныхъ раз-
дваима въ диаметрѣ, которую держать на 55 дюймахъ отъ глаза, или
обраткъ въ 1 дюймъ въ диаметрѣ, наблюдаемый на разстояніи въ 110 дюй-
мовъ и пр. Замѣтимъ, что когда Луна восходитъ или заходитъ, то она ка-
жется намъ гораздо больше, чѣмъ тогда, когда проходитъ въ зенитѣ.
Это весьма любопытная иллюзія — обманъ зрѣнія, какъ измѣря
Луну на горизонтѣ съ помощью зрительной трубы, снабженной нитями,
которыя подводятъ такъ, чтобы они касались краевъ Луны, убеждается,
что въ дѣйствительности Луна въ это время является не больше той, ко-
торую мы видимъ въ зенитѣ. Наблюдая, Луна кажется нѣсколько большею
въ зенитѣ; это объясняется тѣмъ, что будучи въ зенитѣ, она находится
нѣсколько ближе къ намъ. Чему обязанъ собою этотъ обманъ зрѣнія?
Пары атмосферы не играютъ здѣсь той роли, которую имъ приписываю,
такъ какъ измѣреніе устанавливаетъ обратное. Здѣсь повидимому дѣй-
ствуютъ два причины. Первой является кажущіяся сводъ неба, который
поникается какъ сводъ въ дѣйствѣ, такъ что горизонтъ кажется намъ
болѣе удаленными въ низкихъ областяхъ, чѣмъ въ возвышеннокъ. По-
пробуйте раздѣлить кривую, идущую отъ зенита до горизонта, на дѣ
равнина части и вы всегда поставите точку ниже и будете предполагать
нахожденіе 45° въ 30°. Большая Медвѣдица и Оріонъ, находясь на го-
rizонѣ, кажутся громкимъ. Къ этому присоединяется другое явленіе,
а именно, что разныя предметы, находящіеся между нами и Луной,
повидимому еще болѣе удалены отъ насъ Луну и заставляютъ насъ пред-
полагать, что Луна больше этихъ предметовъ, тѣмъ болѣе, что она свѣтлая,
тогда какъ, находящіеся между ней и нами предметы,—темные.
мчено свёсти на ночь, если бы мы не могли измерять этого разстояния непосредственно.

Интересное замечание. Это разстояние (Луны от Земли) было определено уже около двух тысяч лет тому назад с замечательным приближением; но только в половине восемнадцатого столетия в 1752 г. оно было окончательно установлено двумя астрономами, измерившими его в двух весьма удаленных один от другого пунктах: один в Берлине, другой на мыс Доброй Надежды. Эти два астронома были французы—Лалан и Лакай. Посмотрим на минутку на рис. 5. На нем Луна находится вверху, а Земля внизу. Образуемый Лункой угол будет точно меньше, чем дальше будет находиться Луна от Земли, а величина этого угла покажет нам, какой кажущийся диаметр представляет Земля, наблюдаемая с Луны.

Уголь, под которым видим с Луны полудиаметр Земли называется параллаксом. Составим не большую табличку отношений, существующих между утами и разстояниями.

Уголь в 1 градус с соответствует разстоянию 57

" 1/2 град. или 30 мин. " 114
" 1/10 " 6 " 570
" 1 минуту " 3.438
" 1/2 " или 30 сек. " 6.875
" 20 секунд " 10.313
" 10 " " 20.626
" 1 " " 206.265

Уголь в 1 градус можно представить себе, зная, что он равняется человеку ростом в 2 аршина. 6 вер. находящемуся на разстоянии в 57 раз больше, чем своего роста, т. е. на разстоянии 136 аршин. Квадратный лист бумаги, сторона которого равняется 2 и одной пятой вершка, наблюдаемый на разстоянии 47 аршин, представляет угол в 1 минуту. Черта в двое пятых линии толщиною, начерченная на листе в
бумаги, удаленному на 289 арш. разстояния, представляет толщину равную одной секунде. Равным образом волось толщину в четыре сотых линии находящийся на разстоянии 289 аршин представляет собою толщину тоже равную одной секунде. Такой угол крайне невелик и не замечен для глаза.

Этим определением угловых величин мы будем пользоваться в последующем изложении для выражения вспых небесных пространств. Параллакс Луны равный 57 минутам (почти одному градусу) доказывает, что разстояние этого свечка равно 601/4 земным полудиаметрам или радиусам (60,27). В круглых числах эта величина равняется тридцати ширинам Земли.

Так как земной радиус имеет 6.000 верст, то разстояние Луны от Земли равно 360.000 верст. Это такой же втройной факт, как наше существование.

Это разстояние представлено нами по пропорционально точному масштабу. На рис. 5 Земля представлена величиной в 2 и двадцатых линии в диаметр с проходящим по ней меридианом, идущим от Берлина до Мыса Добрых Надежд, а Луна—величиною в три одинадцатых диметра нашей Земли т. е. в восемь тридцатых линий и помещена на разстоянии 72 линий от Земли, т. е. на разстоянии, равном величине 30 земных диаметров. Таково точное пропорциональное отношение, существующее между Землей и Луной, что касается объема и разстояния. И можно утверждать, что это, вычисленное геометрически, разстояние Луны от Земли определено с большой точностью, чем во всех других разстояниях, которыми мы довольствуемся в обыкновенных земных измерениях, таких как длина посевных, или железнных дорог и до. Неоспоримо, как не может этого утверждение свидетельствовать о главной большинстве, что разстояние, разделяющее в любой момент Землю от Луны известно точнее, чем впр. разстояние от Москвы до Петербурга (Астрономы, могли бы мы прибавить, в своих измерениях, несравненно боле точны, чем самые добросовестные из тор-говцев).

Попробуем теперь представить себé это разстояние мысленно.
Пушечному ядру, обладающему постоянной скоростью в 703 аршин в секунду, понадобилось бы 8 дней 5 часов, чтобы достичь Луны. Звук проходит в пространстве (в воздухе при температуре 0°) по 466 аршин в секунду. Если бы пространство, разделяющее Землю от Луны, было целиком заполнено воздухом, то шум взрыва лунного вулкана, настолько сильный, чтобы его можно было услышать на земле, дошел бы до нас через 13 дней 20 часов после события; так что если бы это событие произошло в полнолунье, то мы могли бы его видеть в момент совершения, но услышали бы шум только в следующее полнолуние. Поезд железной дороги, совершающий кругосветное путешествие в безперывном беге в 27 дней, дошел бы через 38 недель на линию станцию через 38 недель.

Но свет, состоящий из быстрейшего из известных нам движений, домчался бы с Луны на Землю в одну секунду с четвертью.

Расстояние Луны от Земли позволяет нам на основании видимой величины Луны вычислить ее действительную величину. Так как полдiameter Земли, видимый с Луны, равняется 57 минутам,
а полудиаметр Луны, видимый с Земли, равняется 15°34".

то в этом же отношении между собою находятся и диаметры этих двух шаров. Дальней точное вычисление, находить, что диаметр нашего спутника относится к диаметру Земли, как 273 к 1000; т. е., равняется ньсколько больше четверти диаметра нашего мира, который имьется 12.000 верст, слѣдовательно диаметр Луны имьеть 3.264 вер., откуда слѣдует, что периметр ея равень 10.250 верст., поверхность—36 миллионамъ квадратныхъ верстъ, а объемь—20.722 миллионамъ кубическихъ верстъ. Поверхность этого соседняго мира равняется приближительно величинѣ четырехъ поверхностей европейского континента, или всей площади обѣихъ Америкъ. Есть чѣмъ насвятить честолюбие какого нибудь Карла Великаго или Наполеона, и понятно почему Александръ Македонскій сожалѣть, что не можетъ расширить свою имперію и на Луну. Но для астронома эта площадь является игрушкою. Такъ какъ объемъ Луны равняется 49-й части объема Земли, то понадобилось бы 49 Лунъ соединенныхъ вмѣстѣ, чтобы образовать шаръ величию съ Землею и—62 миллиона, чтобы образовать шаръ величию съ Солнцем.

Отсюда видно, что ничего нельзя проще и вернее, какъ измѣрение разстоянія и объема какою нибудь міра.

Надѣюсь, что этотъ столь логическій и точный геометрический методъ, примѣняемый къ небеснымъ измѣреніямъ, понятъ вполнѣ.

Среднее разстояніе Луны отъ Земли, какъ мы сказали, равняется 360.000 верст.

На этомъ разстояніи Луна обращается вокругъ Земли въ 27 дней 7 часовъ 43 минуты 11 секундъ со средней скоростью—1430 арш. или ньсколько меньше 1 версты въ секунду.

Исслѣдованіе движения Луны приводитъ насъ путь къ изученію самого открытия этого движения, къ знанію самихъ принциповъ движения небесныхъ тѣлъ и равновѣсія творенія, такъ какъ именно исслѣдованиемъ нашего спутника и привело Ньютону къ открытию законовъ всѣмірнаго тяготѣнія.

Однажды вечеромъ — два вѣка тому назадъ, одинъ молодой человѣкъ 23 лѣтъ сидѣлъ въ отцовскомъ саду, погруженный въ размышленія. Въ это время, говорятъ, среди вечерней
Рис. 7. Однажды вечером—два века тому назад, один молодой человек 23 лет...
тишины, упало перед ним яблоко. Факт этот, столь простой, который наверное прошел бы не замеченным для кого-нибудь другого, поразил и приковал его внимание. Луна сила на небе. Молодой человек стал думать о природе той странной власти, которая побуждает предметы падать на землю, он наивно спросил себя почему Луна не падает и думая об этом, пришел к одному из великолепнейших открытий, какими гордится ум человеческий.

Молодой человек этот был Ньютон. А открытие, на которое его навело упавшее яблоко,—великий закон всемирного тяготения, главная основа всех наших астрономических теорий, достигших такой точности.

Вот посредством каких разсуждений можно понять тождество земной тяжести с силой движущейся сферы.

Тяжесть, заставляющая тела падать к земле, проявляется не на одной только поверхности земли, она проявляется и на верхушках зданий и даже на самых возвышенных горах, не обнаруживая ни малейшего заметного ослабления. Естественно по этому предполагать, что она чувствуется и на огромном разстоянии и весьма возможно, что при удаленях от земли на разстояние равное 60 земным радиусам, т. е. до Луны тяготение тела к земле не совсем исчезает. Не является ли это тяготение той причиной, которая удерживает Луну на ее орбите вокруг Земли? Такой был вопрос, который поставил себест Ньютон.

Изслѣдуя движение тела при их падении к Земле, Галилей нашел, что въ одинаковое время тяжесть производит на тело всегда одно и тоже дѣйствие, каково бы ни было состояніе покоя или движения тела. При паденіи тела, падающего вертикально и безъ начальной скорости, тяжесть всегда увеличивает скорость паденія тѣла на одну и ту же величину, каково бы ни было время, протекшее съ начала паденія. При движении же тѣла, пущенного въ какомъ-нибудь другомъ направленіи, тяжесть понижает тѣло подъ положеніемъ, которое оно занимало бы въ каждый моментъ, двигаясь въ силу одной только сообщенной ему скорости, и понижает на то именно количество, на которое въ то же самое время тяжесть заставила бы падать тѣло, падающее вертикально и безъ начальной скорости.
Пущенное горизонтально ядро двигалось бы безконечно по прямой линии и с той же скоростью, если бы Земля не притягивала его; в силу же притяжения оно понижается под прямой линией, по которой было пущено, и количество, на которое оно послевоевательно падает под этой линией и есть то именно, на которое тело падало бы в то же самое время, следуя по вертикали, если бы в момент отъятия ему не было сообщено никакого импульса. Продолжите направление движения, сообщенного в началь ядру, до встретив с вертикальной стеной, в которую оно ударилось, и измерьте затем разстояние, отделяющее полученную точку от нижележащей, в которой ядро ударилось об стену, и вы получите точное количество, на которое ядро упало бы, падая без начальной скорости, во время пролетающее от его отправления до прибытия к стену.

Эти столь простые понятия прилагаются и к Луне. В каждый момент своего движения вокруг Земли Луну можно сравнить с пущенным горизонтально ядром. Но в первом, чтобы продолжать безконечно двигаться по прямой линии, по которой Луна была—так сказать пущена, она нечувствительно понижается под этой линией, чтобы приблизиться к нам, описывая дугу своей почти круговой орбиты. Луна, значит, каждую минуту падает к нам и количество на которое она таким образом падает в известное время получается также легко, как для ядра, посредством сравнения дуги кривой, которую она проходит в данное время, с путем, которое прошла бы в то же самое время по касательной к первой точке этой дуги, если бы ея движение не претерпело измненения.

Вот как вычисляется то количество разстояний, на которое Луна падает к Земле в секунду времени:

Так как наш планета имеет сферическую форму и длина периметра одного из её больших кругов (меридиана или экватора) равняется 40 миллионам метров, то орбита Луны, начерченная циркулем, раздвинутым на величину равную 60 земным радусам будет иметь длину в 60 раз большую 56 миллионов аршин, или 3360 миллионов аршин.
Для того, чтобы пройти всю эту орбиту Луна употребляет 27 дней 7 часов 43 минуты 11 секунд, что даёт число секунд, равное 2.360.591. Для 3.300.000.000 метров на это число, находят, что Луна проходит в каждую секунду 1430 арш., т. е., нёсколько меньше одной версты.

Чтобы вывести отсюда то количество, на которое падает Луна в секунду, предположим, что Луна в известный момент находится в точке L (рис. 8), а Земля в точке T. Если бы Земля действовала на Луну, то, пущенная горизонтально справа налево, она должна быть пройти разстояние, отмечённое прямою LA, но вместо того, чтобы слѣдовать по этой касательной, она слѣдует по дугѣ LB. Путь, проходимый Луной в секунду, равняется 1430 арш. и измѣрена разстояніе, отдѣляющее точку A отъ точки B, находятъ количество разстоянія, на которое Луна падаетъ къ Землѣ въ одну секунду, потому что не будь притяженія Земли Луна удалялась бы по прямой линіи. Это количество (отъ A до B) равняется 0,541 линіи, т. е., приблизительно $\frac{1}{2}$ линіи.

Прекрасно! если бы можно было поднять камень на такую же высоту, на которой находится Луна и оставить его падать, то онъ падалъ бы къ Землѣ въ первую секунду паденія съ этой именно скоростью — $\frac{1}{2}$ линіи.

По мѣрѣ удаления отъ центра Земли, притяженіе, какъ известно, уменьшается, какъ квадратъ разстоянія, т. е. на разстояніе помноженное само на себя. Такъ, на поверхности Земли падающий камень проходит въ первую секунду паденія 6 аршин и 89 сомыхъ. Луна находится въ 60 разъ дальше отъ Земли, чѣмъ поверхность Земли отъ центра. Притяженіе на этомъ разстояніи значить уменьшается въ 60×60 или 3600 разъ. Для того, чтобы узнать на какое количество упалъ бы въ одну секунду камень, поднятый на эту высоту,
достаточно разделить 4 метра 90 сантиметров на 3.600. Но 6 арш. и 89 смотых разделённые 3.600 = 0.5412 линий, т. е., равны тому количеству, на которое Луна отклоняется в секунду от прямой линии. Поднятый на высоту Луны камень употребил бы вместо одной секунды одну минуту, чтобы пройти надая, 6 арш. 89 смотых.

Но почему Луна не падает совсем на Землю? Потому что она пущена в пространство, как ядро. То же самое было бы и со всяким другим телом: ядром, камнем и пр. пущенными с той же скоростью и на таком же расстоянии от Земли. Скорость движения Луны (несколько меньше одной версты в секунду) развивает, как камень в праще, центробежную силу, которая стремится удалить от нас Луну на то точное количество, на которое Луна в силу притяжения стремится приблизиться к Земле, следствием чего и является, что Луна остается всегда на одном и том же расстоянии от Земли.

Скорость движения Луны вокруг Земли зависит от самой силы нашей планеты. Земля это рука, вращающая Луну в праще. Если бы наша планета обладала большей силой и большей энергию, чем обладает, она заставила бы нашего спутника вращаться быстрее; если же бы, наоборот, Земля была слабее, то она вертела бы эту пращу медленнее. Скорость движения Луны дает точное измерение силы Земли.

Простой набросок (рис. 9) показывает, какая сила удерживает Луну в ее движении вокруг нас. Эта сила—притяжение Земли, которое можно сравнить с натянутой веревкой. Тот же рисунок показывает, как Луна постоянно обращается к Земле одну и ту же сторону, именно ту въ...
которой, какъ мы можемъ себѣ представить, привязана веревка. Тогда какъ Земля свободно вращается вокругъ самой себя въ своемъ годовомъ движении вокругъ Солнца, Луна остается какъ бы привязанною къ намъ.

Въ то время, когда Ньютонъ пытался сдѣлать это сравнѣніе между притяженіемъ на поверхности Земли и силой, удерживающею Луну на своей орбѣтѣ, диаметръ Земного шара не былъ еще точно измѣренъ и результатъ вычислений не вполнѣ отвѣчалъ его ожиданію. Ньютонъ нашелъ, что количество, на которое Луна надаетъ къ Землѣ въ секунду нѣсколько больше половины линіи; но хотя разница была небольшою, она показалась Ньютону достаточной, чтобы помѣшать вывести заключеніе о тождествѣ, которое онъ надѣвался открыть. Причина, помѣшавшая Ньютону вывести это заключеніе, была объяснена только шестнадцать лѣтъ спустя. Въ 1682 г., присутствуя на засѣданіи Лондонскаго Королевскаго Общества, Ньютонъ слышалъ о новомъ измѣреніи Земли, сдѣланномъ французскимъ астрономомъ Пикаръомъ, просить сообщить полученный этимъ ученымъ результатъ, немедленно возвращается домой и снова берется за вычисленія, которыя дѣлалъ шестнадцать лѣтъ тому назадъ, но уже руководствуясь новыми данными. По мѣрѣ приближенія вычисленій къ концу желанная точность становится все болѣе и болѣе очевидной, мыслитель на минуту казался осѣлѣвшимъ и почувствовалъ себя охваченнымъ такимъ волненіемъ, что не могъ продолжать вычислений и долженъ былъ попросить своего друга докончить ихъ.

И действительно сравненіе, которое Ньютонъ старался установить, было полнымъ и не позволяло сомнѣваться, что сила, удерживающая Луну на своей орбитѣ, есть не что иное, какъ та же самая сила, которая заставляетъ падать тѣла на поверхности Земли, но только — уменьшенная въ интенсивности на вышеуказанный квадратъ разстояній.

Благодаря тѣмъ же, изобрѣтѣннымъ Ньютономъ, методамъ вычислений онъ нашелъ, что подъ дѣйствіемъ подобной же, направляющейся къ Солнцу силы, каждая планета должна описывать эллипсъ, одинъ изъ фокусовъ котораго находится въ самомъ центрѣ Солнца; этотъ результатъ былъ вполнѣ со-
гласенъ съ однимъ изъ законовъ движения планеть, установленнымъ путемъ долгихъ наблюдений Кеплеромъ. Отнынѣ, можно было утверждать, что планеты притягиваются или тяготѣютъ къ Солнцу такъ же, какъ спутники притягиваются или тяготѣютъ къ планетамъ, отъ которыхъ зависятъ и что тяжесть тѣхъ на Землѣ является лишь частнымъ случаемъ тяготѣнія, проявляющагося въ небесныхъ пространствахъ въ обращеніи планет вокругъ Солнца и спутниковъ вокругъ планетъ.

Что могло быть естественнѣе послѣ этого, какъ не обобщить эту мысль, сказавъ, что разсѣянныя въ пространствѣ свѣтила притягиваются или тяготѣютъ другъ къ другу въ силу прекраснаго закона, извѣстнаго въ наукѣ подъ именемъ вселенскаго притяженія или тяготѣнія.

Астрономія absolutely доказала всемирность этого закона (причину и сущность котораго мы, впрочемъ, не знаемъ). Этотъ законъ выражаютъ слѣдующую формулой, которую необходи mo запомнить:

Матерія притягивается матерію съ силой прямо пропорциональной массамъ и обратно пропорциональной квадрату расстоянія.

Эти законы будутъ подробно изложены въ главѣ, посвященной движенію планетъ ("Солнце" глава III ч. I-я).

Такъ была разгадана загадка небесныхъ движений. Вѣчно погруженный въ свои глубокія изслѣдованія, въ своихъ частныхъ дѣлахъ Ньютонъ былъ такъ разсѣянъ, что его разсѣянность вошла въ пословицу. Рассказываютъ, что однажды Ньютонъ, желавшій узнать во сколько минуту сварится яйцо, замѣтилъ минуту спустя, что держалъ въ рукѣ яйцо, а положилъ вариться свои секундныя часы, служившія для точнѣйшихъ математическихъ вычислений и представлявшихъ большую цѣнность.

Эта разсѣянность напоминаетъ разсѣянность математика Ампера, который однажды, отправляясь на лекцію, замѣтилъ на дорогѣ маленькій камешекъ, поднялъ его и сталъ съ восхищеніемъ разсматривать его непрья жилки. Вругтъ ему припомнилась лекція, которую онъ долженъ былъ читать, онъ вынимаетъ часы и, замѣтивъ, что время приближается, уско-
ряется шаги, кладет острожно в карман камень и бросает через перила моста Художества на Сену свои часы 1).

Но не будем сами забывать предметов наших занятий.

Луна, как мы сказали, совершает оборот вокруг Земли в 27 дней 7 часов 43 минуты 11 секунд, со скоростью в несколько меньше одной версты в секунду или шестьдесят верст в час.

Эта скорость развивается центробежную силу, каждую минуту стремящуюся удалить Луну от Земли на то именно количество, на которое принуждение нашего шага, наоборот, стремится приблизить ее к себе, так что в конце концов Луна остается висящей в пространстве всегда на одном и том же среднем расстоянии.

Описываемая Луной орбита равняется приближительно 2.400.000 верст длины.

1) Ампер действенно был поразительно разъяснен. Кончив, доказательство на доске, в Политехникум, Ампер никогда почти, говорят Араго, не пропускал случая вытереть цифры с доски своим носовым платком, и положить в карман традиционную тряпку, предварительно воспользовавшись ею вмместе носового платка.

Разъ он привык за черную доску кузовъ фиакра и стал писать на немъ мѣлкомъ формулы, и такъ, не замѣчая движения экипажа, съ четвертъ часа слѣдовать за своей движущейся черной доской. (Нужно впрочемъ сказать, что и самъ съдокъ часто ничего не замѣчаетъ).

Однако, чтобы забыться отъ досалявныхъ визитовъ, онъ написать на дверяхъ: "Амера итъ дома" Затѣмъ самъ вышелъ изъ дома, но уходя забыть взять аошинкъ. Тать какъ началъ падать дождь, то онъ возвратился, но сделанная имъ надпись на дверяхъ остановила его и назвавшись онъ отправился подъ дождемъ, не подумавъ, что ключъ отъ дверей находится у него въ карманѣ.

А разъ другой ученый, отецъ Векаріа, продолжая мысленно свои наслѣдований по электричеству, не закріалъ разъ во всю ночь, во время службы объѣды, вмѣсто Dominus nobiscum: "опытъ сделалъ" (Peresperienza /e fatta). Эта разсвѣчность привела къ запрещенію знаменитому физику отправлять церковную службу.

Разъ мы заговорили о разсвѣчности, то припомнимъ еще одинъ случай, происшедший съ Лабордомъ. Онъ присутствовалъ въ церкви на вынуждѣ одной изъ своихъ племянницъ. Когда церемонія кончалась и присутствующіе заднимися, направляясь къ выходу изъ церкви, Лабордъ обращается къ шедшему рядомъ съ нимъ сосѣду и спрашиваетъ его: "Вы идете до самаго кладбища?"
Если бы Луна могла быть остановлена на своем пути, то, вследствие устранения центробежной силы, она повиновалась бы единственно притяжению Земли и упала бы на нее, по сведенным мною вычислениям через 4 дня 19 часов 54 минуты 57 секунд или 417.297 секунд. Оставляем нашим читателям угадать, какого рода сюрприз произвело бы это громадное падение на обитателей Земли.

Одновременно с обращением Луны вокруг Земли, эта последняя в свою очередь обращается вокруг Солнца. В 27 дней Земля, стало быть, совершает приблизительно одну тринадцатую своего годового обращения вокруг Солнца. Это обращение Земли вокруг Солнца, уносящее вмьст с собой Луну, является причиной, по которой период фаз Луны или лунного месяца оказывается длине действительного обращения нашего спутника.

Луна такой же темный шар, как Земля, она не обладает ника- ким собственным светом и видима в пространстве только потому, что освещена Солнцем. Это последнее естественно освещает всегда одну только половину Луны, не больше и не меньше. Фазы Луны мѣняются в зависимости отъ положения Луны относительно Солнца и Земли. Когда Луна находится между Землею и Солнцемъ, ея освещенное полушаріе, будучи обращеннымъ къ светоносному очагу, остается не виднымъ для насъ: это новолуние. Когда луна образуетъ съ Солнцемъ прямой угол, мы видимъ половину освещен- ного полушарія: это четверти (первая и послѣдняя). Когда
Луна проходить за Землею по отношению к Солнцу, мы видим её освещенное полушарие: это полнолуние. Чтобы дать себя отчет во времени, протекающем между периодом фазы Луны и обращением вокруг Земли (этому именно разницу начинающим иногда бывает трудно понять) разсмотрим наш слугника в момент нового Луны. В этом положении мы можем представить себя Землею, Луной и Солнце как бы выстроенными в одну линию. Пусть это будет положение, представленное на рис. 10 буквой А. В момент новолуния Луна находится как раз между Землей и Солнцем. Когда Луна обращается вокруг нас в указанном направлении, вся система Земля и Луна уносятся как одно целое слева на право, и, когда наш слугник повернёт ровно одно обращение вокруг Земли через 27 дней, Земля и Луна находятся в положении, отмеченном буквами 3 Л. Объ линии 3 Л и 3 Л — параллельны. Если звезда находилась, например, в направлении первой линии, то она ока- жется снова в направлении второй линии. Но чтобы Луна снова прошла между нами и Солнцем, нужно, чтобы она двигалась еще приблизительно 2 дня 5 часов (2 дня 5 час. 0 минут 52 секунды). В это время вследствие перспективы Солнце повидимому отодвигается влево. Следствием чего и является, что продолжительность Луна между месц на равняется 29 дням 12 часам 44 минутам и 3 секундам. Это так называемое синодическое обращение Луны. Реальное же обращение Луны называется запоздалым. Как видно отсюда между ними существует разница, аналогичная той, которую мы замечали (стр. 26, 27) между продолжительностью вращения Земли вокруг самой себя и солнечным днем.

Собственное движение Луны с запада на восток и смьна фаз могут быть разгледоумы как подревнейшие из этих фактов наблюдения неба и первая основа измерения времени и календаря.
ГЛАВА II.
Фазы Луны.
Неделя. Измерение времени.

Наш отцы жили в более тесном общении с природой, чьи мы. Их жизнь не была искусственною; они не знали ни лицемерия, ни неестественных забот, созданных совершен ною жизнью. Они то именно и положили первые основы непосредственных наблюдений естественных фактов. Если астрономия является древнейшею из всех наук, то наблюдение Луны является древнейшим из всех астрономических наблюдений, потому что оно было проще, легче и полезнее других. Однокое святы ночей льется свой тихий свет на Землю среди сосредоточенного молчания природы и послѣ дня и ночи, обязанной собою суточному обращению нашей планеты, смѣна фаз Луны служила пастухамъ и путешественникамъ первымъ измѣреніемъ времени.

Въ течение приблизительно мѣсяца наша компания Луна совершаетъ полный оборотъ въ небѣ въ направленіи противоположномъ суточному движенію; и, восходя и заход я, какъ всѣ другія святы, двигаясь съ востока на западъ, Луна каждый вечеръ опаздываетъ на три четверти часа и по видимому остается позади другихъ звѣздъ или отступаетъ въ востоку. Это движеніе настолько замѣтно, что достаточно пользоваться положеніемъ Луны три дня подрядъ, чтобы дать себя въ немъ отчетъ. Находясь около какой нибудь красивой звѣзды Луна отступаетъ отъ нея, чтобы совершить кругъ по небу справа на лѣво; въ первый день она удаляется отъ нея на 13°; во второй находится отъ нея уже на 26°; въ третій на 39° и т. д. и, наконецъ, черезъ 27 дней находится отъ нея на 360° и, слѣдовательно, возвратилась въ ту же точку, но съ
противоположной стороны; совершив таким образом круг в небе с запада на восток, она оказывается в том самом месте, которое занимала на небе ровно месяц тому назад.

Рис. 11. Фазы Луны.

Фазы Луны должны быть замечены раньше самого движения Луны. Когда вечером по соединению с Солнцем, или в новолунье, Луна начинает выступать из солнечных лучей, она представляется нам в виде тонкого серпа, выпуклость которого всегда обращена в сторону заходящего Солнца, что подобно неизвестно большинству
художников, так как не проходит и года, чтобы нельзя было не увидеть на выставке значительного количества Лун говернутых в обратную сторону.

Шириной серпа постепенно увеличивается и в течение пяти—шести дней святито ночей приобретает форму полукруга, в это время святитаясь часть Луны заканчивается прямой линией и мы говорим, что Луна находится в первой четверти. В этой фазе ее легко можно видеть днем.

Продолжая удаляться от Солнца, она принимает овальную форму и в течение семи—восьми дней все увеличивается, после чего становится совершенно круглою. В этой фазе она полный светящийся диск блестит всю ночь. Это полнолуннее или противостояние; в это время Луна проходит в полног ное по меридиану и заходит с восходом Солнца; все показывает, что в это время она находится по отношению к нам в положении прямо противоположном Солнцу и блестит потому, что сывшло дн я освещает ее прямо, а не сбоку.

После полнолуния наступает ущерб, во время котораго Луна кажется такою, какою казалась во время приращения: сначала овальной, затем в вид полукруга (последняя четверть). Этот полукруг уменьшается и приобретает вид серпа, который с каждым днем становится все уже и уже и рога котораго все больше и больше выпрямляются, удаляясь таким образом от Солнца. В это время Луна совершает полный круг в небе; она восходит утром незадолго раньше светила дня, постепенно приближается к Солнцу и, наконец, теряется в его лучах и мы снова находимся в новолуние, называемым также соединением.

Мы уже видели, что ряд различных форм, в которых представляет нам Луна смениется в течение времени, которое она употребляет для своего обращения вокруг Земли, т. е. в 29 дней 12 часов. Время новолуния и полнолуния называется также сизигиями, а первой и последней четверти—квадратурами.

Очевидно, что момент новолуния, или другими словами момент, с которого начинается лунный месяц, не может быть определен непосредственным наблюдением, но крайне
мёрт если в этот точно момент соединения Луна не проходить как раз перед Солнцем и не затемняет его.

Какой из промежутков до или после соединения, когда замечают Луну невооруженным глазом, — короче? Решение этого вопроса должно было особенно интересовать Мусульман, так как конец поста рамазана определяется первым появлением Луны. Миллионы людей поэтому были заинтересованы этим явлением и главным образом на восток мы находим на этот вопрос наиболее точный ответ. Но нужно сказать, что в настоящее время в этой стране больше не занимаются астрономическими наблюдениями.

Рис. 11 bis. Лунный Серый в своем меланхолическом сиянии даёт природу пасторальный календарь.

Геевелий утверждает, что Америк Веспучи видел в жарком поясе в один и тот же день Луну на восток и на
запад от Солнца; но в Германии, гдев он наблюдал, он никогда не мог заметить ее раньше 40 часов после соединения с Солнцем, или позже 27 часов до соединения, хотя Кеплер и утверждал, что Луна можно различать в самый момент соединения, когда ей широта равняется 5 градусам.

Когда Луна в первые дни лунного месяца имеет форму серпа, то замечается, что остальная часть лунного шара также видна и освещена бледным светом. Это так называемый пепельный свят, он обязан собою самой Земле.

Действительно Земля освещается Солнцем и отражает свой свет в пространство. Когда для нас Луна находится в соединении с Солнцем, то Земля по отношению к Луне находится в противостоянии; для наблюдателей, которые находились бы на нашем спутнике, это было бы время полнолуния. Свят, который наш шар в это время отражает на Луну превосходит свет слонолуния приблизительно в четырнадцать раз.

Древние испытывали большее затруднение в объяснении этого вторичного света; одни приписывали его самой Луне, представляя ее себе прозрачной, или фосфорической, другие — неподвижным звездам. Кеплер утверждает, что Кеплер утверждает, что Тихо-де-Браге приписывал его свету Венеры и что Местер, учеником которого называл себя Кеплер, первый объяснил, что 1596 году настоящую причину этого пепельного света. Но она уже была объявлена знаменитым художником Леонардо да Винчи еще в 1518 г.

Когда Луна проходит фазы первой и послелунной четверти, этот свет почти совершенно исчезает, во 1-х потому что Земля в это время отражает на Луну в четыре раза меньше света, а во 2-х потому, что Луна в это время отражает на Луну в четыре раза больше, чем в другие фазы. По этой же причине это пепельный свет кажется нам немного ярче после послелунной четверти утром, потому что часть восточной земли лучше отражает солнечный свет, чьему западная, морская вода которой поглощает лучи, а с другой восточной области Луны сами поглощают темноту, вследствие нахождения там темных пятен. (Можно также заметить, что в это время
наш глаз тоже чувствительнее и зрачек больше расширяется после ночного мрака, чем после дневного света). Пепельный свет, отблеск отблеска, похож на зеркало, в котором видно святящееся состояние Земли. Зимою, когда большая часть полушария покрыта снегом, этот свет бывает значительно ярче. До открытия Австраліи астрономы угадывали существование этого материка по пепельному свету, гораздо больший светлому в этом месте, чем тот, который может быть отражен темным океаном. Обыкновенно этот лунный свет зеленовато-голубого цвета, что показывает, что наблюдаемая издали в пространстве наша планета должна казаться зеленовато-голубой.

Диаметр светящегося серпа кажется с земли гораздо больше, чем диаметр пепельного диска, Луны. Англичане говорят об этом вид Луны: „Старая Луна находится в облаках новой“. Это явление происходит от лучениясканий, контраста между большим светом, находящимся рядом с малым; один уничтожает другой, убивает его, как говорят художники; серп кажется как бы раздутым вследствие накопления солнцем в нем света, который расширяет диск Луны; освещенная атмосфера еще больше увеличивает эту иллюзию.

Деление времени на месяца и состояния из семи дней недели обязано собою фазам и видам Луны, как потому что фазы Луны повторяются раз в месяц, так и потому, что Луна в течение каждой семи приблизительно дней представляет возврат, так сказать, в новом виде. Таково были первое измерение времени; в небе не было никакого другого знамения, котораго различия, смени и периоды этих смени были бы более заметными. Семь собирались в условленное время, вычисленное по лунным фазам.

Новолуниймы пользовались для определения времени собраний, принесения жертв и общественных упражнений. Месиан начинался с того дня, когда замечали Луну на небе. Чтобы было легче отыскать ее, люди собирались вечером на возвышенностях мостах. Первое появление лунного серпа пристально выяснялось и определялось главным жрецом и возвышалось трубными звуками. Новолуния, совпадавшие с возобновлением времен года, были особенно торжественными,
имъ обязаны своимъ происхождениемъ „четыре времени“ церкви, какъ и большинство нашихъ праздниковъ обязаныхъ своимъ происхождениемъ тоже церемониаи древнихъ. Восточные народы Халдеи, Египтяне, Евреи небожно соблюдали этотъ обычай.

Рис. 12. Пепельный свѣтъ Луны.

Праздникъ новолуния равнымъ образомъ праздновался Эфиопами, Сабеями счастливой Аравіи, Персами и Греками. Общественные игры у грековъ — Олимпіады начинались въ новолуніе. У Римлянъ тоже былъ праздникъ новолуния (о немъ упоминаетъ Горацій); въ настоящее время его справляютъ у Турокъ. Праздникъ омели у Галловъ происходитъ тоже въ новолуніе и Друидъ носилъ лунный серпъ, какъ это можно видѣть на древнихъ изображеніяхъ. Соблюденіе того же обычаи нашли у Китайцевъ, Карайбовъ Америки, какъ у Перуанцевъ и на островѣ Таити. Тосманіцы, дикій народъ, послѣдній представитель которыхъ умеръ въ 1876 году и обычаи которыхъ можно было прослѣдить за цѣлыми столѣтіями, тоже празднича.
Рис. 13. Первое появление лунного серпа пристально высматривалось и определялось главным жрецом и возвещалось трубными звуками.
новали новолуніе. Поэтому у древних народов дни новолуния естественно посвящались извёстным церемониям.

В первых календарях началники должны были предсказывать за долго вперед в какіе дни будут праздноваться новолунія. Один оракул предписывал грециам уважать этот священный древний обычай. Послѣ этого понятно, как важно было для древних найти период времени для приурочивания фазы Луны къ однимъ и тѣмъ же днямъ года. Это открытие было сдѣлано и извѣстно подъ именемъ открытія Метонія, который въ 433 году до нашей эры объявилъ о немъ грекамъ, собравшимся на олимпійскія игры. Вотъ въ чемъ состоятъ это открытие: каждая изъ фазы Луны наступаетъ черезъ 29 съ половиной дней. Оказывается, что девятнадцать солнечныхъ годовъ или 6.940 дней заключаютъ въ себѣ ровно 235 лунныхъ мѣсяцевъ и значить, черезъ девятнадцать лѣтъ одна и также фаза Луны наступаетъ въ тотъ же самый день года и въ ту же самую дату, такъ что стоять только запи- сать даты каждой фазы Луны въ теченіе девятнадцати лѣтъ, чтобы заранѣе знать наступленіе ихъ въ теченіе слѣдующаго равновѣсія послѣдующихъ периодовъ. При этомъ ошибка можетъ равняться не болѣе чѣмъ одному дню въ 312 лѣтъ.

Лунный циклъ, значитъ, равняется 19 годамъ, изъ которыя пять высокосныхъ, или 6.940 днямъ, въ теченіе которыхъ бываетъ 235 лунныхъ мѣсяцевъ, такъ что черезъ каждые 19 лѣтъ новья Луны возвращаются въ тотъ же градусъ зодіака и слѣдовательно въ тотъ же день, какъ и 19 лѣтъ тому назадъ. 1) Первымъ годомъ лунаго цикла называютъ тотъ, въ
который новолуние наступает 1-го января, а золотыми числом текущий год лунного цикла.

Происхождение недели, как мы видели выше, тоже обязано собою Луне: это естественное деление времени по фазам Луны и потому весьма древнего происхождения. Гигитяне, Халдеи, Евреи, Арабы, Китайцы пользовались неделею с незапамятных времен. Так как число первых звезд древней миологии — семь равнялось числу дней недели, то на эти звезды смотрели как на божественных покровителей и имена дней, которыми они носят доньи, получили свое происхождение от Солнца, Луны и пяти планет. Это происхождение названий дней недели от имён семи первых звезд древней миологии особенно заметно на французских названиях дней недели.

Dimanche день Солнца (Dies Solis)
Lundi
Mardi
Mercredi
Jeudi
Vendredi
Samedi

Русская названия дней недели — канонического происхождения.

Порядок наименований дней недели, не соотвествующий ни степени блеска звезд, ни их разстоянию, — астрономически в.

Прибавим, что Луна, которую пользуются сочинители светочей для своих вычислений не настоящая, а средняя, которую называют церковною луной. Полнолуние этой регулярной фиктивной луны может наступать на день или два раньше наступления полнолуния настоящей Луны. Отсюда иногда и вытекает необъяснимая для публики разница. Так, напр., в 1876 г. полнолуние, следующее за 21 марта, наступило 8 апреля, это была суббота, значит Пасха должна была быть назначена на другой день — 9 апреля, но она была назначена на 16-е по церковной Луне, которая теоретически опоздала на несколько часов против настоящей Луны.

В дополнениях приложенных к последней книге („Звёзды“) указаны числа праздника Пасхи с 1910 по 2150 год.
како происхождения и мы найдем его, начертыв фигуру, представленную на рис. 14. Поместим на этой диаграмме семь, бывших известными древними, бла́ждающих свя́тиль в порядке их допускавшегося в древнее время разстояния, т. е. в следующем.

Луна Марс
Меркурий Юпитер
Венера Сатурн
Солнце

Поместив их на окружности, на равных разстояниях и соединив друг с другом хордами, мы построим каба́листическую фигуру гептагон, или звезду, вписанную в окружность, фигуру весьма ценявшуюся древними астрономами. Прекрасно! Начиная с Луны пойдем по линии, идущей к

Рис. 14. Объяснение происхождения порядка наименования дней недели.

Марсу; от Марса по другой хорд, ведущей к Меркурию отсюда по черте, которая приводит к Юпитеру, от него к Венеру, от Венеры к Сатурну а от Сатурна к Солнцу и мы возвратимся снова к Луне, перечислив все семь дней недели в их настоящем порядке.

Луна.
Такъ-ли действительно установился порядокъ наименования недѣль?—трудно сказать, такъ какъ на этотъ счетъ не существует никакихъ подлинныхъ документов. Діонъ Кассій, греческий историкъ II-го вѣка, утверждаетъ, что этотъ обычай идетъ изъ Египта и покойтся на двухъ системахъ. Первая система состоитъ въ счетѣ часовъ дня и ночи, приписывая первыя Сатурну, вторыя Юпитеру, третыя Марсу и пр. (Старый порядокъ, но которому счетъ начинался съ наиболѣе удаленной изъ планетъ). Продѣлывая эту операцию съ первыми двадцатью четырьмя часами находятъ, что первый часъ девятаго дня совпадаетъ съ Солнцемъ, первый часъ третьаго дня съ Луной и пр. Такимъ образомъ каждый день былъ названъ именемъ божества, съ названиемъ котораго совпадалъ первый часъ дня. Всакій можетъ проверить эту операцию и возможно, что это именно и было первою причиною наименования дней.

Вторая система, о которой говорить тотъ же авторъ обязанъ собою музыкѣ и имѣетъ свой основаниемъ кварту (интервалъ въ 21/2 тонъ). Действительно, если каждая изъ планетъ представляетъ собою одинъ тонъ, то, начиная съ Сатурна и минуя Юпитера и Марса, квarta будетъ дана Солнцемъ, затѣмъ минуя Венеру и Меркурий,—Луной, затѣмъ, минуя Сатурна и Юпитера,—Марсомъ и т. д. Но это нѣсколько мудрено.

Какая бы изъ этихъ трехъ системъ ни легла въ основу этого наименования, намъ интересно знать, что дѣление времени на периоды въ семь дней весьма древнего происхожденія и обязано собою фазамъ Луны, но что оно носитъ не было въ употребленіи у всѣхъ народовъ, такъ какъ Греки и Римляне имѣли ихъ не пользовались; первые имѣли недѣлю въ десять дней (декады), вторые считали по календамъ, идамъ и нонамъ. Но въ первомъ столѣтіи нашей эры обычай измѣрять время недѣлями въ семь дней сталъ почти всеобщимъ, съ этого времени за днями недѣли и остались латинскія названія:

\begin{align*}
\text{Dies Solis} & \quad \text{Jovis dies} \\
\text{Lunae dies} & \quad \text{Veneris dies} \\
\text{Martis dies} & \quad \text{Saturni dies} \\
\text{Mercuri dies} & \quad \text{\ldots}
\end{align*}
особенно замётны, как мы сказали, на французских названиях дней недели.

Константин Великий, объявив христианство господствующей религией, переименовал день Солнца в день Господа, и dies Solis стали называться dies Dominica, откуда произошли французское dimanche и dimanche—русское воскресенье и пр. Так объясняется происхождение названий и других дней недели.
ГЛАВА III.

Движение Луны вокруг Земли.

Въсъ и плотность Луны. Притяжение на другихъ мирахъ. Какъ взвьсили Луну.

Луна обращается вокруг Земли, описывая не правильный кругъ, а эллипсъ ("Земля" стр. 39). Эксцентриситетъ лунной орбиты весьма не великъ не болѣе 1/18. Его можно себѣ представить, начертить орбиту Луны въ видѣ эллипса, длина большей оси котораго равнялась бы 18 дюймамъ, а разстояние, раздѣляющее другъ отъ друга фокусы равнялось бы всего 1 дюйму, или чтобы разстояние отъ центра до каждого изъ фокусовъ было бы равно всего половинъ дюйма.

Этотъ эксцентриситетъ геометрически выражается цифрою 0,0549. Онь больше эксцентриситета земной орбиты, который равняется 0,0167, т. е. эллипсъ лунной орбиты отличается отъ круга больше чѣмъ эллипсъ нашей орбиты. Разстояніе Луны отъ Земли мѣняется въ теченіе всего ея обращенія вокруг Земли; въ этомъ можно убѣдиться, измѣряя кажущуюся величину ея диска, измѣренія величины котораго соответствуютъ измѣненіямъ разстоянія Луны отъ Земли. Когда Луна занимаетъ ближайшей къ фокусу край большой оси, то ея разстояніе является наименьшимъ, въ это время она находится въ перигей и ея диаметръ—наибольший. Когда же она находится на другомъ конце большей оси, или въ апогей, то ея разстояніе, наоборотъ, является наибольшимъ, а диаметръ—наименьшимъ; наконецъ, когда Луна находится на одномъ изъ концовъ малой оси, ея разстояніе, какъ и величина диска, являются—средними между крайними цифрами. Вотъ измѣренія диаметра и разстоянія Луны, вытекающія изъ того факта, что орбита Луны вѣсколько удлинена.
Диаметр Геометрич. разстояние
Луны разстояние в верст.

Наибольшее разстояние или апогей 29'31"0 1.0549 379.000
Среднее разстояние 31' 8"2 1.0000 360.000
Наименьшее разстояние или перигей 32'56"7 0.9451 340.000

Таким образом в течение пятнадцати дней разстояние Луны от Земли варьируется между 340.000 и 379.000 т. е. разница равняется 39.000 верстам или приблизительно одной девятой величины диска, что составляет весьма замечательную величину. Это увеличение диска особенно замечается в солнечных затмениях, которые бывают то полными, то кольцообразными, а разница в разстоянии сказывается на приливах и отливах.

Отныне от разстояния перигея земной и лунный радиус, мы найдем то наименеешее разстояние, на котором мы могли бы находиться от поверхности нашего спутника. Это разстояние равняется 332.800 километрам. При таких условиях телескоп увеличивающий в 2.000 раз приближает к нам Луну на 166 верст.

Движение Луны в пространстве гораздо сложнее движения Земли. Не входят в подробности укажем на наиболее любопытные из них.

Въ 1-хъ, эллипсъ описываеый вокруг Земли этимъ маленькимъ шаромъ не остается неподвижнымъ въ своей плоскости; онъ вращается въ ней въ прямомъ направлении, т. е. въ направлении, въ которомъ его проходить Луна. Такимъ образомъ большая ось Луны совершаетъ полный кругъ въ 3.232 дня или послѣдовательно въ 9 лѣть. Это движение, какъ видно отсюда, аналогично движению линии апсидъ земной орбиты, совершаемому въ 21.000 лѣть (мы объяснили его въ книгѣ „Земля“ на стр. 70, 71), но быстрѣ.

Во 2-хъ орбита Луны не расположена въ плоскости, въ которой вращается Земля вокругъ Солнца, т. е. въ плоскости эклиптики, такъ какъ этотъ спутникъ вращался въ той именно плоскости, въ которой вращается мы, то въ каждое новолуние происходило бы солнечное затмение, а въ каждое полнолуние — лунное. Происходить же иначе. Плоскость, въ
которой вращается Луна наклонена к нашей орбите на 5 градусов⁴.

Линией, по которой обе плоскости пересекаются называют „линией узлов“. Прекрасно! Эта линия пересечения не остается неподвижной, но совершает круг по эклиптике в 6.793 дня или 18²₉ лёт.

Въ 3-хъ само наклонение плоскости орбиты мѣняется. Въ среднемъ это наклонение равняется 5°8’48’’, но оно подвергается колебаніямъ, которое то понижаютъ это наклоненіе до 5°0’1’’, то повышаютъ до 5°17’35’’, оборотъ равняется 173 днямъ.

Для нашего астрономическаго изученія нѣтъ надобности въ пониманіи механизма всѣхъ этихъ неправильностей, но полезно знать, что они существуютъ. Прибавимъ, что движение нашего маленькаго спутника вокругъ Земли подвергается многимъ другимъ неправильностямъ такъ какъ: въ 4-хъ — уравненіе центра, которое по причинѣ эксцентричности звездной орбиты каждый мѣсяцъ заставляетъ Луну колебаться; въ 5-хъ — отклоненіе, периодъ котораго равняется 32 днямъ; въ 6-хъ — измененіе, периодъ котораго равняется 15 днямъ; въ 7-хъ — годовое уравненіе центра, периодъ котораго равняется году; въ 8-хъ — параллактическое уравненіе центра, периодъ котораго равняется 29 днямъ и которое позволяетъ вычислить разстояніе Солнца, не считая другихъ неправильностей, периоды которыхъ равняются: 206, 35, 26 и пр. днямъ, и которыя вносятъ въ движение Луны новыя пе рублейбаций.

Изслѣдованиемъ движения Луны привело даже къ открытию ускоренія движения Луны на 12 секундъ дуги въ столѣтіе. Половина этого ускоренія обязана собою медленному и постепенному уменьшенію эксцентричности звездной орбиты, а половина незамѣтному замедленію вращенія Земли вокругъ своей

¹) Какъ видно отсюда Луна обращается вокругъ Земли не въ плоскости экватора, а въ плоскости эклиптики съ наклоненіемъ въ 5 градусовъ. Зимою полная Луна восходитъ на небѣ въ предѣлахъ, которыхъ Солнце достигаетъ летомъ, и иногда даже на 5 градусовъ выше. Летомъ же, наоборотъ, Луна находится на небѣ весьма низко. Въ декабрьскомъ солнцестояніи Луна можетъ подняться относительно парижскихъ широтъ до 69 и 70 градусовъ высоты.
оси, которое повидимому должно увеличивать продолжительность дня на 1 секунду в сто тысяч лет(!) и укорачивать время обращения нашего спутника вокруг Земли. Если бы это ускорение продолжалось, то Луна под конец упала бы на наши головы, но это только периодическое колебание... Отсюда видно до какой степени эти движения были изучены и какой точности достигла современная наука, как видно и то, до какой степени сложны колебания этого повидимому столь благодушного святителя, ставшего вследствие этих неправильностей предметом настоящего отчаяния для геометров. Исследование уже открыло более шестидесяти неправильностей этого блуждающего святителя.

Часто на экзаменах попадаются учителя, находящие удовольствие запугивать учеников и, легко одерживая победу, ставить единицы экзаменующимся, к которым обращались с самыми произвольными вопросами. Сложность движений Луны часто служила такою западнею. Но экзаменаторы не всегда одерживали верх. Араго рассказывает как профессор Парижского Политехнического Института Гассендианский потерял в глазах студентов всякое уважение вследствие своего характера и неспособности. Разъ, собравшись спутать студента, он вызвал его к доске топом, не объяснив, что ничего добра. Но ученик (Лебуланже) держался на чеку и знал, что нужно разом отрубить возражение, чтобы не потерпеть поражения.

— Лебуланже, обратился к нему профессор, видишь ли вы Луну?
— Нет господин профессор.
— Как? Вы никогда не видели Луну?
— Я могу только повторить свой ответ: Нет не видел.

Видя себя, и видя, что вследствие этого неожиданного возражения его жертва ускользает у него из рук, Гассендианский обращается к инспектору, исполнявшему в тот день роль полицейского. „Господин Инспектор! Лебуланже утверждает, что никогда не видел Луну“.— „Что же я могу сделать?“ стонет инспектор. Потерпевшего неудачу и с этой стороны, профессор обращается еще раз, к Лебу-
буланже, остававшемуся спокойным и серьезным среди несказанной веселия всей аудитории и вскрикивает с нескрываемым гнёвом. "Вы продолжаете утверждать, что никогда не видели Луны?—Господин профессор, я соглашусь и сказать, что никогда не слыхал о Луне, но я никогда ее не видел!—Ступайте на место". После этой комедии ¹) Гассенфранц оставался профессором только по имени; его преподавание не могло иметь никакой пользы.

Эта небольшая история отвлекла нас на минуту от изслёдования столь сложного движения Луны. В дополнение к изложенному и главному образу для того, чтобы составить точное понятие относительно движения нашего спутника, посмотрим какой эффект произойдет комбинирование всехчного движения Луны вокруг Земли с годовым движением Земли вокруг Солнца.

Если бы Земля была неподвижна, то Луна возвращалась бы в конец своего обращения вокруг Земли в тот момент, в котором находилась в начале своего движения, как это изображено на рис. 15. Но Земля не остается в неподвижности.

¹) Известны еще более возмутительные истории. Раз на экзамене профессора Лейбнц-де-Форсис довел до такой степени беспокои ученика, что тот не мог дать ни одного правильного ответа. Устав безуспешно спрашивать, профессор вскрикнул: "Что за дуряк! и обращаюсь к стороне прибавил: принесите ему пучек сена. — Два, ярко возразил ученик: мы позавтра вмешьт!" Само собой разумеется, что выдача диплома была отложена в долгий ящик.
Пока Луна находится напримёр, в ё А и направляется в ж, идя от новолуния к первой четверти, Земля перемещается вправо и через семь дней переходит в пространстве вместе с Луной на 602,000 километров взятых семь раз; и первая четверть наступает тогда, когда Луна находится в B (рис. 16). Через семь дней Земля находится еще дальше и полнолуние наступает тогда, когда Луна находится в С, недавно спустя наступает последняя четверть, когда Луна находится в D; когда же, наконец, после сданнышнего Луной полного оборота, наш спутник приходит в ё А, то он в действительно описал в пространстве не замкнутую кривую, изображенную на рис. 15, а более длинную, чем изображенная на рис. 16 линию, соединяющую между собою положения А, В, С, Д, А.

По странному и неизвестному обстоятельству эта извилистая кривая так удлинена, что едва отличается от кривой, описываемой ежегодно Землею вокруг Солнца и вместо выпуклой по отношению к Солнцу (какою ее всегда рисуют в курсах астрономии) она оказывается в каждое полнолуние везде вогнутой по отношению к Солнцу. Я представил ее на (рис. 17) по масштабу 416,800 верст в 2/3 линий. Дуга земной орбиты на этом рисунке начерчена циркулем раздвинутым по масштабу 154,216.000 верст в 1 1/2 линиях.

Наш внимательный читатель сам прибавит к этому движению Луны вокруг Солнца движение Солнца в пространстве, о котором мы говорили в книге "Земля" (стр. 72, 73, 74) и в силу которого Луна сопровождает Землю в ее наведении к созвездию Геркулеса, еще больше условий вмести с разсмотренным движениями, ту кривую, которую мы начертили на рис. 17.

Так постоянное движение уносит мир!.. Солнце носится в пространстве; Земля уносимая

Рис. 17. Истинная форма лунной орбиты.
въ его полетѣ, обращается вокругъ Солнца; Луна описываетъ круги вокругъ нась, между тѣмъ какъ мы движемся вокругъ Солнца, тяготѣя къ этому лучезарному очагу, который самъ уносится въ вѣчную пустоту. Миръ, какъ звѣздный дождь, кружится, уносясь небесными вѣтрьами, и падаютъ въ необходи-
мое пространство. Солнца, земли, спутники, кометы, падаю-
щія звѣзды, человѣчества, колыбели, могилы, атомы безко-
нечности, секунды вѣчности, вѣчныя превращеиіе всего су-
ществующаго, все пестится подъ божественнымъ
духомъ; между тѣмъ какъ торговцы и рабы считають
денги и набиваютъ ими карманы, думая что держать всю
вселенную въ своемъ кошелькѣ!

О безуміе земного гомункула! безуміе торговца, безуміе
скряги, безуміе богомольца, идущаго на поклоненіе въ Мекку,
или Лурдъ, о безуміе слѣпцовыхъ! Когда же житель Земли от-
кроетъ глаза, чтобы видѣть, гдѣ онъ находится, чтобы жить
духовною пищею и найти счастіе въ умственныхъ созерцані-
яхъ? Когда, наконецъ, сбросить онъ съ себя стараго человѣка,
животное, чтобы освободить свое тѣло отъ оковъ и витать въ
высотахъ познанія? Когда, наконецъ, астрономія прольетъ свой
свѣтъ на всю душу?

Но нась зоветь къ себѣ свѣтило ночей.
Doux reflet d’un globe de flamme,
Charmant rayon, que me veux—tu?
Viens—tu dans mon sein abattu
Porter la lumiÃ¨re á mon âme?
Descend—tu pour me rÃ©vÃ©ler
Des mondes le divin mystÃ¨re?

Такъ пѣть поэзъ „Гармоній“ 1), для котораго свѣтило
ночи было не болѣе какъ небеснымъ лучомъ, предназначен-
нымъ Провидѣніемъ освѣщать земнымъ ночи. Насъ этотъ лучъ
привлекаетъ, отрываетъ отъ грубой земли и уносить къ свѣ-
тилу, испускающему его. Мы хотимъ знать самое Луну.

Мы уже знаемъ его разстояніе, ея величину, ея движе-

1) „Harmonies“ Ламартин. Прим. перев.
нія и скоро ступимъ ногою на ея волнообразную почву. Но прежде чѣмъ предпринять это путешествіе, намъ остается выяснить одинъ пунктъ—это въсь этого шара, а по немъ—плотность, составляющихъ его матеріаловъ и силу притяженія на его поверхности.

Из какъ вѣсить Луну?

Примѣненіе для этого способа можно понять и не входя въ специальныя изслѣдованія.

Вѣсь Луны опредѣляется изслѣдованіемъ явленій притяженія, производимыхъ Луною на Землю. Первымъ и наиболѣе очевиднымъ изъ нихъ являются приливы и отливы. Послѣднимъ сначала призыву нашего спутника, въ вода два раза въ день поднимаются надъ уровнемъ моря. Изслѣдую въ точки высоту поднятыхъ такимъ образомъ водъ, находить интенсивность силы, необходимой для ихъ поднятія, а, слѣдовательно, и мощность, или вѣсь (они тождественны другъ другу) этой причины, которая производить приливы и отливы. Вотъ первый методъ.

Второй методъ основанъ на вліяніи, которое оказываетъ Луна на движение земного шара; когда Луна находится впереди Земли, то она притягиваетъ нашъ шаръ и заставляетъ его двигаться скорѣе, когда же находится позади, то замедляетъ движение Земли. Это дѣйствіе сказывается въ первую и послѣднюю четверти на положении Солнца въ небѣ. Въ это время Солнце повидимому перемѣщается въ небѣ на три четверти своего параллакса или 290-ю часть своего диаметра. Поэтому то перемѣщеніе и вычисляютъ массу Луны.

Третій способъ покойтся на вычисленіи силы притяженія, которое Луна оказываетъ на экваторъ и которое производитъ нутаціи и прецессію, о которыхъ мы говорили въ книгѣ „Земля“ (стр. 67).

Все эти методы взаимно повреждаются и согласно доказываютъ, что масса Луны въ 81 разъ меньше массы Земли.

Итакъ Луна вѣсить въ 81 разъ меньше нашего шара. Ея вѣсь равняется приблизительно 69 секстіонамъ килограммовъ. Составляющіе ее материалы приблизительно на 6 степени меньше плотны, чѣмъ материалы составляющіе Землю. По сравненію съ плотностью воды Луна вѣсить 3,27, т. е.
она въсить приблизительно въ 3 1/4 раза больше водяного шара одинакового съ нею объема.
Весь Земли равняется 14,400,000,000,000,000,000,000,000,000,000,000 фун.
" Луны " 174,600,000,000,000,000,000,000,000,000,000,000

Приятствие на Лунѣ слабѣ всехъ известныхъ намъ прятеженій; если принять за 1000 прятеженіе, которое заставляетъ тѣла держаться вокругъ Земли, то прятеженіе Луны выразилось бы цифрою 164. Такимъ образомъ на Лунѣ тѣла въсятъ въ шесть разъ меньше и прятываютъ въ шесть разъ больше. Камень, вѣсящий 2,4 фунта на Землѣ, перенесенный на Луну, вѣсить бы только 0,4 фунта. Человѣкъ, вѣсящий на нашей планетѣ 168 фунтъ на Лунѣ вѣсить бы только 27,6 фунтъ. Если бы, значитъ, человѣкъ перенесся на Луну и его мускульныя силы остались бы тѣми же самыми, то въ этомъ новомъ своемъ мѣстопребываніи онъ могъ бы поднимать безъ усилия тяжесть въ пять-шестъ разъ болѣе тяжелой, чѣмъ на Землѣ, и его тѣло казалось бы ему въ пять-шестъ разъ тяжелѣ. Малѣйшему мускульному усилия было бы достаточно для него, чтобы прыгать на громадную высоту или бѣгать съ быстротою локомотива.

Дальше мы увидимъ, какую громадную роль играла эта слабость прятеженія въ топографической организации лунного мѣра, позволивъ вулканамъ нагромождать гигантскія горы на циклоническія цирки и бросать колоссальную рукою Альпы на Пиренеи.

Поэтому же поводу можно замѣтить, что если бы Луна, имѣя все ту-же массу, была бы величиною съ Землю, то, такъ какъ прятеженіе увеличивается какъ квадратъ разстоянія, а радиусъ лунной сферы въ четверо меньше земнаго радиуса, прятеженіе на Лунѣ уменьшилось бы въ 16 разъ и вмѣсто одной шестой земного прятеженія, равнялось бы только одной 90-й. Одинъ фундъ тогда вѣсилъ бы на Лунѣ не болѣе полфунта и человѣкъ въ 4, земныхъ пудъ вѣсилъ бы приблизительно одинъ съ половиной фунтъ! Мускульное усилие, которое мы дѣлаемъ, чтобы прыгнуть на табуретъ, позволило бы намъ въ одинъ прыжокъ подняться на вершину горы и мальшей силы вулкана бросала бы матерьялы изъ кратера такъ далеко, что они могли бы никогда не упасть обратно на Луну.
Могут существовать миры, масса которых так слаба, но вращение вокруг самих себя так велико, что на их поверхности не существует притяжения и тела не въсять ничего. И, наоборот, могут существовать миры такой громадной плотности, что тела на них имеют огромный и поистине невообразимый въсь. Предположим, что Земля не меняя своего объема стала бы такою же тяжелою как Солнце. Вследствие этого предмет, въсящий въ настоящее время один фунт, въсяль бы 324.000 фунтов и молодая стройная и грациозная дѣвушка, въсть которой въ настоящее время равняется 3 пудамъ въсила бы девятсотъ семидесять двѣ тысячи пудовъ. Пначе говоря, если бы она была бронзовой, то однимъ только своимъ въсомъ была бы приплоснута къ Землѣ и распалась бы на безчисленное количество молекулъ. Способна ли природа при всемъ своемъ могуществѣ создать настолько сильная существа, чтобы они могли выдерживать подобную тяжесть?

Какое чудное разнообразие должно существовать въ силу одного только этого факта между различными мирами, населяющими вселенную!

Рис. 18. Пространство проходимое падающимъ тѣломъ въ первую минуту падения.
Прежде чем идти дальше составим себе точно представление об этих любопытных различиях, существующих на землях солнечного мира. Вся и объемы будут вычислены дальше.

Сравнительная интенсивность притяжения на поверхности миров.

<table>
<thead>
<tr>
<th>Солнце</th>
<th>27,47</th>
<th>Уран</th>
<th>0,80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Юпитер</td>
<td>2,26</td>
<td>Венера</td>
<td>0,75</td>
</tr>
<tr>
<td>Сатурн</td>
<td>1,84</td>
<td>Меркурий</td>
<td>0,44</td>
</tr>
<tr>
<td>Земля</td>
<td>1,00</td>
<td>Марс</td>
<td>0,38</td>
</tr>
<tr>
<td>Нептун</td>
<td>0,89</td>
<td>Луна</td>
<td>0,17</td>
</tr>
</tbody>
</table>

Итак, наименьшая интенсивность притяжения находится на Луне, а наибольшая — на Солнце. В то время, как земные 2,4 фунта, перенесенные на первый из этих светил, въсили бы не больше 0,4 фунта, тѣ же самые 2,4 фунта въсили бы 64,8 фунта — на Солнце, 6 фунтовъ на Юпитерѣ и пр. Но мы лучше поймемъ эту разницу, переведя ее на путь, который прошло бы тѣло сброшенное съ вершины башни.

Вотъ путь, который былъ бы пройденъ въ первую минуту падения на каждомъ изъ разматриваемыхъ нами мировъ.

Пространство пройденное падающимъ тѣломъ въ первую секунду падения.

<table>
<thead>
<tr>
<th>На Лунѣ</th>
<th>0,83 метровъ.</th>
<th>На Сатурнѣ</th>
<th>4,36 метровъ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Марсъ О</td>
<td>1,84</td>
<td>Земля О</td>
<td>4,90</td>
</tr>
<tr>
<td>Меркурий</td>
<td>2,16</td>
<td>Нептунъ О</td>
<td>5,59</td>
</tr>
<tr>
<td>Уранъ Ю</td>
<td>3,67</td>
<td>Юпитеръ Ю</td>
<td>11,07</td>
</tr>
<tr>
<td>Венера Ю</td>
<td>3,92</td>
<td>Солнце О</td>
<td>135,34</td>
</tr>
</tbody>
</table>

1) Выше мы сказали, что объемъ Луны равняется 49-й части объема Земли. Если бы распределить материю Луны вокруг Земли, какъ усилить плотнымъ слоемъ песку аллеи парка или сада, то полученный вслѣдствіе этого на нашей Землѣ слой равнялся бы 40 вершкамъ толщины.
Переведя эти точные данные на русский м³ры получим приблизительно следующее:

На Луну е 1,12 арш.
" Марс ё 2,58 "
" Меркурий ³ 3,03 "
" Уранъ Ѳ 5,16 "
" Венера ё 5,51 "
 На Сатурнъ ѳ 6,13 арш.
" Земля Ѳ 6,89 "
" Нептунъ ѳ 7,86 "
" Юпитеръ Ѳ 15,56 "
" Солнце Ѳ 190,30 "

Представим себе, что мы оставляем подать с вершины башни камень и предположим, что башня имела бы понадцать метров вышины (рис. 18). На Юпитер и, где тела притягиваются с огромной интенсивностью, камень прибыл бы к подножью скалы почти в первую секунду. На Сатурн же он находился бы в это время только на полпути. На Земле прошел бы 6 арш. 89 сантим., на 14 сантим. аршина меньше, чьм на Нептунъ; 5 аршинъ 16 сантим. на — Уранъ, 5 арш. 51 сантим. — на Венера, 3 арш. 50 сантим. — на Меркурий, 2 арш. 58 сантим. — на Марсъ и только 1 арш. 12 сантим. — на Луну, такъ слабо на ней притяжение. Что касается Солнца, то, чтобы представить себѣ ту же силу на его поверхности, башня должна была бы иметь 188 аршинъ вышины. Притягиваемый громадною силой нашъ камень пролетала бы всю эту высоту в одну секунду.

При этихъ вычисленияхъ не принималось во внимание сопротивление атмосферы, которая въ зависимости отъ плотности уменьшаетъ въ большей или меньшей степени быстроту падения. Но тяготение или притяжение регулируется по одному и тому же закону во всей вселенной. Какъ знать, можетъ быть, и существовать въ природъ силы, неизвѣстны намъ и которая играютъ на вѣкоторыхъ мѣрахъ роль аналогичную притяженію, отличаясь отъ него своими дѣйствіями. Такъ, напр., если бы мы не знали существованія магнита, мы никогда не могли бы воображать, чтобы магнитъ, вопреки тяготѣнію, притягивалъ къ себѣ желѣзные предметы. Не взбрано поэтому воображать, что желѣзо, входящее въ слабой дозь въ нашу кровь и тѣло, можетъ находиться въ большей пропорціи въ другихъ, устроенныхъ иначе, чьмъ мы, орга-
нисмахь и что подъ дѣйствіемъ вліяній, аналогичныхъ вліяніямъ магнита, эти существа притягиваются особою силою, независимою отъ всѣмѣрнаго тяготѣнія. Невозможно также вообразить возможность существования естественныхъ силь, иныхъ чѣмъ магнитъ, который на нѣкоторыхъ мѣркахъ измѣняетъ дѣйствія притяженія и даже поднимаютъ существа до верхнихъ слоевъ атмосферы. Экспериментальная наука, какъ мы видѣли, можетъ пока вычислять только массы, объѣмы, плотности и тяжесть. Когда же наконецъ, сможемъ мы открыть живыхъ существа, живущія на этихъ столь разнообразныхъ во всѣхъ отношеніяхъ мѣркахъ? Когда сможемъ мы повидаться и познакомиться съ ними? О, Природа! Необятная, безконечная, очаровательная Природа! Кто можетъ угадать, кто можетъ услышать звуки твоей небесной лиры! Какая истинны заключаемъ мы въ ребяческія формулы нашей юной науки? Мы лепечемъ азбуку, тогда какъ вѣчная книга еще закрыта для нась. Но, такъ начинаютъ всѣ тѣ, которыя учатся читать и эти первыя слова гораздо вѣрнѣе древнихъ утвержденій человѣческаго, невѣжества и тщеславія.
ГЛАВА IV.

Физическое описание Луны.

Горы, вулканы, равнины, называемые морями. Селенография. Карта Луны. Древняя лунная эволюция.

Луна не перестала быть загадкой для Земли. Дух человеческой ненасытности в познании; сущностью его стремлений является проникновение в природу вещей и составление гипотез (предположений) относительно тех пунктов знания, которых он не мог устранить. Как было бы приятно знать, что происходит на столь близком к нам мире, как Луна! Так как что значит разстояние в 360 тысяч верст разделяющее нас от Луны, в сравнении с разстоянием между звездами, удаленьким от нас в небесном пространстве на миллионы и миллиарды верст? Наша гордость уже полнезенная приобретением нами знанием, что наш шар является господином этой провинции, была бы безконечно более полнезена, если бы было доказано, что этот спутник нашеи разумным существам, способным понять и оценить нашу планету, благодаря которой для них сравнимы только с благоханиеми, получаемыми ими от Солнца.

Не мало философы древности высказали свое мнение о Лунке. Не располагая достаточными средствами для наблюдения, они разсуждали на основании простого здравого смысла. Одни из них угадали, что Луна не имеет собственного света и сияет светом, заимствованным от лучей Солнца. Таково было мнение Фалеса, Анасисмандр, Анасагоры и Эмпедокла. Этот последний по словам Платона пришел к заключению, что если свет Луны доходит до нас менее ярким и не производит ощутительной теплоты, то это вследствие рефлекса. Прокл в своих Комментариях на Тимея Луна.
(Commentaire sur Timée) приводит три стихотворения, приписываемые Орфею, в которых говорится, что: "Бог создал другую, огромную Землю, которую безмерные называют Séléné, а люди Луной, и на которой возвышаются большее количество гор и огромное количество городов и жилищ". Учение Ксенофана была совершена схожим с учением Орфея. Аналогичный говорил о полях, горах и долинах Луны, но не упоминал о городах и жилищах.

Пифагор и его ученики выражались точнее по этому послѣднему вопросу, так как утверждали, что "Луна похожа на обитаемую нами Землю с тою разницей, что Луна населена болѣе крупными животными и покрыта болѣе красивыми деревьями и что Лунная сущность своим ростом и силою превосходят вь пятнадцать разъ обитателей Земли".

Диоген Лазерский приписывает Гераклиду Понтскому странное утвержденіе; по словамъ этого историка, Гераклид увѣрялъ, что, какъ ему известно, одинъ житель Луны сошелъ на Землю, но Гераклидъ воздерживается отъ его описанія. По одному преданію оказывается что левъ немейскій будто бы упалъ съ Луны. Впрочемъ, развѣ не увѣрялъ еще въ XVI вѣкѣ астрологъ Карданъ, что однажды вечеромъ его посетили два жителя Луны? Это были, говорить онъ, два старца почти нѣмые. Правда, что этотъ странной умъ былъ такъ искренне убѣжденъ въ астрологическихъ догмахъ, что когда его гороскопъ предсказалъ ему день и часъ его смерти, онъ раздѣлил свое имущество, и, оставивъ всѣдствіе этого ни съ чѣмъ умеръ отъ голода!..

Другіе древнѣе философы принимали Луну за зеркало, отражающее на Землю съ вершины небесъ солнечный свѣтъ. Великий вопросъ объ атмосфѣрѣ и водахъ на поверхности Луны, вызывающией споры еще нынѣ, уже возбуждался во времена Полутарха. Писатель этотъ передаетъ слѣдующія слова защитниковъ противоположнаго мнѣнія: "Возможно ли, чтобы жители Луны могли выносить въ теченіе долгихъ лѣтъ Солнце, испускающее каждые пятнадцать дней каждаго мѣсяца на ихъ головы свои жгучія, какъ жала лучи? Возможно ли предполагать, чтобы при такой жарѣ, въ столь разрѣженномъ воздухѣ дули вѣтры, образовывались тучи и падать дождь, безъ котораго
растения не могут ни вырасти, ни расти, если выросли, когда мы видим, что самые страшные ураганы, разражающиеся в нашей атмосфере, не поднимаются до вершин наших высоких гор. Сам лунный воздух вдыхается своей большой легкости, так разрежен и так подвижен, что молекулы его не поддаются стущению и тучи не могут образоваться. Эти аргументы мало отличаются от тех, которые и теперь еще приводятся нашими современниками в подтверждение мнения о необитаемости Луны.

Разсуждения о Луне и ея обитателях в то время были в такой мере, что Плутарх написал специальный трактат (De facie in orbe Lunae), в котором приводит большинство мнений, высказывавшихся в его время о Луне и Лукань Самосатский написал путешествие на Луну, такое же забавное, как и его остроумный диалог мертвых.

В течение всех средних веков, до изобретения телескопа почти не было серьезных диссертаций по поводу нашего спутника. В 1609 году Галилей, воспользовавшись первым телескопом для изслеживания природы Луны, нашел, что она представляет собою шар, наполненный значительным количеством извилин, в которых над необыкновенно глубокими долинами господствуют весьма высокие горы.

Первый сданный рисунок Луны был грубым изображением человеческого лица, так как расположение пятен на Луне в достаточной степени соответствующее положению глаз, носа, рта на человеческом лице, оправдывало это сходство. Поэтому мы везде и во всех видах видим на лунных изображениях воспроизведенное человеческого лица. Это сходство обязано собою географическому устройству нашего спутника. Впрочем сходство это довольно не полное и при изслеживании Луны в телескоп пропадает. Другое видели на Луне вместо лица цвятое тело, которое по мнению одних представляет собою Иду Искариота, а по мнению других — Каппа, несущего на плечах визку терновника и пр. Главная пятна замечательны невооруженным глазом, но количество пятен, различимых в телескоп — несравненно значительнее. Для того, чтобы охватить весь лунный диск невооруженным глазом, лучше всего наблюдать его в полно-
луне. Сначала необходимо хорошо орієнтуватися. Предпологим, что мы наблюдаем Луну в полнолуние в полночь, т. е. в тот момент, когда она проходит по меридиану и центр на южной стороне неба. Две крайних точки вертикального диаметра диска отмечают точки севера и юга Луны; север — вверху, а юг — внизу. Налево находится точка отмечавшая восток, направо — запад. При наблюдении же Луны в астрономическую трубу изображение представляется в обратном виде; юг находится вверху, а север — внизу, запад — налево, а восток — направо. Такое расположение страны света на всех Лунных картах.

Астрономы чертят карты Луны так же, как географы — карты Земли, и, можно сказать, что первые всегда точ-
нёс последних. Это объясняется тем, что мы видим разом всё полушарие Луны, но не видим всего полушария Земли.

Первая карта Луны была начерчена в 1647 году астрономом Гевелием, который был так озабочен точностью, что сам награвировал карту. Когда нужно было наименовать разные пятна, находящиеся на карте, он остановился в неопределённости перед именами знаменитых людей и названиями известных в то время стран света. Автор карты признался, что оставил отъ имен людей “из уважения служил врагов в лицу тых, которых он мог нечаянно позабыть, или тых, которые могли бы найти, что им оказано мало чести”. Поэтому он рисовал перенести на Луну наши моря, города и горы. Риччиоли, сдёлавший пьедестальное время спустя вторую карту Луны, выказал большую смелость и на карту, явившуюся плодом наблюдений его сотрудника и друга Грумальдь, приняв номенклатуру, от которой отказался Гевелий. Риччиоли упрекали в том, что он оказал много чести своим собратам ордена иезуитов и поместил между любимыми учеными самого себя. Но потомство не обратило на это внимания и номенклатура Риччиоли осталась верх.

После того поверхность Луны изучалась многими астрономами, в XIX в. она была изучена Бером, Мельером, Найзом, Годфриром и др., которые начертили карты Луны, отличающиеся массой подробностей. Для ориентиров в нашем путешествии мы будем пользоваться картой Гадибера, уменьшенной до размёров настоящей книги (рис. 22).

На этой карте нанесены широты (горизонтальная линия) и долготы (вертикальная линия), как это делается на картах Земли.

Изучаем в общих чертах поверхность Луны. Заметим сначала, что большая сърыя и черные пятна занимают главным образом северную или нижнюю часть диска, тогда как южная области или верхняя являются белыми и гористыми; но с одной стороны эта свёртая яркая окраска находится на северо-западном краю, как и недалеко от центра,
а с другой пятна наполняют собою южную область восточной стороны, одновременно с этим, спускаясь, но менее глубоко, и на запад. Простым сначала на карту распределение сърных равнин или морей и набросаем географический очерк Луны.

Начнем наше описание с западной части лунного диска, той, которая освещается первою в новолуние, когда тонкий серп вырисовывается вечером в небе, увеличиваясь изо дня в день, чтобы на седьмой день лунного месяца достичнуть первой четверти, (для невооруженного глаза это правая сторона, на карту же—левая). Недалеко от края в этом месяце замечается маленькое овальной формы пятно, одиноко лежащее в середине сверху пространства. Его назвали морем Крисисов.

Слову море не слѣдует придавать никакого особенного смысла, этими именами первые наблюдатели обозначали всѣ большия сѣроватые лунные пятна, принимая их за огромные пространства, наполненные водою. Но въ настоящее время мы знаемъ, что тамъ не есть воды, какъ не есть ея и въ другихъ лунных областяхъ.—Это обширные равнины. Все заставляетъ вѣрить, что это древняя моря, въ настоящее время высокошенья.

Положение моря Крисисовъ на западномъ краю Луны позволяетъ узнавать его невооруженнымъ глазомъ съ первыхъ фазъ лунного мѣсяца до полнолуния, по этой же причинѣ оно первое исчезаетъ на ущербѣ.

Направо отъ моря Крисисовъ и довольно далеко къ съверу вырисовывается большое, неправильной овальной формы пятно, которое также легко узнается невооруженнымъ глазомъ: это море Ясности.

Между этими двуми сърыми равнинами вверху замѣчается другое море, берега котораго менѣе правильны и которое называется моремъ Спокойствія. Оно образуетъ въ направленіи къ центру диска заливъ, который получилъ названіе моря Паровъ.

Море Спокойствія дѣлится на двѣ части, представляющія собою по мнѣнію нѣкоторыхъ форму ногъ человѣческаго тѣла. Изъ нихъ ближайшая къ краю часть образуетъ море Плодородія, а находящаяся ближе къ центру—море Нектара.
Рис. 20. Лунный серп. (Фотография взята в Парижской обсерватории).
Внизу моря Ясности, около северного полюса замечается еще одно пятно, тянущееся с востока на запад и известное под названием море Холода.
Между морями Ясности и Холода растирается озеро Снов и озеро Смерти — печальное эхо астрологов. Волоти Чистилища и Туманова занимают западную часть моря Дождей, северный берег которого образует круглой формы залив, называемый заливом Радуги.
Вся восточная часть лунного диска является однообразно темною. Края светлого пятна исчезают, сливаются с светлыми частями ночного светила. Северная часть этого пятна образуется морем Дождей, которое даёт происхождение заливу, оканчивающемуся в океане Бурь, где блистают два больших краёра Кеплер и Аристарх. Более южная область этого плохого ограниченного океана обозначаются к центру именем моря Облаков, а к краю — морем Сырости.
С селенографической точки зрения важно заметить, что большинство этих равнин имют округлые контуры, как напр., море Крезисов, море Ясности, и даже обширное море Дождей, ограниченное на юге Карпатами, на юго-западе — Липенами, на западе Кавказом, а на северо-западе — Альпами.
Кроме этих пятен, которые занимают около треть лунного диска, наблюдатель различает невооруженные глазом только неясные светящийся точки. Но к верхним областям можно различить невооруженным глазом главную гору Луны: кратер Тихо, блистающий ярким белым светом и испускающий вокруг себя на громадное расстояние лучи.
Не будем забывать, что карты луны чертятся в обратном виде, как мы видим светило в телескоп; для того, чтобы сравнивать Луну, наблюдаемую невооруженным глазом, с картой, эту последнюю нужно перевернуть так, чтобы север на ней находился вверху, и запад — направо.
Все эти лунные земли измерены с большою точностью. Поверхность полушарий, которое мы видим во время полнолуния имеет 18 миллионов кв. верст. Гористая часть луны, являющаяся большою частью поверхностей, распро-
стирается на 12 миллионов кв. верст, а занимаемая сю-рыми пятнами область обнимает собою около 7 миллионов кв. верст.

Так как угловой диаметр Луны идет 31' 8'', а действительный его диаметр—3.264 верст, то одна секунда дуги равняется 2.622 арш., а одна минута—105 верст. От центра к окружности пропорция уменьшается, так как Луна не плоское, а сферическое тело и перспектива проекции увеличивается по мере приближения к краям. Один градус на Луне равняется 42.717 арш., так как окружность Луна о ширена имеет 9.711 верст.

Такова в общих чертах лунная география или селенография.

Набрасываем теперь характерные особенности многочисленных гор, покрывающих эту поверхность.

Достаточно понаблюдать Луну в слабо увеличивающую зрительную трубу, чтобы с первого взгляда убедиться, что ея поверхность представляет собою весьма отчетливую неровности. Рис. 20 представляющий Луну в маленький телескоп, накануне первой четверти, уже дал нам общее представление об лунной поверхности. Неправильность внутреннего края дает очевидным шероховатость поверхности. Кроме этого, там же видны косо освещенные круглые углубления и весьма характерные тьмы. Наблюдаемые в неколько дней подряд эти тьмы, то увеличиваются, то уменьшаются в распространении и интенсивности, в зависимости от варьирования в том или другом отношении наклонения солнечных лучей,—на соответствуяиих частях лунной поверхности. С самаго начала наблюдений знали, что Луна плотный шар, усыпанный кратерами.

В 1866 я нарисовал весьма интересную лунную область (море Ясности с окружающими его землями), которая дает точное представление о том различии, какое существует на этом маленьком сосредоточенной мири между ровными и гористыми местностями. Как мы увидим ниже, внимание астрономов было главным образом сосредоточено на этой области, вследствие измениения, которое произошло с небольшим кратером Линея (на правом берегу моря). Этот
рисунок (рис. 21) съ очевидностью показывает съ одной стороны песчаную, шероховатую и неровную почву лунныхъ “морей”, а съ другой кратеровидную природу всѣхъ лунныхъ горъ.

Рис. 21. Лунная топографія. Море ясности.
Для ознакомления с геологической точки зрения с совокупностью гористых лунных образований, разсмотрим южную область нашего спутника.

Рис. 22. Карта Луны.

В нижней части Луны (на карту—вверху) невооруженным глазом можно различать весьма блестящую белую точку, от которой расходятся лучи. Ее прекраснейшим образом можно открыть в простой бинокль. Это пресловутая
гора Тихо. Она вмѣстѣ съ расходящимися отъ нея горными цѣнами занимаетъ центръ южной области луннаго диска и съ нея естественно всего начать описание лунныхъ горъ. Гора Тихо является однимъ изъ колоссальнѣйшихъ и величественнѣйшихъ образований. Ея зияющій, циркообразный кратеръ имѣетъ 80 верстъ въ диаметрѣ и замѣчается въ средней силы зрительную трубу.

Рис. 23. Луна гора Коперникъ. Типъ большихъ кратеровъ.

Эта кольцеобразная гора повидимому была центромъ, гдѣ вулканическая дѣйствія достигали наибольшей степени интенсивности; въ этомъ центрѣ кипящая лава вмѣсто образования слоевъ, осталась въ томъ видѣ, какой имѣла во время дѣйствій вулканическихъ силъ.

Въ полночь гора Тихо бываетъ окружена свѣтлымъ ореоломъ, который достигаетъ такой степени лучеиспусканія,
что ослепляет глаза и мешает наблюдать интересные геолого-географические особенности кратера.

Если мы хотим составить себе представление о видѣ лунных горъ, то изслѣдуетъ подробно одну типичную кольцеобразную гору, такую, напр., какъ гора Коперникъ, которая является наиболѣе красивой и наиболѣе интересной изъ всѣхъ лунныхъ горъ. Этотъ обширный циркъ имѣетъ 84 версты въ диаметрѣ. Въ полнолуние отъ него расходятся свѣтлые лучи, какъ отъ Тихо. Когда Солнце освѣщаетъ его не вполнѣ, на немь можно различать поднимающиася со дня его кратера центральная горы и два склона кольцеобразного цирка, образующаго вокруг нихъ роль крѣпостного вала. Внутри самъ кратеръ представляетъ роль тройного вала, образующагося изъ большаго количества крупныхъ обломковъ, громоздающихся у подножія довольно крутомъ внутреннемъ склонѣ, какъ будто эти массы оторвались отъ верхушки горы и скатились внизъ. Дно цирка почти ровное; но въ центрѣ виднѣются развалины центральнаго шпика (остроконечная гора) и масса обломковъ скалы.

Эта гора представляетъ настоящій типъ всѣхъ лунныхъ горъ. Всѣ онѣ—полыны внутри. Окружающіе каждый циркъ склоны горы почти всѣ отъ сна до глубины измѣняющеся отъ трехъ до четырехъ верстъ. Въ лунныхъ Альпахъ, нѣсколько уступающихъ по высотѣ Кавказу и Анпениамъ того же свѣтила, находится замѣчательно широкая долина, пересѣкающая цѣль въ направлении съ юго-востока на съверо-западъ. Долина эта окаймлена вершинами, возвышающимися надъ чиною больше, чѣмъ Теренифскій пикъ возвышается надъ уровнемъ моря. Замѣтимъ, что высота этой послѣдней горы уже равняется третьемъ съ половиной верстамъ.

Высота всѣхъ Лунныхъ горъ измѣрена съ точностью до нѣсколькихъ метровъ (чего нельзя сказать о земныхъ горахъ). Вотъ наиболѣе высоки изъ нихъ.

Гора Лейбницъ... 7 в. 300 с. Гюйгенсъ(Анненины) 5 в. 250 „
Кратеръ Ньютонъ 6 „ 350 „ Даламберъ 5 „ 300 „
Казать. 6 „ 200 „ Калипсъ (Кавказъ) 5 „ 100 „
Курцій. 6 „ 250 „ Теофилъ 5 „ 100 „
Гора Дерфель... 5 „ 350 „ Кратеръ Тихо .. 5 „ — „
Горы Лейбница и Дерфеля находятся близ южного полюса нашего спутника. Во время солнечного затмения эти двенадцать иногда видны в профиль, что я между прочим наблюдал и зарисовал во время затмения 10 октября 1874 г. На луних полюсах (где между прочим не видно ни синь, ни льдов) находятся горы так странно расположенные, что их вершинами неизвестна ночь, для них Солнце никогда не заходило. Их можно было бы назвать горами вечного света.

А что за громады эти лунные кратеры! Наиболее обширные из земных, действующих вулканов, не достигают и одной версты в диаметре. Принимая во внимание старые кратеры, образованные своим образованием ранне бывшим извержением, можно видеть, что вулкан лет через 325 с., а Валь-дель-Бовь в 350 верст. Некоторые из этих вулканов, образовавшихся утесами вулканами издает еще большую радиацию; таковы напр. кратер Циренеев Геаса, диаметр которого равняется 8 в. 200 с., а склоны—400 сажен. высота, и в устьях которых могли бы поместиться шесть миллионов человек. Кратер Кантал, ширина которого равняется 3 версты, кратер Озанна в 360 верст, (Франция), который имел не менее 18 верст и, наконец, кратер острова Цейлона, обширный, вероятно на земном в 7, диаметр которога определяют в 65 с половиной верст.

Но что значить подобная величина в сравнении с величиною многих лунных кратеров! Так кратер Клавиуса имел диаметр в 19 верст, кратер — более 187 верст, Сакробоско—150 верст, Пето—более 140 верст и т. п. На нашем спутнике на каждой около двадцати кратеров, диаметр которых превышает сто верст. А Луна в 49 раз меньше Земли.

Что касается высоты гор и то правда, что наиболее высокий из них нашего спутника на тысячу метров ниже гор нашей планеты, но эта слабая разница делает лунные горы чрезвычайно громадными по отношению к небольшой величине ночного светила, на котором они находятся. Принимая во соображение существующую между Луной и Землей разницу, наш спутник более горист, чем обитааема нами планета и гиганты Плутона многочисленнее там, чем...
зда́сь на Землě. Если у насъ есть такихъ горь какъ Гауризан-ка́рь, высочайшая вершина Гималайской цѣпи и всей Земли, высота которой доходить до 8 с лишкомъ верстъ и составляетъ 1440-ю часть диаметра земного шара, то на Лунѣ находить горы въ 7 с лишкомъ верстъ, какъ напр., горы Дерфели и Лейбница, высота которыхъ составл. одну 470-ую часть лунного диаметра.

Для точности сравненія нужно было бы представить себѣ воду морей исчезнувшей и принимать рельефъ отложений, считая со дна моря, вслѣдствіе чего высота Альпъ надъ дномъ Средиземного моря, или Пиренейскихъ горъ надъ дномъ Атлантическаго океана значительно увеличилась бы. На основаніи измѣренія глубины морей, высочайшія изъ вершинъ земного шара могутъ быть удвоены. Слѣдовательно рельефъ Гимала́йскихъ горъ надъ дномъ морскаго ложа составляетъ не 1440-ю часть диаметра земного шара, а 720-ю.

По и послѣ этого лунные горы всѣ таки больше земныхъ. Для того, чтобы наши горы находились въ одинаковомъ отношеніи къ высотѣ надъ уровнемъ моря нужно было бы, чтобы вершины Гималаевъ возвышались перпендикулярно на 12 верстъ. Значитъ, на Лунѣ такъ же удивительно видѣть вершины болѣе 7 верстъ, какъ удивительно было бы видѣть на Землѣ горы вдвое болѣе высокія.

Лу́нныя горы вулканическаго происхожденія.

Это главный фактъ, непосредственно вытекающей изъ круглой и колбечеобразной формы горъ, большихъ долинъ, цирковъ и всѣхъ менѣе крупныхъ углубленій, которыя, какъ мы видѣли, были названы кратерами.

Существованіе этихъ кратеровъ, исковерканная форма цирковъ, ихъ громадная величина и значительное количество, доказываютъ, что въ древности Луна, какъ Земля, и даже болѣе, чѣмъ нашѣ мѣры, была мѣстомъ громадныхъ геологическихъ переворотовъ. Луна такъ же, какъ Земля, начала свое существованіе съ жидкаго состоянія, затѣмъ охладилась и покрылась твердой корою.

Кора эта приобрѣла свою форму подъ влияниемъ геологическихъ явлений, слѣды которыхъ существуютъ донынѣ въ видѣ разныхъ неровностей почвы; причинами этихъ образованій безъ всякаго сомнѣнія являются силы внутреннихъ газовъ.
Вначале твердая кора, будучи меньше толстой, оказывала вследствие этого меньше сопротивления и так как она не была еще исковеркана, то должна была представлять во всей своей пунктах почти одинаковую однородность и толщину. Расширенная сила газов и царов, действуя перпендикулярно к верхним слоям и по линиям наименьшего сопротивления, должна была разрывать покров и образовывать приподнятый круглой формы. К этому то именно первоначальному периоду и следует отнести образование громадных возвышений, кругообразно располагавшихся вокруг центра, внутренность которых нынеш занята равнинами, называемыми морями. Выше мы видели круглую форму моря Кризисов, моря Дождей и моря Сырости. Окаймляющая их образований вроде валов, на половину разрушенных послушающими переворотами, еще и попытка представляют собою длинные ряды возвышений, состоящихся такими неровностью луны почвы какими являются горные цепи Карпать, Аппенины, Кавказа, Альпы и горы Гемуса и Тавра.

Затем, послушали новые приподнятые почвы, которые, произошедшие в то время, когда твердая части лунного шара проибрели большую толщу, или наступив под влиянием меньше могущественных сил, повлекли за собою образованное еще большее, но уже меньше громадных, но сравнению с первоначальными, образований. Таким повидимому являются цирки Шикард, Гималды и Клавус.

Затем появились безчисленные кратеры средней величины, покрывающие собою поверхность Луны и большинство которых, образовалось в самой внутренности первоначальных образований, похожих на кривостые окопы. Не трудно понять причину постепенного уменьшения величины этих геологических колец. Каждое из них обязано своим существованием приподнятию почвы, похожему на пузырь; но величина этих вспучиваний должна была находиться в зависимости от интенсивности внутренней силы, которая их произвела и сопротивление твердой или вирговь телообразной коре лунного шара. Впрочем эти объ причины и соединения образованную тьмь горь, цирковь и пр., на которые мы указывали выше, так что вообще можно сказать, что самья большие круговы образования в виду валов произошли первыми.
Заметим также, что почва Луны представляет собой два весьма различных вида. Более светлые части ее почвы,

Рис. 24. Луны Ливенны, выемки и три кратера: Архимед, Аристид и Аргилиций.

представляют собой то, что с самого начала назвали континентальной почвой; такою является почва гористых областей,

Луна.
которые покрывают собою почти весь юг. Гористость, большая способность лучеиспускания и главным образом высота над равнинами, явно отличают эти гористые области от равнинной почвы, темный цвет и гладкая поверхность которых придают им вид наносных образований. Эти равнинны должно быть были покрыты настоящими морями. На устроивство берегов их и теперь еще можно видеть действие воды. Что стало с этими морями? По всей вроятности они были во всём въка меньше значительными и меньше глубокими, чьым земные океаны и возможно, что воды лунихь морей были медленно поглощены користой почвой, на которой находились. Может быть въ глубинах лунихъ шара еще и теперь остается нѣкоторое количество воды и влаги.

На рисунокъ 24 представляют одну изъ наиболее замчательныхъ лунихъ областей — цвьть Аппеннина. Она тянется по берегу общирнаго моря Дождей по той именно его части, которая погребъ мало элегантное название, "болото Гнi-енiя". Эта общирная цвьть горы имѣетъ не болге не меньше какъ 675 верстъ длины, а общирнее высокихъ изъ ея вершинъ достигаютъ болге пяти верстъ. Какое наслаждение наблюдать эти освѣщенные солнцемъ высоты и отбрасываемыми ими черны тени, наканунѣ первой четверти и на другой день послѣ нея! Внизу этой цвѣть, открывается зияющй кратеръ Архимедъ, диаметръ котораго равняется 78 верстамъ а высота — 1½ версты. Сбоку него замыщается два другихъ кратера: первый (болге высокий) на западѣ — Автоликъ; второй внизу— Аристилъ. — Сравните эту область съ соответствующей ей на лунной картѣ.

На этой же самой гравюрѣ замыщается открывашіесяя на нѣкоторыхъ лунихъ равнинахъ, борозды. Одна начинается у южнаго вала Архимеда и тянется на 140 верстъначала шириной въ одну съ половиной версту, затѣмъ все шире и шире, другая начинается съ другой стороны того же кратера и спускается, извинаясь, къ северу. Эти расщелины имѣютъ по несколько верстъ глубины; ихъ дно мѣстами загромождено обвалами, а склоны почти отвесные. Два другихъ довольно большихъ борозды тянутся вдоль Аппенина то по освѣщеннымъ солнцемъ мѣстамъ, то въ тѣни гигантскихъ горъ, окай-
мленины страхов глубин пропастями: вершины горь отбрасывают свои силуеты более чем на 120 верст.
Отсюда видно, какая значительная разница существует между формами лунных и земных горь. Всё лунные горы

Луныи вулканический округ. Рельеф вулканического округа окрестностей Неаполя.
Рис. 25. Сравнение топографии лунного вулканического округа с земным. поляна внутри и их дно почти всегда спускается ниже среднего витшани уровня, так как измеряемая извне высота валов представляет не более половины или трети настоящей
глубины кратера. Некоторые земные округа представляют замечательное сходство с лунными; это сходство было бы еще замечательнее, если бы земные округа можно было наблюдать в телескопы. Для примера обыкновенно приводят Везувий с окружающими его местностями, называемыми флегрийскими полями. Это сходство так поразительно, что всю Луну можно было бы назвать флегрийским полем. Наше читатели могут составить себя объ этом представлении по рис. 25, нарисованному с двух фотографий, взятых с рельефного изображения лунного и земного вулканических округов; это сравнение было сделано Нэйсмитом и Карпентером. Правый рисунок представляет собою Неаполитанский залив, Везувий,

![Image](image.png)

Рис. 26. Тип лунной горы.

Сальфатару, Позузоло, Кумы и Бэдо острова Искія. Это скелет живого и роскошного пейзажа, расположенный на анатомический стол и освещенный косыми солнечными лучами, как смышляемый с ним лунный рельеф. Везувий являющийся одним из величайших европейских вулканов, был бы на Луне не больше одного из тех едва заметных кратеров, которые чуть видны вокруг Коперника и других лунных гигантов. Эта непропорциональность могла бы даже навести на сомнение в вулканическом характере лунных кратеров, если бы на ней, как на Земле, не наблюдали этого центрального конуса, который безспорно был образован по-
слёдными усилиями вулканическаго жерла, извергавшаго въ своихъ послѣднихъ вздохахъ содержимое угасающего очага.

Типъ лунныхъ горъ представленъ нами на рисункѣ 26 такимъ, какимъ его можно было бы наблюдать на самой Лунѣ. Некоторыя вулканическія образованія на Землѣ имѣютъ видъ совершенно лунный. Наблюдаемая изъ Интерлакена Юнгфрау въ Альпахъ, иногда бываетъ освѣчена заходящимъ солнцемъ.

Рис. 27. Потухший кратеръ Исландіи представляющій собою типъ луннаго пейзажа до исчезновенія воды.

такимъ образомъ, что видъ этой горы удивительно напомина-етъ некоторыя лунныя Альпы. Иллюзія получается почти полной при взгляда на потухший кратеръ близъ горъ Геклы (Исландія) рис. 27. Здѣсь мы совершенно на Лунѣ въ предшествовавшую исчезновенію водъ эпоху. Впрочемъ, не заходи такъ далеко въ самой Франціи на старинныхъ плоскогоріяхъ
Оверни можно видеть конусы потухших вулканов, представляющих в малых размерах то, что Луна почти на всей своей поверхности представляет в больших.

Отсюда видно, что разница между Луной и Землей только в степени. Она обязана собою природе нашего спутника и главным образом слабости притяжения на его поверхности.

Рис. 28. Потухший вулкан в Оверни (Франция).

Лунные пейзажи в горах должны представлять, поистине, грандиозный и совершенно особый характер. Вершины следуют за вершинами, освещенные Солнцем в едва ощутительной воздушной перспективе и при странном дне, свет которого освещает поверхность Луны, не гася в постоянно смеречном небе звезд.
Сделанное нами топографическое описание и вытекающая из него соображения относятся только к видимому нами лунному полушарию. В самом деле, все знают, что мы видим постоянно одну и ту же сторону Луны и что существует другая ее сторона, которую ни один из жителей Земли никогда не видел и никогда не увидит. Вращаясь вокруг нас, наш спутник постоянно обращается к нам все одну и ту же свою половину, как будто он прикреплен к Земле в некоторого рода твердыми узами. Он не совсем освободился от Земли 1) и вращается вокруг земного шара, как сдвинуты бы мы сами, отправившись в кругосветное путешествие. Как наши ноги всегда обращены к Земле, так точно и ноги Луны, или ея нижнее полушарие всегда обращено к Земле. Воздушный шар, перемещающийся кругосветное путешествие дает точный образ движения Луны вокруг Земли: в своем путешествии воздушный шар медленно совершает оборот вокруг самого себя, так как в то время когда он приходит к антиподам, его положение оказывается диаметрально противоположным тому, которое он занимал в начале своего пути, как диаметрально противоположно по отношению к нам положение наших антиподов. И так Луна совершает полный оборот вокруг самой себя ровно в то самое время, в которое совершает свой оборот вокруг Земли. Иначе, если бы она совсем не вращалась вокруг самой себя и обращалась вокруг Земли, сохраняя в неподвижности свое положение по отношению к нам, мы видели бы во время ее обращения послеводательно всю ее стороны.

1) Или лучше сказать притяжение Земли остановило движение нашего спутника вокруг самого себя, которым он по всей вероятности был наделен, когда отделился от земных экваториальных областей вследствие своего рода солнечного прилива. Происходящий неравномерно вследствие притяжения Земли на весьма близкой к нам в то время Луне, приливы и отливы имели своим последствием задерживание движения, постепенно его замедление и, наконец, полную остановку, оставив Лунный шар в некоторую удлиненным по направлению к Земле.

В настоящее время последствием океанических приливов и отливов, производимых Луной, является замедление суточного движения Земли вокруг самой себя.
Изъ того факта, что Луна обращается къ намъ всегда одну и тоже сторону, заключили, что она удлинена, какъ яйцо, къ направленіи къ Землѣ. Одинъ изъ астрономовъ, Галлеемъ, занимавшійся больше всѣхъ математическими вычислениями относящимися до Луны, даже пришелъ къ заключенію, что ея центръ тяжести долженъ быть расположенъ въ 55 верстахъ отъ центра фигуры и что, слѣдовательно, обращенное къ намъ полушаріе Луны находится въ условіяхъ высокой горы, и что „другое полушаріе можетъ иметь атмосферу, какъ и всѣ элементы растительной и животной жизни“, такъ какъ находится ниже средняго уровня.

Мы сказали, что Луна обращается къ намъ всегда одну и ту же свою сторону, но это, такъ сказать, вообще, такъ какъ двигалась то скорѣе, то медленнѣе и находясь то нѣсколько ниже то нѣсколько выше, она позволяетъ намъ иногда видѣть небольшую часть то лѣвой своей стороны, то правой, одинъ день часть, находящуюся по ту сторону верхняго полюса, другой—по ту сторону нижняго. Это такъ называемыя ея колебанія или качанія, которые доходятъ до 6° 51' широты и 7° 54' долготы. Изъ чего слѣдуется, что мы такимъ образомъ видимъ нѣсколько больше половины Луны; скрытая отъ насъ часть Луны относится къ видимой какъ 42 къ 58.

Лунная топографія на этихъ востыхъ сотыхъ другого полушарія такая же какъ и на всей поверхности обращеннаго къ намъ полушарія. И въ геологическому отношеній другое полушаріе тоже вѣроятно существенно не отличается отъ обращеннаго къ намъ. Безъ сомнѣнія гораздо пріятнѣе было бы знать навѣрное устройство этого другого полушарія, но мы не можемъ и надѣяться добраться туда живыми.
ГЛАВА V.
АТМОСФЕРА ЛУНЫ.
Условия обитаемости лунного мира.

Мы видели, что с геологической точки зрения лунный мир представляет замечательное сходство с Землей, съ тою, однако, разницу, что Луна отличается от Земли большою степенью развития вулканизма. Пойдем нѣсколько дальше въ изслѣдованіи физического устройства Луны. Но сначала замѣтимъ, что воздушная атмосфера, обволакивающая нашъ шаръ и обмывающая его поверхность своими лазурными волнами, тѣсно связана съ жизнью; благодаря атмосферѣ почва покрывается пищевымъ ковромъ растительности, темными, населенными звѣрьми и птицами, лѣсами, зеленѣющими лугами и украшенными цвѣтами и плодами растеніями. Это ея проникаютъ плодотворный лучъ Солнца, въ ней образуются хлопчатые облака, падаетъ дождь, разражается гроза и радуга развертываетъ свою блестящую корону надъ прозрачными и благоухающими пѣйзажами. Это она влияетъ живительной волной въ наши легкія, которыя дышать ею, открываетъ слабое существование рождающемуся ребенку и принимаетъ послѣдній вздохъ умирающаго, распростераго на своемъ скорбномъ ложѢ. Изъ всѣхъ элементовъ, изъ которыхъ составляетъ то, что называю физическимъ устройствомъ Земли, атмосфера, безспорно является — важнѣйшемъ. Безъ атмосферы, безъ этой газовой оболочки, въ которой организованы существа безпрестанно черпаютъ все, что необходимо для ихъ существованія, мы не можемъ себѣ представить ничего другого кромѣ неподвижности и молчанія смерти. Мы не можемъ допустить, чтобы животныя, растенія и даже низшіе организмы могли жить и развиваться въ иной средѢ, кромѣ той,
которая омыается эластичными и подвижными волнами атмосферы, молекулы которой находятся в постоянном общение с собственным организмом живых существ. Мы, конечно, далеко не знаем всех видов жизни, но по крайней мере, не выходя из области наблюдаемых фактов, не фантазируя, должны признать, что атмосфера кажется нам одним из существенных условий существования организованных существ.

Я сказал: нам кажется потому, что не доказано, что природа неспособна производить организованные существа, могущие жить без воздуха. Есть ученые, которые абсолютно отрицают эту возможность. Не будем с ними спорить. Тем не менее причину нашей оговорки не трудно понять. Если бы до наблюдения многочисленных существ, населяющих воды нашей планеты и до знакомства с ними по слуху, кто-нибудь взял у нас, что можно родиться, дышать и двигаться в воде, то, основываясь на своем единственном опыте, который показывает ему, что долгое пребывание в глубинах морей — смертельно, он был бы глубоко удивлен этой новостью. Таково же было бы и наше удивление, если бы на основании неоспоримых фактов нам доказали существование живых организмов на поверхности Луны. Природа столь разнообразна в своих действиях, столь сложна в проявлениях своего могущества, что не мы не имеем никакого права налаживать на нее никаких запретов.

На один вопрос не вызывает таких горячих и противоречивых споров, как существование атмосферы около Луны. Оно и понятно. Решение этого вопроса должно было нам ответить на жгучий вопрос: может ли быть населен наш спутник душевными существами, наделенными организацией подобной нашей?

Прилежное наблюдение этого сосуда шара не заметило нам доказать, что если около Луны и существует атмосфера, то она никогда не порождает никаких облаков, как атмосфера, в которой мы живем, так как эти облака закрыли бы от нас некоторые области лунной поверхности, результатом чего явилась бы перемена видов и обра-
личными движениями. Но диск Луны является нам всегда въ одномъ и томъ же видѣ и никогда ничего не препятствуетъ замѣчать на немь всегда одни и тѣ же подробности.

Итакъ, уже отсюда мы знаемъ, что атмосфера Луны, если она существуетъ, остается всегда совершенно прозрачной. Но мы можемъ пойти еще дальше. Всякая атмосфера производитъ смеркіи. Такъ какъ одна половина Луны освѣщается солнцемъ прямо, то солнечные лучи, освѣщающіе верхніе слои этой атмосферы, находящіеся надъ еще погруженными въ ночь областями, распространяли бы по темному краю нѣкоторый свѣтъ постепенно увеличивающуюся въ направленіи къ освѣщенному полушарію. На Лунѣ, наблюдающейся съ Земли, должно было бы замѣчаться постепенное уменьшеніе свѣта по ограничивающему ея кругу. Но ничего подобнаго не наблюдается: освѣщенная и темная части Луны отклонены одна отъ другой рѣзкой чертой. Эта черта болѣе или менѣе извилиста и неправильна вслѣдствіе горъ, но не представляетъ никакого слѣда уменьшенія свѣта. Отсюда видно, что если на Лунѣ и существуетъ атмосфера, то она должна быть крайне слабою, такъ какъ смеркіи, которыми она, допустимъ, даетъ происхожденіе, совершенно не чувствительны.

Укажемъ еще другой болѣе точный способъ опредѣленія существованія этой атмосферы. Когда, въ силу своего собственнаго движения на небесной сферѣ, Луна проходитъ передъ звѣздою, то можно точно опредѣлить какъ моментъ исчезновенія
звёзды так и момент ея обратного появления и вывести отсюда время прохождения звёзды за Луной. С другой стороны, посредством вычислений можно вполне точно определить линию, по которой движется звёзда за лунным диском и вычислить отсюда время, которое употребляет Луна для прохождения в небе разстояния, равного этой линии. Если бы лучи звёзды хоть немного отклонялись с пути вследствие их преломления в атмосфере, то звёзда вместо того, чтобы исчезнуть в определенный момент, когда ея касается лунный диск, оставалась бы видимой некоторое время послѣ этого момента, потому что лучи звёзды были бы преломлены луной атмосферой; но той же причинѣ звёзда начала бы появляться с противоположной стороны нѣсколько раньше того момента, когда закончилось прохождение звёзды за лунным диском, вслѣдствіе чего время прохождения звёзды за Луной необходимо было бы сокращено. Но обыкновенно находить

Рис. 30. Прохождение Венеры за Луной 14-го октября 1874 г.
полное равенство между вычислением и наблюдением. Мало того, блеск звезд письменно не ослабляется. На основании всего этого приходят к заключению, что атмосфера краева лунного полушария, если даже она существует, меньше плотна, чем воздух, остающийся под приспособлением пневматических машин, после выкачивания.

С другой стороны, когда Луна проходит перед Солнцем и затмевает его, ее контуры представляются всегда абсолютно ясными и лишеными всякой полутени.

С этой целью я наблюдал несколько затмений и прохождений звезд за лунным диском и между прочим, прохождение планеты Венеры за Луной 14 октября 1874 года в 3 часа пополудни при весьма ясном небе и полном солнечном свете. Красивая планета представлялась в телескоп в вид тонкого серпа, вроде серпа Луны, каким он бывает четыре дня спустя после новолуния, но относительно несколько шире, весьма замятного и отчетливо вырисовывающегося. Чтобы пройти перед Венерой, Луна употребила 1 час 14 минут. Три главных момента вступления и выхода Венеры из за лунного диска представлены на маленьких изображениях рисунка 30. При этом прохождении не наблюдалось ни малейшей полутени, ни малейшего изменения, указывающего хоть на какое-нибудь присутствие лунной атмосферы.

Юпитер, Сатурн, Марс равным образом время от времени проходят за Луной. Отмечается между прочим прохождение за Луной Сатурна 9 апреля 1883 г. (рис. 31). На нем заметаются только явления двойного преломления, незначительно не обусловлены собою лунной атмосферой.

Рис. 31. Прохождение за Лунным диском Сатурна 9 апреля 1883 г.
Спектральный анализ, принципы и пользование которыми мы в скоро изложим, с особенной тщательностью применились к изслеждованию лунной атмосферы. Если эта атмосфера существует, то очевидно, что солнечные лучи пронизывают ее в первый раз, не доходя до поверхности Луны, а во второй,—отражаясь по направлению к Земле. Образуемый лунным светом спектр должен был бы поэтому представлять линии поглощения прибавленной этой атмосферой к солнечному спектру. Но всев наблюдения доказывают, что Луна, как зеркало, просто отражает солнечный свет не обнаруживая, чтобы хотя малейшей слыш атмосферы как будь изменил его.

Другой способ обнаружения какой нибудь атмосферы пара, тумана и пр. на краях Луны состоит в изслеждования спектра звезды в момент её исчезновения за лунным диском. Малейший газ изменил бы цвет этого спектра и пикоторых его линий и спектр не исчез бы внезапно, не подвергнувшись хотя бы малейшему измнению. Новое доказательство, что, если лунная атмосфера и существует, то она не чувствительна на краях лунного диска.

Таковые факты, говорящие против существования лунной атмосферы. Посл по их изложению необходимо сказать, что их одних недостаточно, чтобы доказать полное отсутствие воздуха на поверхности нашего спутника и познакомить читателя с пикоторыми наблюдениями, которыми, наоборот, стремятся показать, что на Луне может существовать, правда, слабая и низкая, но настоящая атмосфера. Обыкновенно считают себя в праве утверждать, что на Луне не может быть и тым атмосферы, как не может быть и никакого проявления жизни подобной нашей. Это уже через чур.

Во время окульта, прохождения Луны перед звездами, звёзды скрываются за краем лунного диска, но край этот образуется всякого рода горами громоздящимися одна на другой, и редко бывает, чтобы низкая равнина пришла на край Лунного диска, не будучи заслоненной горами. А ведь на низах, а не на вершинах гор и нужно искать атмосферу.

С конца девятнадцатого столетия Шпретер наблюдал, что вершины лунных гор, представляющиеся на освещён-
номь краю диска въ видѣ отдѣльныхъ точекъ, тѣмь менѣе свѣтлы, что на большемъ разстояніи находятся отъ линіи, отдѣляющей тѣнь отъ свѣта, или, что одно и то же, тѣмь на большемъ протяженіи по поверхности Луны стелятся освѣщающіе ихъ лучи.

Разъ вечеромъ, два дня спустя послѣ новолуния, наблюдая тонкий серпъ Луны, Шретеръ рѣшилъ изслѣдовать: покажется ли весь, или только отчасти, вслѣдствіе ослабленія нашихъ сумерек, тотъ темный контуръ ночного свѣтила, который могъ быть помраченъ только непелымъ свѣтомъ, и нашелъ, что темный край луннаго диска сначала показался въ удлиненіи каждого изъ роговъ серна, длиною въ 1’20" и шириной приблизительно въ 2", онъ былъ слабо-сѣроватаго цвѣта, интенсивность и распространенность котораго уменьшились въ направленіи къ востоку. Другія части темныхъ роговъ луннаго серна были совершенно не видны, а между тѣмъ казалось бы, что, будучи наиболѣе удаленными отъ остѣпительно яркой части серна, они должны были показаться первыми. Это явленіе можетъ быть объяснено только свѣтомъ, отраженнымъ Луной атмосферой на эту часть ночного свѣтила, до которой по-видимому не дошли непосредственно солнечные лучи.

Шретеръ вычислилъ, что сумеречная дуга Луны, измѣренная въ направленіи касающихся ея солнечныхъ лучей, равняется 2°34’ и что, атмосферическіе слои, освѣщающіе край этой дуги, лежать на 212 саж. высоты. Съ того времени это наблюденіе производилось нѣсколькъ разъ.

Съ другой стороны, на основаніи 295 наблюдавшихся прохожденій звѣздъ за луннымъ дискомъ астрономъ Эрі пришелъ къ заключенію, что при исчезновеніи звѣздъ за темными краемъ Луны лунный полудіаметръ уменьшается на 2", а при обратномъ появленій звѣздъ изъ-за темныхъ же частей роговъ—на 2"4. Наблюденія относятся къ прохожденію звѣздъ за освѣщенными рогами луннаго серна даютъ болѣе цифры, чѣмъ можно было бы оцѣнить аpriori; что происходитъ вслѣдствіе крайней тонкости этихъ наблюденій (именно момента прохожденія), какъ и вслѣдствіе лучепусканія, исходящаго отъ луннаго края, который гасить звѣзду до момента кажущагося ея соединенія съ луннымъ дискомъ.
Это увеличение телескопического диаметра обыкновенно приписывается лучечусканию, которое увеличивает диаметр Луны при наблюдении ее в телескоп; но ничто не доказывает, справедливо замечает Нейсона, мой коллега по Лондонскому Королевскому астрономическому обществу, что на эту разницу не влияет до нѣкоторой степени лунная атмосфера; и, сравнивая столбъ вѣрный диаметръ, опредѣленный Ганзеномъ, съ диаметромъ найденнымъ на основаніи прохожденій звѣздъ за луннымъ дискомъ, прохожденій наблюдавшихся съ 1861 по 1870 годъ, находя разницу въ 1"70, которая, справедливо говоря, не можетъ быть приписана лучечусканию. Справедливое было бы допустить что 1" этого увеличения лунного диска обязанъ собою горизонтальному лучепреломленію лунной атмосферы. Съ этимъ согласны и вычисления лунного полудиаметра, производившіяся при полныхъ солнечныхъ затмѣніяхъ, когда лучечускание Луны разъяняется цѣло и когда, наоборотъ, солнечный свѣтъ уменьшаетъ ширину черной Луны. Таково мнѣніе и директора Королевской Англійской Обсерваторіи.

Съ другой стороны отсутствие рефракціи, о которой мы только что говорили,—не абсолютн. Что во время прохожденія звѣзды за луннымъ дискомъ, наблюдали отраженіе на дискѣ звѣздъ, это фактъ въ настоящее время неоспоримый и даже довольно часто повторяющійся; но это происходитъ вслѣдствіе двойнаго лучепреломленія; однако нѣкоторое запаздываніе этого явленія повидимому должно быть скорѣе отнесено къ лучепреломленію атмосферы. 24 мая 1860 г. во время прохожденія Юпитера за Луной наблюдалась темная линія, которую весьма возможно была обязана собою атмосферѣ; она тянулась по краю лунного диска и отражалась на дискѣ Юпитера.

Всѣдствіе упомянутавшагося нами выше качанія Луны, край луннаго диска не всегда представляется намъ въ одинихъ и тѣхъ же условіяхъ и не всегда бываютъ видны одинъ и тѣ же его точки, кромѣ того, наблюдаемы огромныя измѣненія температуры, также должны имѣть большое влияніе на состояніе атмосферы.

17 мая 1882 г. во время полного солнечнаго затмѣнія опытный спектроскопистъ Толонъ наблюдалъ, какъ ему кажет-
сия, усиление солнечных спектральных линий как раз против Луны.

Но, спросим себя теперь, каково было бы протяжение лунной атмосферы, которая производила бы горизонтальную рефракцию равную 1°27. Наш спутник находится в экваториальных условиях плотности, притяжения и температуры. Температура на его поверхности, как мы видели, поддерживается от тропической жары, то полярному холоду. На западном краю лунного диска она достигает своего максимума на полной день лунного месяца, а минимума — приблизительно за два дня до новолуния, тогда как на восточном краю она достигает своего максимума на другой день после наступления послелунней четверти, а минимума — за два дня до полнолуния.

По вычислениям Нейсона лунная атмосфера может равняться приблизительно 30 верстам; ее плотность на лунной поверхности при 0 градусов должна составлять \(\frac{23}{10.000} \) плотности земной атмосферы на уровне моря и при нулевом градусе. Рефракция этой атмосферы должна равняться 1°27 на неосвещенном краю лунного диска при температуре в 30 градусов холода и 1°03 при нулевом и 0°66 при освещенном краю при 30 градусах тепла по Цельсию.

Такое положение вещей согласовалось бы и с разными наблюдениями, сданными во время прохождений звезды за лунным диском и ни один факт не противоречил бы этой гипотезе.

Мы лучше представим себе протяженность этой атмосферы, если замечаем, что она вестись на поверхности одной английской квадратной мили (754 саж. въ ребрѣ) равняется приблизительно 24 миллионам пудовъ, а пропорциональное отношение к массѣ Луны, равняется одной восьмой того же отношения земной атмосферы к массѣ Земли.

Такая атмосфера не может быть названа ничтожной и действительно может существовать на Лунѣ.

Плотность воздуха на какой небудь планетѣ зависит от притяжения планеты. Вѣсъ всѣхъ тѣлъ на Землѣ былъ бы вдвое больше, если бы притяжение ея было вдвое больше и уменьшился бы вдвое, если бы притяжение уменьшилось на-
 половину и т. д. Но этот факт так же легко приложить к атмосфере, как и ко всему другому. Если бы земное притяжение было уменьшено настолько, что сравнилось с лунным, то давление атмосферы и плотность воздуха уменьшились бы до шестой их настоящего состояния; какое небудь данное количество воздуха над уровнем моря занимало бы большее пространство и вся атмосфера расширилась бы в надлежащем отношении; она поднялась бы в шесть раз выше. Если бы, значит, на Луне существовала атмосфера, такая же, как наша, то эта атмосфера поднималась бы в шесть раз выше нашей; ея давление на среднем уровне лунных равнин равнялось бы одной шестой давлению нашего воздуха на уровне моря. Так что, если бы даже Селениты имели такое же количество воздуха на квадратный метр, какое имеем мы, то они все-таки имели бы такую атмосферу, которой мы не могли бы дышать. Если же мы предположим, что состав лунной атмосферы иной и плотность ея в шесть раз больше плотности нашей атмосферы, то вследствие слабости лунного притяжения лунная атмосфера имела бы такую же плотность, как и атмосфера, которую мы и которая поднимается довольно высоко.

Я не мало раз наблюдал на изоквидеанной почве областей, тянущихся к югу от борозды Гиппарха, меняющих собой северный центр, который, если он не является оптическим обманом, может быть обязан собою или туману, или растительности. С другой стороны, мн удалось по лучать впечатлительные снимки, при наблюдении на шестой день лунного месяца обширных восточных равнин Моря Ясности. Овальный неправильный цирк Кавказа на север и горная цепь Менелая—на юг выступают в виде двух сверкающих точек, видимых в бинокль. Освещенный край равнины не заканчивается обрывистой линией отчетливо отделяющей сверкающее пространство от темных, но постепенно слабеет, как будто уровень его уменьшается. Это настоящая полутень. Вычисление показывает, что солнечный диск своей шириной должен производить на Луне полутень равную 32′ дуги большого круга, что составляет 16 километров ширины. Но я часто замечал на Луне полутень гораздо шире. Рис. 32,
нарисованный в Гарвардской обсерватории (Соединенные Штаты), дает представление об этом постепенном уменьшении цвета на освещенном крае диска.

Рис. 32. Лунные цирки, освещенные косыми лучами восходящего Солнца.

Мы могли бы прибавить еще и другие замечания. Так, 1-го февраля 1887 г. один английский наблюдатель Т. Гвинь Эльжер с достоверностью установил, что тень шиков, тянущихся по дну цирка Платон был как бы растущим.
В заключение можно сказать, что на Луне может (и должна) существовать атмосфера слабой плотности и состоять, по всей вероятности, весьма отличаящегося от состава нашей атмосферы. Может быть также, что там существуют и нёкоторые жидкости, такia напр., как вода, но в минимальном количестве. Если бы на Луне совсем не было воздуха, то на ней не могло бы существовать ни капли воды, так как одно атмосферическое давление удерживает въ жидкости состояния и безъ него вся вода немедленно испарилась бы. Наконец, возможно, что луноное полушарие, котораго мы никогда не видимъ богаче жидкостями, чёмъ полушарие видимое нами. И во всякомъ случаѣ было бы противно искреннему толкованию фактамъ утверждать, какъ это часто дѣлаютъ, что на поверхности Луны нѣть абсолютно никакой атмосферы, или жидкости.

Прибавимъ теперь, что этотъ миѳ, какъ и онъ близокъ къ намъ находится въ страннихъ для насъ условiяхъ обитаемости. Мы уже видѣли, что на его поверхности живыя или другиі какіянибудь тѣла почти не имѣютъ въса и что все должно быть тамъ крайне подвижнымъ. И такъ какъ на Лунѣ атмосфера сама по себѣ крайне легка, то тамъ нѣть ни небеснаго свода ни лазурнаго, ни другого какаго неба, никогда нѣть облаковъ, а существуетъ одна неизмѣримая и безформенная пустота, въ которой безчисленное множество звѣздъ блещутъ днемъ, какъ ночью. Получаемые отъ Солнца свѣтъ и теплота тамъ такъ же интенсивны, какъ и на Землѣ, потому что Луна и Земля вращаются въ пространствѣ на одинаковомъ разстоянiи отъ Солнца (что значить 360.000 верстъ при 140 миллионахъ—почти ничего), но послѣдствиа ихъ весьма различны, потому что атмосфера на Лунѣ не достаточна, чтобы смѣнять свѣтъ и теплоту. При полномъ Солнцѣ свѣтъ на Лунѣ интенсивенъ, горячъ и утомляющи; въ тѣни же почти равенъ нулю, густъ и является страннѣмъ отблескомъ освѣщенныхъ скалъ. Въ первомъ случаѣ ощущается невыносимая жара, во второмъ испытывается леденящий холодъ. Здѣсь на Землѣ атмосфера надъ нами головами служитъ своего рода предохранительнымъ парниковомъ, сохраняющимъ полученную за день теплоту, а вѣтры регулируютъ температуру...
туру; на Лунѣ, наоборот, вся полученная за день теплота исчезает съ заходением Солнца, а съ наступлением ночи возвращается леденящий холод. Существующие на Лунѣ организмы могут жить на ней только будучи устроенными такъ, чтобы переносить безъ боли эти оромные контрасты, которые для насъ были бы гибельными.

На этомъ странномъ ми́рѣ дни и ночи почти въ тридцать разъ длиннее нашихъ. Такъ какъ обращение Луны вокругъ самой себя относительно Солнца происходитъ въ 29 дней 12 ч. 44 м., т. е. приблизительно въ 709 часовъ, то такова на этомъ странномъ ми́рѣ и продолжительность дня и ночи: собственно день, отъ восхода до захода солнца, продолжается 354 часа, какъ и ночь; солнце употребляетъ не менѣе 177 часовъ, чтобы подняться съ восточнаго горизонта до своего кульминаціоннаго пункта—поля и столько же, продолжая свой путь, чтобы спуститься къ западу. Какой длинный день! и никогда ни облачка, чтобы умѣрить жгучесть этого вѣковѣчнаго Солнца!

Разрѣшенностъ лунной атмосферы позволяетъ звѣздахъ сиять днемъ, какъ и ночью. Онѣ, значить, видны медленно обращающимися вокругъ лунного полюса, который находится недалеко отъ нашего полюса эклиптики и расположень въ головѣ Дракона, и движутся нѣсколько скорѣе, чѣмъ Солнце, а именно—въ 27 дней 7 ч. 43 м., вмѣсто 29 дней 12 ч. 44 м. Здѣсь на Землѣ солнечный день на 4 минуты больше звѣзднаго, тамъ, на Лунѣ разница равняется 53 часамъ.

Но тогда какъ лунный день гораздо длиннѣе нашего, лунный гдь *) значительнно короче нашего: онъ состоитъ изъ 346 земныхъ дней или нѣсколько меньше 12 лунныхъ дней (11,74). Такъ, на этомъ соединеній шарѣ имѣется едва только двадцать дней въ году!

Существуетъ, ходящее по Лунѣ, должно чувствовать себя крайне легкимъ, бѣгать съ быстрой ластонки, подыматься безъ усилий на самыя крутыя горы, перескакивать черезъ про-
вести, бросать камни или снаряды на удивительное расстояние. Тогда какъ на Солнѣ самомъ сильномъ изъ нашихъ артиллерийскихъ орудий могло бы съ трудомъ выбросить снарядъ на вѣсколько аршина, такъ какъ солнечное притяженіе схватилъ бы снарядъ почти при самомъ выходѣ изъ пламеннаго жерла, на Лунѣ хорошій працникъ могъ бы перебрасывать ядро черезъ горы.

Находится, что ядро, пущенное горизонтально изъ жерла пушекъ (сопротивленіе воздуха не принимается во вниманіе), поставленной на самой высокой горѣ на Землѣ, никогда не упало бы обратно на Землю, если бы летѣло настолько быстро, чтобы совершить оборотъ вокругъ мѣра въ 5.000 секундъ т. е. въ 1 ч. 23 мин. 20 сек. или со скоростью въ 17 разъ большою скорости движения точки экватора; иначе говоря, если бы ядро было пущено со скоростью въ 3.750 саж. въ секунду. Сила касанія, которую ядро развило бы въ этомъ неистовомъ бѣгѣ была бы равна ровно притяженію Земли и ядро находилось бы съ нимъ въ равновѣсіи. Артиллеристы, пустившій это ядро, создалъ бы такимъ образомъ новаго спутника Землѣ.

Приведенный выше рисунокъ иллюстрируетъ эту мысль. Ядро пущенное горизонтально съ вершины горы со скоростью 3.750 саж. въ секунду понизится на этой длины на 6 восемьдесятъ девять сотыхъ аршина что составляетъ именно крутизну Земли и стало быть будетъ слѣдовать параллельно этой кривой линіи и возвратится описать кругъ въ 1 ч. 23 м. 20 с.

Можно ли было бы теоретически пустить вертикально и съ достаточную силой ядро, чтобы оно никогда не упало обратно на Землю? Оригинальный и интересный вопросъ, право! Гдѣ кончается сфера притяженія Землѣ?—Нигдѣ. Притяженіе уменьшается, какъ квадратъ расстоянія, но оно никогда не становится равнымъ нулю. Выйти изъ атмосферы притяженія Земли возможно только, вступивъ въ атмосферу другоаго необесспого тѣла. Но можно ли себѣ представить снарядъ, надѣленный такою скоростью чтобы онъ могъ совсѣмъ оставить Землю?—Можно. Для этого нужно было бы пустить снарядъ съ начальной скоростью, равной отъ 5.249 до 5.296 саж. въ секунду. Пущенный съ такою скоростью снарядъ никогда
не упал бы на Землю, какъ и не вращался бы вокруг нея, но улетѣл бы въ между планетное пространство *)

Рис. 33. Скорость, которую нужно было бы сообщить снаряду, чтобы онь никогда не упал обратно на землю.

Но мы забываемъ Луну. Мы хотимъ, наоборотъ, дать точное понятие о слабости притяженія на ея поверхности, указать, что пушечное ядро, которому понадобилась бы на Землѣ скорость равная 3.750 саж. въ секунду, чтобы вращаться вокруг нашей планеты, никогда не падая на нее обратно, на Лунѣ нуждалось бы въ скорости равной всего въ 1.500 саж. Такова была бы судьба снаряда, пущенного съ этой скоростью въ горизонтальномъ направлении съ вершины лунной горы Лейбнит.

Тѣ же соображенія показываютъ намъ, что камень, выброшенный изъ луннаго вулкана со скоростью 2.133 саж. въ первую секунду, ускользнулъ бы отъ луннаго притяженія и никогда не упалъ бы на этотъ шаръ. Само собой разумется, что если бы онъ былъ направленъ къ Землѣ, то

*) Формула этого вычисленія можетъ интересовать нѣ-которыхъ читателей математиковъ. Скорость, которую нужно было бы сообщить снаряду, чтобы пустить его въ безконечность равняется той, которая была бы приобрѣтена какимъ нибудь тѣломъ притягиваемымъ изъ безконечности однимъ притяженіемъ Земли.

Обозначимъ буквою г радиусъ Земли, равный 6.371 километру, а буквою g — интенсивность притяженія равную 9.81 метру и мы получимъ, для тѣла падающаго изъ безконечности на Землю слѣдующую формулу.

\[v = \sqrt{\frac{2gr}{g}} \]

\[2gr = 125.000 \text{ кил.} \]

\[v \cdot 2gr = 11.200 \text{ метровъ.} \]
упаль бы прямо на нас. В этом случае его даже не нужно было бы бросать с подобной силой. Сфера лунного притяжения соприкасается со сферой земного притяжения на расстоянии 34.430 верст от Луны и 325.340 верст от Земли (при среднем расстоянии 360.000). Тело, брошенное с Луны по направлению к Земле, вступило бы в область нашей сферы притяжения, если бы было брошено с относительно небольшой скоростью — 1.166 саж. в секунду. Эта скорость не выше скорости тела выбрасываемых земными вулканами, напр., вулканом Катанаха и может быть не больше той, которую может произвести человек. В XIX ст. Лаплас, Ольберс, Пуассон, Бю пришли к заключению, что уранолиты, камни, упавшие с неба, были по всей въроятности выброшены на Землю лунными вулканами.

Чтобы достигнуть сферы лунного притяжения ядро должно быть пущено с Земли к находящейся в зенит Лунъ со скоростью 5.100 саж.

Когда Европейские Соединенные Штаты, в которые войдут Европа, Азия, Африка и Америка будут образованы (через несколько тысячь лет) и послѣдняя война между земными братьями кончится, побдителями останется еще Луна; разгръвъ в достаточной степени земной патриотизмъ, они въроятно дойдутъ до объявленія войны Лунѣ. Нашъ врагъ находился бы тогда въ лучшемъ положеніи, чьмъ мы, такъ какъ всѣ снаряды нашихъ враговъ навѣрное прилетѣли бы къ намъ, тогда какъ часть нашихъ упала бы обратно намъ на головы. Тѣмъ не менѣ это была бы одна изъ любопытнѣйшихъ войнъ.

Какъ бы то ни было фактомъ, который больше всего долженъ насъ поразить въ физическихъ условіяхъ лунаго міра, является незначительность притяженія на поверхности Луны и соответствующая ему легкость организмовъ, которыхъ могутъ существовать на этомъ шарѣ.
ГЛАВА VI.
Обитаешь ли Луна?

Таинственное светило мечтаний, блестящее ночное солнце, одинокий, блуждающий под молчаливым сводом шар — Луна во все времена и у всех народов особенно привлекала в свои взоры и мысли. Около двух тысяч лет тому назад Плутарх написал сочинение под заглавием: О Луне, которое видно на Луне (De facie in orbe Lunae) и Луканъ Самосатский совершил мысленное путешествие в царство Эйдимонъ. Начинаясь с этой отдаленной эпохи, особенно въ годы, слѣдовавшія за первыми астрономическими открытиями и изобрѣтеніемъ телескопа, было написано сто путешествій на Луну, путешественниками, которыхъ блестящее обреченное не всегда было освѣщаемо достаточными знаніями. Наиболѣе любопытными изъ этихъ научныхъ романовъ является путешествіе на Луну Сирано-де-Бержерака, который нашелъ на Лунѣ такихъ же людей, какъ и на Землѣ, но со странными правами и обычаями, которые, разумѣется, не имѣли ничего общаго съ нашими. Уже во времена Плутарха воображали, что на Лунѣ живутъ существа аналогичные намъ, но не знали почему — въ пятнацать разъ больше насъ. Въ первую половину XIX в. въ 1835 г. по всей Европѣ продавали припѣсывающуюся Джону Гершелю брошюру, въ которой жители Луны изображались съ крыльями, какъ у летучихъ мышей и летающими какъ утки надъ лунными морями. Эдгардъ По заставилъ създать на Луну на воздушномъ шарѣ одного жителя Роттердама и соблъ на Лунѣ въ Роттердамѣ одного оби- тателя Луны съ извѣстнымъ объ этомъ путешествіемъ. Еще недавно Жюль Верно пустить вагонъ-ядро къ Лунѣ; но въ со- жалѣнію не этого небесные путешественники даже не видали Се- ленитовъ и ничего не могли намъ разсказать о нихъ.
Эта прекрасная Луна подвергалась во мненьи людей всёмъ превратностямъ самого мненья, какъ будто она была политической особой. То она была чуднымъ мѣстообрываніемъ, одновременно земнымъ и небеснымъ раемъ, благословенною, плодоносною страною неба, населенною высшими существами; то—ужаснымъ мѣстообрываніемъ, лишеннымъ всѣхъ даровъ природы, пустьнымъ и молчаливымъ, — настоящею, забытою въ пространствѣ, летающей могилой. До изобрѣтенія телескопа философы естественно склонны были видѣть въ ней землю аналогичную обитаемой нами Землѣ. Когда Галилей направилъ первый телескопъ къ этому шару и открылъ на немъ города и долины аналогичныя горамъ и долинамъ разнообразнымъ нашу планету и обширную сѣрый равнины, которая легко можно было принять за моря, то сходство между этимъ міромъ и нашимъ показалось очевиднымъ и Луну тотчасъ же населли, но не людьми, а разными животными. Начертили и первыя карты и согласились межъ собою окрестить большиня пятна именами морей, которыя они носятъ до сихъ поръ.

Рис. 34. Большая астрономическая труба XVII ст. По Біанкини.
Во времена Гюйгensa, Гевелия, Кассиоли, Бианки и были построены телескопы величиной большие ста футов; но эти не ахроматические телескопы не стояли наших современных телескопов величиной в пять аршин.

Астрономы, мыслители, сама интеллигентная публика, наделялись на быстрое усовершенствование телескопов, и во времена Людовика XIV даже предлагали построить "телескопъ въ десять тысячъ футовъ, который бы позволилъ увидѣть на Лунѣ животных". Но какъ ни старались, прогрессъ оптики не шелъ по волнѣ фантазіи. Наоборотъ, чѣмъ больше совершенствовались инструменты, тѣмъ болѣе изглаживалась замѣтная вначалѣ аналогія между Луной и Землей.

Отчетливо различив поверхность морей, наблюдатели нашли, что эта поверхность не жидкая и не ровная, а песчаная и шероховатая, разнообразная тысячами рельефовъ: холмами, долинами, кратерами, цирками и пр. Самому внимательному наблюдателю не удалось открыть на этомъ свѣтиль ни одного настоящаго моря, ни одного настоящаго озера и никакого вѣрнаго доказательства присутствія воды, въ какой бы то ни было формѣ: облаковъ, снѣга или льда. Не менѣе внимательное наблюдение звѣздъ и планетъ въ тотъ именно моментъ, когда Луна проходила передъ ними и заслоняла ихъ, одновременно съ этимъ показало, что эти свѣтила не заволакиваются и не преломляются, касаясь края луннаго диска и что слѣдовательно Луна не окружена никакой замѣтной атмосферой.

Аналогія, которую находили между этими двумя мирами исчезла, лунная жизнь разлетилась, какъ дымъ, и въ книгахъ по астрономіи мало по малу привыкли писать слѣдующую, ставшую традиціонною, фразу: Луна мертвое свѣтило.

Это, значитъ, потопыться съ заключеніемъ, и особенно строить себѣ странныя иллюзіи на счетъ значенія телескопическихъ показаній.

Мой старый учитель и другъ Бабинъ, утверждалъ, что если бы на Лунѣ находились стада животныхъ подобные стадамъ быковъ въ Америкѣ, или движущиеся стройными рядами полки солдатъ, или рѣки, или каналы, или желѣзныхъ дорогъ, или памятники вродѣ Собора Парижской Богоматери, Лувра или Парижской Обсерваторіи, то большой телескопъ
лорда Росса позволили бы их открыть. Действительно этот колоссальный телескоп, длина которого превышает 22 аршин, а зеркало имеет в диаметре 2 и три пятых аршин, (самый большой до настоящего времени), может увеличивать в шесть тысяч раз. Но так как увеличить отдаленный предмет, или приблизить его, геометрически одно и тоже, то если бы действительно можно было приблизить Луну в шесть тысяч раз, мы бы увидели ее на разстоянии 58 версть. Но телескоп лорда Росса не совершенствен и далеко не увеличивает в шесть тысяч раз. Желая отчетливо видеть предмет, нельзя увеличивать его более чем в двенадцать тысяч раз.

Кромě телескопа лорда Росса, лучшему телескопом является большой телескоп Лаксела, имеющий 1 аршин. семь десятих в диаметр и 15 аршин. длины. Самая сильная зрительная труба находится в обсерватории, построенной на горе Гамильтона (Калифорния) и в Йоркской обсерватории в Женеве близ Чикаго. Первая имеет объектив в 1 аршин. с третью (1 аршин и одна пятая свободного открытия) и 21 аршин. длины; вторая имеет объектив в 1 аршин. с половиной (1 аршин и две пятых свободного открытия) и 25 аршин. длины. Эти оба инструмента были установлены в 1887 г. и 1889 г. Но и здесь, самые большие окуляры, которыми можно пользоваться в этих инструментах, также не превосходят двух тысяч, и то при наиболее благоприятных атмосферических условиях. К чему чрезмерно увеличивать изображение, которое перестает быть ясным и не может быть с пользою наблюдаем? Ближайшим разстоянием, на которое мы можем приближить Луну при лучших атмосферических условиях является—80 версть.

Но, спрашиваю я вас, что можно различить на подобном разстоянии? Появление и исчезновение на Луне таких сооружений как египетские пирамиды прошло бы незаметным. „Ничего не шевелится“, часто замечает, наблюдая Луну. Охотно въю. Нужно было бы колоссальное землетрясение (или лунотрясение), чтобы его можно было заметить с Земли, да и то, если бы в этот именно момент на Земле нашелся астроном, который благодаря чистому небу и могу-
щественному инструменту, была бы занять наблюдением той именно области, которая подверглась катализму; мы не были бы предупреждены об этом никаким шумом и могла бы произойти страшнейшая и из катастрофы и вся Луна могла бы разразиться тысячью громами и ни малейшее эхо не пролетело бы небо, отделяющее нас от Луны.

Когда, стало быть, заявлять, что Луна необитаема, потому что не видно, чтобы на ней что нибудь шевелилось, то обыкновенно строят себе странную иллюзию на счет телескопических показаний. С воздушного шара, находящегося в несколькох верстах высоты над землею при чистом небе и ясном Солнце, невооруженным глазом можно различать: города, леса, поля, луга, рощи, дороги; но тоже не видно, чтобы на ней что нибудь шевелилось и получается впечатление (и часто испытывают его в своих воздушных путешествиях) тишины, одинчество и отсутствие жизни. Ни одного живого существа не видно и если бы мы не знали, что на Земле находится живцы на полях, стада на лугах, птицы в лесах, рыбы в водах, ничего не позволило бы нам этого угадать. Если, рассматриваемая на расстоянии п'ескольких верст, Земля является мертвым миром, то как велика иллюзия людей утверждающих, что Луна мертвый мир, потому что кажется таковою на 180 верст и больше. Большим увеличением может пользоваться только в исключительных случаях. Обыкновенно же при наблюдении Луны пользуются инструментами увеличивающими не больше как в тысячу раз. Какое движение можно уловить на подобном расстоянии? — Ни чего! так как леса, растений, города — все исчезает.

Для составления себе точного представление о состоянии лунного мира, находящегося в нашем распоряжении единственноное средство состоит в прилежном наблюдении Луны, в зарисовываний отдельно н'екоторых округов и в сравнении из года в год этих рисунков с действительностью, принимая во внимание разницу, существующую между инструментами, которыми производились наблюдения, и относя н'екоторую долю ея на счет глаз наблюдателя и прозрачности атмосферы. Нужно также считаться и с разницей в освещенности, в зависимости от высоты Солнца; так как, ч'ымь
более косо освещает Солнце Луну, тем виднее выступает лунной поверхности. При этом различным бывают до такой степени громадными, что, не убедившись в этом, трудно поверить. Прилагаю здесь хромолитографию двух замечательных рисунков моего знаменитого друга Пинацци Шмидта, директора Эдинбургской Обсерватории, я хотел дать возможность моим читателям самим оценить это различие. Оба рисунка представляют одну и ту же область — Море Кризисов, освещенное косыми и прямо падающими лучами Солнца. Какая поразительная разница между этими двумя видами!

Рис. 35. Большой телескоп Лорда Росса.

Этот, прилагаемый уже несколько лет к исследованию Луны критический метод далеко не подтверждает гипотезы, по которой Луна будто бы является мертвым миром, наоборот, он учить нас, что еще и теперь на поверхности нашего спутника, происходить не только геологические, но даже и метеорологические изменения.

Луна поверхность и не может не изменяться, как земная. Правда, на нашей планете происходят сильные вулканические извержения и разрушительные землетрясения; у
насъ волны океана подтачивают береговые утесы, а в противоположность имь нанось рекъ безпрестанно измѣняютъ очертанія континентовъ (какъ я въ этомъ убѣдился собственными глазами на берегахъ Франціи); у насъ происходит дви-

Рис. 36. Луначная топографія. Море Кризисовъ, освѣщенное прямо, въ полнолуние.

женіе почвы, которая то поднимается, то опускается по сравненію съ уровнемъ океана, какъ каждый могъ убѣдиться въ Позzuoli въ Италіи, въ Швеціи и Голландіи; у насъ Солнце,
морозы, ветры, дожди, реки, растения, животные и люди беспрестанно изменяют поверхность Земли. Тем не менее на Луне существуют два агента, которых одних достаточно для еще более быстрых изменений. — Это теплота и холод.

Рис. 37. Лунная топография. Море Крижисов, освещенное кося, после новолуния.

Каждый лунный месяц поверхность нашего спутника претерпевает такие резкие изменения в температуре, которых больше чем достаточно, чтобы разрушить обширные области.
и съ течением времени повалить высочайшія горы. Въ теченіе долгой лунной ночи, подъ влияніемъ болѣе чѣмъ леденящаго холода, всѣ, составляющія почву вещества должны соотвѣтственно своей природѣ сжиматься. Затѣмъ, несмотря на отсутствіе или разрѣженность атмосферы, при безоблачномъ небѣ почва должна нагрѣваться прямымъ лучамъ Солнца и достигать наивысшаго градуса теплоты; и всѣ минералы, которые пятидцать дней тому назадъ сжимались до самыхъ малыхъ размѣровъ, теперь должны соотвѣтственно своей природѣ расширяться. Температура лунной ночи должна доходить къ серединѣ дня до + 100 и падать ночью до — 50. Принявъ во вниманіе послѣдствія зимняго холода и лѣтней жары на Землѣ, мы поймемъ тѣ во столько большія измѣненія, которыя должны происходить на Лунѣ вслѣдствіе послѣдовательныхъ сжиманій и расширений составляющихъ Луну материаловъ величайшихъ и менѣе массивныхъ, чѣмъ материалы составляющіе Землю. И если мы прибавимъ къ этому, что эти контрасти повторяются не изъ года въ годъ, а ежемѣсячно и что всѣ окружающіе ихъ условія должны способствовать еще большему увеличенію этихъ контрастовъ, то намъ не покажется удивительнымъ, что на поверхности Луны еще и въ настоящее время происходятъ топографическія измѣненія.

Мы не можемъ утверждать, что независимо отъ измѣненій, обусловленныхъ царствомъ минераловъ, на Лунѣ неѣтъ и такихъ измѣненій, который были бы обязаны собою растительному и даже животному царству, или—какъ знать?—какимъ-нибудь живымъ образованіямъ, ни растительнаго, ни животнаго царства.

Но вулканическія дѣйствія на Лунѣ повидимому происходятъ еще и въ настоящее время. Такъ даже 1875 г. на ней среди прекрасно извѣстнаго всѣмъ селенографамъ пейзажа образовался или по крайней мѣрѣ увеличился и сдѣлся замѣтнымъ, громадный вулканъ, больше Везувія.

При вступлении Луны въ первую четверть Солнце начинаетъ освѣщать поверхность „моря Паровъ“—область расположенную въ центрѣ луннаго диска. Въ это время между многими красными кратерами замѣчаютъ и тотъ, который получилъ название Атрипина. Внѣшняя стороны этого цирка падаютъ
наклонно и переходя въ равнину. Поперекъ этой равнины замѣчается длинная расщелина, перерѣзанная почти по серединѣ маленькимъ кратеромъ Гигинусъ. Я часто наблюдалъ эту любопытную область и сдѣлалъ съ нея много рисунковъ, изъ которыхъ наиболѣе подробные были сдѣланы 31-го июля 1873 г., 1-го августа, 29 октября, 27 ноября того же года, 24 апреля 1874 года. И что же! Ни одинъ изъ астрономовъ, наблюдавшихъ и зарисовывавшихъ эту область, никогда не видѣлъ и никогда не описывалъ, находящихся на сѣверо-западъ отъ кратера Гигинусъ цирка въ 4 версты въ діаметрѣ, который видѣлъ въ настоящее время, и который Клейнъ изъ Кѣльна, одинъ изъ современныхъ трудолюбивѣйшихъ селенографовъ, увидѣлъ въ первый разъ 19 мая 1876 г. Не видѣть вещи, даже глядя на то мѣсто, гдѣ она могла бы находиться, еще не доказываетъ, что эта вещь не существуетъ, но когда наблюдателей много и предмет довольно замѣтный, то нельзя сомнѣваться, что мы имѣемъ здесь дѣло съ новообразовавшимся циркомъ, и неуловимость въ этомъ происходитъ только отъ многочисленныхъ неправильностей почвы этой области, которую трудно нарисовать.

Въ Англіи существуетъ общество, всѣ члены котораго присаживаются Луну въ вѣрокопии и обязаны не забывать ея ни одного мѣсяца,—это селенографическое общество (Selenographical Society); это общество опубликовало въ своемъ селенографическомъ органѣ подробности данныхъ профессоромъ Клейномъ и наблюдения подтверждающія его открытия. Что до меня, то хотя я и не занимался исключительно наимѣющимъ спутникомъ, тѣмъ не менѣе, я часто проводилъ долгѣ вечера, наблюдая въ телескопъ любопытную его топографію и между прочимъ сдѣлалъ только въ одномъ 1873 году до тридцати рисунковъ долины Гигинусъ, которая меня всегда особенно интересовала. Но я не могъ найти ни на одномъ изъ моихъ рисунковъ новаго кратера, который послѣ этого замѣчалъ не мало разъ. Эта область представлена на рис. 38. Наблюдавшееся измѣненіе произошло надъ южнымъ полюсомъ, отмѣченнымъ на этой картѣ буквою В. Въ морѣ Нектара замѣчается маленький кратеръ въ 5 съ половиной версты въ діаметрѣ, одиноко возвышающійся посрединѣ обширной равнины.
Прекрасно! Этот кратер то виден, то не виден... С 1830 года по 1837 он был не замечен, так как два наблюдателя абсолютно чуждых друг другу Медлер и Лорман, подробнейшим образом изследовали, описали и зарисовали эту лунную местность и видели около местоположения кратера подробности гораздо меньше замеченной, не подозревая присутствия самого кратера. В 1842 и 1843 эту же область наблюдали Шмидт и тоже не заметили кратера. Он увидел его впервые в 1851 году. Его прекрасно можно видеть на прямой фотографии Рютерфюрда, взятой в 1865 году. Но в 1875 г. английский селенограф Нейсон изследовал, описал и зарисовал со всеми мельчайшими подробностями и точнейшими измерениями эту же местность, не заметив никаких следов вулкана. Это измнение легко объяснить, допустив, что этот вулкан иногда выбрасывает дым или пары, которые откоторое время остаются над ним и закрывают его от нас, тоже было бы с воздухоплавателям, который посился бы на в нескольких километрах высоты над Везувием во время его извержения.

Находящийся в море Ясности небольшой кратер Линей, имевший 6 с половинкою верст в диаметре, нечез с 1866 г. и в настоящее время на его месте видно белое пятно мгновящееся величины. Форма двух кратеров близнецовых, как и борозды, проходящие через арену большого темного цирка Платон, тоже мгновится.

Для защиты прежних воззрений против этих новых доказательств нужно было бы всякий раз, когда мы не признаем добрых наблюдений фактов, допускать, что весь наблюдатель Луны, прекрасного известные своими прилежанием и точностью добытых результатов, плохо видел. Но это будет уже другая гипотеза, мене допустимая, чём указанныя измнения.

Фотография является более вёрными документом, чём рисунок, потому что к фотографии не может присоединить-ся никакого обмана зрением. И что же! сделанные недавно в Парижской и Аренской (в Перу) обсерваториях снимки приводят к тому же заключению—происходящим в насто-ящее время на Луну измнениям.
Можно ли видеть в телескоп на расстоянии, на котором мы видим Луну, пламя вулканов? — Нельзя, если оно не сильнее и не интенсивнее пламени земных вулканов.

Рис. 38. Лунная топография. Окрестности борозды Гигинуса.

Эти туманы, пары и дым, в которых становится все меньше и меньше возможным сомневаться, даже привели Шретера к мысли, что их временами странное положение нови-
димому указывает на происхождение промышленного характера—горнилъ и заводовъ жителей Луны. Атмосфера промышленныхъ городовъ, замѣчается онъ, мѣняется въ зависимости отъ часовъ дня и количества дѣйствующихъ печей. Въ соображеніяхъ этого наблюдателя часто попадаются предположенія на счетъ дѣйствительности Селенитовъ. Ему думается, что онъ наблюдалъ такъ же перемѣну цвѣтовъ, могущихъ быть обязаными собою растительности или культуръ.

Внимательное и настойчивое наблюдение лунаго мира нисколько не лишено интереса, какъ воображаютъ себѣ многие астрономы. Правда, что этотъ миръ, какъ онъ ни близокъ къ Землѣ, больше отличается отъ нашего мира, чѣмъ планеты Венера и Марсъ, аналогія которыхъ съ Землею очевидна и жители которыхъ, весьма возможно, не отличаются значительно отъ жителей нашей Земли. Но какъ бы Луна ни была противоположна Землѣ, она тѣмъ не менѣе представляетъ свою цѣнность и свой интерес.

И почему бы на этомъ маленькому шарѣ и не быть растительности, болѣе или менѣе сходной съ той, которая украшаетъ нашъ миръ? Такъ какъ на Лунѣ не бываетъ ни осени ни весны, то при изслѣдованіи ея мы не можемъ полагаться ни на смутившую оттѣниковъ нашихъ северныхъ растеній, ни на зеленъ мая, ни на паденіе октябрьскихъ пожелтѣвшихъ листьевъ. Тамъ, зима слѣдуетъ за лѣтомъ черезъ каждые пятидцать дней; ночь на Лунѣ—зима, день—лѣто. Солнце остается надъ горизонтомъ пятидцать разъ по двадцать четыре часа, такова продолжительность Луннаго дня и лѣта, и остается подъ горизонтомъ также въ течение пятидцати дней; такова продолжительность Лунной ночи и зимы. Эти климатологическія условія абсолютно отличаются отъ тѣхъ, въ которыхъ находится земная растительность. Въ климатахъ междуропическихъ пространствъ, гдѣ нѣть ни зимы ни лѣта, деревья не мѣняютъ цвѣта. Въ увѣренныхъ пониахъ есть тоже деревья и кусты съ немѣняющимися въ соответствіи съ временами года покровомъ; что касается самого типа растительной зелени—травъ луговъ, то она остается зеленой зимою, какъ и лѣтомъ. Но здѣсь возникаетъ цѣлый рядъ вопросовъ, остающихся безъ разрѣшенія. Существуютъ ли на Лунѣ пассивныя существа
аналогичны нашей растительности? И если существуют, то зеленые ли они? Если они зеленые, то меняются ли они свой цвет соответственно температуре? И если меняются свой вид, то могут ли эти изменения быть замеченными с Земли?

Какой свет проливают на эти темные пункты телескопических наблюдений? Правда, что во всей лунной топографии нет таких зеленых пространств, как покрытые лугами и лесами земных пространств, но некоторые лунные области отличаются друг от друга не только постоянными, но и меняющимися оттенками. Равнина называемая морем Ясности представляется зеленой, пересеченною, не меняющей своего цвета близко зоною. На основании произведенных наблюдений Клейн пришел к заключению, что цвет этой равнины, бы-
вающие иногда небольшое свечение, обязаны собою растительному покрову, который может состоять из растений всех разновидностей, от мхов и грибов до елей и кедров, тогда как былой не мелькающийся борозда представляет собою пустынную и бесплодную область. Занимающиеся исключительно фотографированіем лунных видов астрономы — того же мнѣнія, а именно, что темный цвѣтъ пятенъ называемыхъ морями, столь мало фотогеновъ, что едва дѣйствуетъ на чувствительную пластинку (нужно гораздо больше времени для фотографированія темныхъ областей, чѣмъ свѣтлыхъ), и долженъ быть обязанъ собою растительному поглощению. Этотъ зеленоватый оттѣнокъ моря Янкой слегка варьируетъ и иногда весьма замѣтень. Море Сырости тоже зеленоватаго цвѣта и окруже узкими сфероватыми полосами. Моря Плодородія, Нектара и Облаковъ остаются почти безцвѣтными, тогда какъ нѣкоторые ихъ цвѣты желтоватые, какъ напр. кратеръ Лихтенберга и болото Сна. Принадлежит ли этотъ цвѣтъ самой землѣ, или эти оттѣнки обязаны собою растительности?

Странное явленіе. На Лунѣ находится долины и равнины, мѣстами въ снѣгъ съ восходомъ надъ ними Солнца. Такъ, арена большаго и восхитительного цирка Платонъ, становится темнѣе по мѣрѣ увеличенія падающаго на нее солнечнаго свѣта, что является совершенно противоположнымъ всѣмъ оптическимъ эффектамъ, которые можно себѣ представить. Послѣ полнолуния, времени, которое является для этой лунной долоты серединою днѣт, эта поверхность кажется въ телескопъ гораздо темнѣе всѣхъ другихъ цвѣтовъ лунаго диска. Можно держать пари, что въ 99 случаяхъ изъ 100 это явленіе обязано собою не свѣту, а солнечной теплотѣ, которую часто не принимаютъ во вниманіе при изслѣдованіи измѣненія цвѣтовъ на Лунѣ, хотя, теплота такъ же тѣсно связана съ дѣйствіемъ Солнца, какъ и свѣтъ. Въ высшей степени вѣроятно, что это периодическое, замѣтаемое каждый мѣсяцъ всякимъ внимательнымъ наблюдателемъ, измѣненіе цвѣта круглой долины Платона обязано собою измѣненіямъ растительной природы, происходящимъ подъ влияніемъ температуры. Съверозападная область Гигипуса, о которой мы уже говорили, представляетъ аналогичныя измѣненія. Замѣчаютъ также,
что на обширной равнинѣ, окрѣченной именемъ Альфонсъ, три
пятна, выходящие изъ мрака утромъ послѣ лунной ночи блѣд-
ными по мѣрѣ восхожденія солнца темнѣютъ и снова стано-
вятся блѣдными вечеромъ, въ закату солнца.

Какъ мы уже замѣтили, говоря о морѣ Кризисовъ, не-
обходимо принимать во внимание измѣненіе видовъ, обязанное
собою тому или другому наклоненію солнечныхъ лучей.

Кромѣ измѣненій обязаннѣй собою наклоненію солнеч-
ныхъ лучей мы имѣемъ въ настоящее время многочисленныхъ свидѣтельства, говорящія въ пользу дѣйствительныхъ пере-
мѣнъ тоновъ на Лунѣ.

Далеко, слѣдовательно, не имѣя права утверждать, что
лунный шаръ лишень всѣкой растительной жизни, мы въ на-
стоящее время располагаемъ фактами, которые трудно, чтобы
не сказать невозможно, объяснить при допущеніи, что поверх-
ность Луны исключительно минеральнаго происхожденія; но
которые, наоборотъ, легко объясняются при допущеніи, что по-
верхность Луны состоитъ изъ растительнаго покрова, какой
бы то ни было формы. Жаль, что съ Земли нельзя анализиро-
вать химическій составъ лунной почвы, какъ анализируют
нары, обволакивающіе Солнце и звѣзды; но не будемъ
отчаиваться; до изобрѣтенія спектральнаго анализа тоже не
могли и воображать о столь чудномъ открывтіи. Какъ бы то
ни было, но въ настоящее время мы имѣемъ основаніе допу-
скать, что лунный шаръ былъ нѣкогда мѣстомъ громадныхъ
geологическихъ переворотовъ, слѣды которыхъ и теперь оста-
ются замѣтными на его исковеркнанной поверхности и что эти
geологическіе перевороты не прекратились и въ настоящее
время; что луна моря были покрыты водою и что эта вода
можетъ быть еще не исчезла абсолютно, что атмосфера Луны
уменьшилась до послѣдней степени въ своемъ объемѣ, но не
уничтожилась и что жизнь, которая вѣками должна была бли-
ствовать на ея поверхности, вѣроятно еще не угасла.

Одушевленныя и неодушевленныя лунныя существа, не-
избѣжно отличаются отъ земныхъ. Лунный шаръ въ 49 разъ
меньше и въ 81 разъ легче земного. Лунный кубическій аршинъ
вѣсить только шесть десятыхъ земного кубическаго аршина. Мы
видѣли, что притяженіе на поверхности этого шара въ шесть
разъ слабье, чтмъ на поверхности нашего шара и что 2 четырехдесятыхъ фунта перенесенные на Луну и взвешенные на динаметрѣ врѣсили бы тамъ не большие 4 золотниковъ. Климатъ и времена года на Лунѣ существенно отличаются отъ нашихъ. Вотъ различія, которыхъ больше чтмъ достаточно, чтобы придать жизни на этомъ шарѣ видъ абсолютно отличный отъ земной жизни.

Но если бы и произошло, что мы имѣли бы передъ своими глазами культуры, плантаціи, дороги, деревни, а при зоркости телескопического глаза—зданія и самыя жилища, намъ все-таки и въ голову не пришло бы, что все видимое нами является твореніемъ селениотовскихъ рукъ—если только они имѣютъ руки—мы не признали бы этого. Что нужно увидѣть, такъ это движение, хоть стада, но—движение.

Повторимъ еще разъ, что наши лучшіе телескопы приближаютъ къ намъ Луну приблизительно на 180 верстъ. Но на такомъ разстояніи не только невозможно различить жителей какаго нибудь мѣра, но даже матеріальная произведенія рукъ этихъ жителей остаются незамѣтными; вслѣдствіе удаленія отъ насъ остаются скрытыми не только дороги, каналы, деревни, но даже и населенные города. Правда съ Луны, снимаютъ фотографіи и на этихъ восхительныхъ фотографіяхъ въ скрытомъ состояніи находится все, что существуетъ на поверхности Луны. Если тамъ есть жители, то они находятся и на фотографіи какъ сами, такъ и ихъ жилища, работы, культуры, зданія и города! Да, они на фотографіи! и трудно бываетъ отдѣлить отъ нѣкотораго волненія, когда держишь такую фотографію въ рукахъ и говоришь себѣ, что жители Луны (если они существуютъ) находятся вотъ здѣсь на этой фотографіи и что достаточно извѣстнаго увеличенія, чтобы можно было ихъ увидѣть, какъ видятъ въ микроскопъ странное население капли воды. Къ несчастію, какъ онѣ ни восхительны, все же остаются несовершенными; иногда ихъ нѣсколько увеличиваютъ, въ пить, десять разъ, но съ ихъ увеличеніемъ, увеличиваются и зерна бумаги и несовершенства изображенія и все становится неяснымъ и расплывчатымъ, менѣе полезнымъ и пріятнымъ для изслѣдованія, чтмъ первоначальное клише. Остается ограничиться старательнымъ
изучением мельчайших подробностей точным зарисовыванием, наблюдением из года в год и констатированием изменений или движений, которые могут там происходить.

Те, которые для отрицания всякаго рода жизни на Лунѣ, опираются на существующія между Луной и Землей различія, разсуждаютъ не какъ философы, но (да простятъ мнѣ это выраженіе) какъ рыбы... Всѣ рыбы резонеры естественно убѣжденны, что вода является исключительнымъ элементомъ жизни и что въ водѣ не существуетъ никакихъ живыхъ организмовъ. Съ другой стороны жители Луны навѣрное утопнуть бы сойдя въ нашу столь тяжелую и плотную атмосферу. (Каждый изъ насъ поддерживается на себѣ столбъ воздуха въ 900 пуд.). Утверждать, что Луна мертвое свѣтило, потому что она не похожа на Землю, значить, выказать себя ужь не человѣкомъ, воображающимъ, что ему все извѣстно и осмѣливавшимся утверждать, что наука сказала свое послѣднее слово.

Такъ какъ луначная жизнь должна была быть устроена иначе чѣмъ земная, то все, что мы можемъ утверждать по этому старому, вызывавшему столько споры вопросу, такъ это то, что жители Луны, если они существуютъ, должны абсолютно отличаться отъ насъ, какъ по организации, такъ и по чувству, и конечно по своему происхожденію отличаются отъ насъ больше, чѣмъ жители Венеры или Марса.

Луначная жизнь должна была предѣствоваться земной, потому что Луна хотя и дочь Земли, но относительно старше своей матери. И геологическія, физическія и химическія перергіи произошедшия на ней были, какъ и на нашемъ мірѣ, современниками зарожденія живыхъ организмовъ; никакое наблюдение не доказываетъ, что эта органическая жизнь прекратилась.

Не будемъ покидать этотъ сосѣдній міръ, не постараемся представить себѣ, какое впечатлѣніе производитъ Земля, наблюдаемая съ Луны и—составить себѣ понятіе объ астрономіи съ точки зрѣнія наблюдателя, находящагося на нашемъ спутникѣ.

Каковы бы ни были живущіе или живущіе на Лунѣ сущности (существуютъ ли они еще въ настоящее время, находящися въ периодъ упадка, какъ это вѣроятно, или луначное человѣчество, истощивъ свои силы послѣ тысячъ столѣтій, ус-
нуло своим последним спомъб, для насъ не менѣе интересно перенестись на эту нашу лежащую за границами метрополіи провинцію и посмотреть какое зрѣлище представляет вселенная, наблюдаемая съ этой спеціальной станціи.

Предположимъ, что мы пришли вглубь этихъ дикихъ степей въ началѣ дня. Если мы прибыли до восхода Солнца, то мы не увидимъ тамъ утренней зари, возникающей о восходѣ Солнца, такъ какъ при полномъ отсутствіи или разрѣженной атмосферѣ, на Лунѣ нетъ никакихъ сумерекъ; тамъ "робкая Аврора не открываетъ Солнцу своего заколдованного дворца"; но зодіакальный свѣтъ столь рѣдко наблюдаемый у насъ, тамъ видѣтъ постоянно и онъ то и является предвѣстникомъ свѣтила—владыки. Вдругъ изъ-за чернаго горизонта вылетаютъ быстрые стрѣлы солнечнаго свѣта и освѣчаютъ вершины горъ, тогда какъ равнины и долны остаются погружеными въ тьму. Свѣтъ медленно увеличивается; въ то время какъ у насъ въ центральныхъ широтахъ Солнце для своего восходенія употребляеть только двѣ съ четвертю минуты, на Лунѣ ему нужно для этого около часа, и слѣдовательно посылаемый въ течение пѣсколькохъ минутъ на лунную землю свѣтъ является весьма слабымъ и увеличивается крайне медленно. Это своего рода заря, но весьма непродолжительная, такъ какъ когда черезъ полчаса солнечный дискъ взошелъ на половину, свѣтъ кажется такимъ же интенсивнымъ для глаза, какимъ бываетъ, когда надъ горизонтомъ находится весь диску. Это восходеніе Солнца далеко не такъ великолѣпно, какъ наше. Мягкое и пѣжное освѣщеніе вершинъ атмосферы, свѣтъ золотыхъ и багряныхъ облаковъ, вѣера свѣта, разбрасываемыхъ на поля и луга и, наконецъ, эта свѣтлая роса, погружающая въ началѣ дня долины въ такую мягкую прозрачность, все это явленія незнакомы нашему спутнику. Но съ другой стороны лучезарное свѣтило показывается тамъ со своими протуберанцами и жгучею атмосферою. Оно какъ свѣтлый богъ медленно подымается въ глубинѣ все чернаго неба, глубокаго и безконечнаго неба, въ которомъ звѣзды продолжаютъ блистасть днемъ, какъ и ночью, такъ какъ не скрыты никакимъ покровомъ. Тамъ небо не глядится какъ въ зеркало ни въ воды морей, ни озеръ.
Въ лунныхъ пейзажахъ не существуетъ воздушной перспективы и отдаленные предметы, такъ же отчетливо видны, какъ и самые близкие, такъ что можно сказать, что въ такомъ пейзажѣ существуетъ только одинъ планъ. Нѣть этихъ воздушныхъ тоновъ, которые на Землѣ увеличиваются разстояніе, нѣть этихъ красивыхъ, свѣтлыхъ волнъ, которыя колеблются надъ затопленными Солнцемъ долинами; нѣть этой небесной лазури, которая идетъ блѣднѣя отъ зенита къ горизонту и на- брасываетъ прозрачный голубой покровъ на отдаленные горы; сухой, однородный, яркій свѣтъ освѣщаетъ грубо скалы кра- теровъ; небо не освѣщается, все, что не находится прямо про- тивъ солнечныхъ лучей остается въ тѣнѣ.

Какъ мы всегда видимъ только одну сторону Луны, такъ всегда жители одной только стороны Луны видятъ насть. Жит- тели обращеннаго къ намъ луннаго полушарія восхищаются въ нихъ небѣ блистающімъ свѣтломъ, съ диаметромъ прибли- зительно въ четыре раза большимъ диаметра Луны, наблюда- емой съ нашего шара и въ четвернадцать разъ большую площадью. Это свѣтило—Земля, которая является „Луной для Луны“. Она парить почти неподвижно въ небѣ. Жители серед- дины видимаго съ Земли полушарія видятъ Землю, постоянно въ ихъ зенитѣ; ея высота уменьшается съ разстояніемъ отъ этого центральнаго пункта къ контурамъ полушарія, откуда нашъ миръ кажется огромнымъ, лежащимъ на горахъ дискомъ. По ту же сторону Луны насть больше не видятъ.

Огромное свѣтило луннаго неба—Земля проходить тѣже фазы, какъ и Луна, но въ обратномъ порядкѣ. Въ полнолуние солнце освѣщаетъ все обращенное къ нашему спутнику зем- ное полушаріе; это—полноземелье. Въ полнолуние же, наобо- ротъ, къ нашему спутнику обращено не освѣщенное полу- шаріе. Это—новоземелье; когда Луна находится въ первой четверти, Земля для лунныхъ жителей находится въ послѣдней четверти и т. д.

Независимо отъ этихъ фазъ нашъ шаръ обращается къ Лунѣ то одной то другой стороной, вращаясь вокругъ самого себя въ 24 часа или лучше сказать въ 24 часа 48 минутъ, потому что Луна возвращается на каждый изъ земныхъ меридиановъ только послѣ этого промежутка времени. Это обращение
варьирует между 24 часами 42 м. и 25 часами и 2 минутами. Но если лунные астрономы сумели вычислить свое движение, как мы вычислили наше, то они знают, что Луна обращается вокруг Земли и что наша планета вращается вокруг самой себя в 23 ч. 56 м. Мы не будем однако утверждать, как сделал Кеплер (Astronomia lunaris) что лунные жители называли Землю Volva (отъ volvere вращаться), послужившим предлогом для названия именем Subvolves жителей обращенного к нам лунного полушария, а именем Privolves тѣхъ, которые живут на противоположном полушарии. Тѣмъ не менѣе это названіе (volva) весьма удачно придумано, такъ какъ прекрасно рисуетъ земное явленіе — движение, которое первое должно было поразить умъ жителей нашего спутника.

Съ видимаго съ Земли луннаго полушарія должны наблюдать любопытныя солнечныя затмѣнія и между ними полнаго солнечнаго затмѣнія, которыя могутъ продолжаться два часа, во время которыхъ огромный черный дискъ Земли окруженный лучезарнымъ сияніемъ, производимымъ преломленіемъ свѣта въ нашей атмосферѣ проходить передъ ослѣпительнымъ дискомъ Солнца. Иногда также замѣчаются небольшія затмѣнія.

1) Для жителей этого небеснаго острова Земля должна быть предметомъ поклоненія и Privolves (по Кеплеру) приходили по крайней мѣрѣ разъ въ годъ если не поклоняться, то созерцать величественное святло, окруженное въ полнолуние своимъ яркимъ блескомъ. Для совершенія этого хожденія на поклоненіе набожные Privolves должны были приходить въ крайней мѣрѣ тысячу пятьсотъ верш., чтобы дойти отъ середины ихъ полушарія до края противоположнаго полушарія, откуда видѣть дискъ Земли надъ горизонтомъ. Тысяча пятьсотъ вершъ! Это все-таки меньше тѣхъ тысячъ вершъ, которые здѣсь на Землѣ проходять набожные мусульмане отправляющіеся на поклоненіе изъ глубинъ Африки и Азіи въ Мекку, гдѣ въ Каабѣ можно видѣть только черный нисколько не замѣтительный камень. Въпротивно на Лунѣ устраивали специальныя поѣзда для отправляющихся на поклоненіе Землѣ. Если на Землѣ направлялись съ сѣвера къ экватору съ любопытствомъ замѣчаютъ новые звѣзды, какъ напримѣръ тѣ, которые образуютъ Южный крестъ, то нисколько интереснѣ для какого нибудь Селенита путешествіе съ невидимаго съ Земли луннаго полушарія на то, съ котораго нашъ шаръ всегда видѣть надъ горизонтомъ, гдѣ шаръ этотъ вращается вокругъ самого себя, остается почти неподвижнымъ въ одномъ пунктѣ неба.
Земли т. е. прохождение круглой тени Луны по какой нибудь земной области.

Здесь на Земле обыкновенно говорят: „Лишенная жидкости и воздушной оболочки Луна не подвергается никакому из тьх метеорологических явлений, которые испытываемъ мы на Землѣ; на Лунѣ не бывает ни дождя, ни града, ни грозы. Луна является твердой, бесплодной, пустынной и молчаливой массой, лишенной малѣйшей растительности, гдѣ очевидно никакое животное не можетъ найти средства существования. Если тѣмъ не менѣе хотятъ во что бы то ни стало, чтобы на ней находились жители, то мы охотно согласимся, но съ условіемъ, что эти существа лишены всѣкой впечатлительности, всѣдаго чувства, всѣдаго движения, и представляютъ собою вѣчно вродѣ грубаго инертнаго вещества: земли, камней, металловъ, которые являются единственными возможными Селенитами“.

Академики Луны въ свою очередь могли бы заявить: „Земля является сѣдостью весьма несходныхъ и необыкновенныхъ элементовъ. Одинъ изъ этихъ элементовъ тотъ, который образуетъ ядро свѣтила и даетъ происхожденіе неподвижнымъ пятнамъ повидимому обладаетъ хѣкоторою твердостью, но онъ покрытъ страннымъ элементомъ, который гдѣ видно не имѣетъ ни формы, ни неподвижности, ни злительности, ни цвѣта, ни плотности; онъ принимаетъ всѣ возможныя формы, движется во всѣхъ направленияхъ, повинуется всѣмъ толчкамъ, претерпѣваетъ всѣ импульсы, удлиняется, укорачивается, сжимается, появляется и исчезаетъ прежде чѣмъ можно найти причину столь страннымъ превращеніямъ. Это—мѣръ неустойчивости, планета перовровотовъ, она испытываетъ поочередно всевозможныя катаклизмы и повидимому является матеріею готовою разложиться. На ней видны только грозы, циклоны и всѣкаго рода разрушаительныя движения. Нѣкоторые претендуютъ, что на этой планетѣ находятся живыя существа, но на какомъ пункѣ Земли могли бы они жить? На твердомъ элементѣ свѣтила? Но они были бы раздавлены, удушены, потоплены другими элементомъ, который давить на нихъ со всѣхъ сторонъ. Не черезъ эти-ли отверстія, образующіяся въ этой движущейся завѣсь они могутъ пользоваться какъ мы чистымъ эфиромъ небесъ? Но какъ
допустить, что они не были бы ежеминутно оторваны от этой почвы, коверкающими ее переворотами. Разъ поместить их на этот подвижной и легкий слой, который так часто закрывается от нас земное ядро? Но как удержать их на ногах на этом лишнем прочности элементе? Не в недобности в столь длинном ряду соображений, чтобы доказать со всеми очевидностями, что эта планета весьма обширна, но что на ней н'ять места для одушевленных существ. Вся Земля не стоит души одного Селенида. Если однако хотят во что бы то ни стало, чтобы на ней находились жители, то мы охотно согласимся по условиям, чтобы это были не фантастические существа, носящиеся по воздуху взвь силь борящихся на этой воздухообразной планете. На ней могут существовать один только грубы животные. Таковы по нашему мнению единственное жители, которые могут находиться на Земле.

Ученые Луны могли бы воображать, что самым категорическим образом доказали окружающим их невеждам, что Земля, не будучи приспособленою для поселения, — необитаема и что сотворена единственно для того, чтобы служить часами Луной и освещать ее ночь.

В глазах лунного наблюдателя разные части земной поверхности далеко не отличаются однообразными святами. На двух полюсах святы лунный наблюдатель замечает два обширных б'льших пятна, величина которых периодически меняется. По м'бр увеличения одного, другое уменьшается; можно подумать, что одно всегда завоевывает часть Земли равную той, которую теряет другое, так что одно т'ль больше подвигается, ч'мь больше другое отстает и наоборот. Пятно южного полюса, всегда гораздо большие северного. На Лун' могли бы д'ять тысячу предположений на счет этих б'льших пятен, не отгавая их причины.

Земля в большей своей части всегда окружена облаками. Однако внимательный наблюдений должны были позволить констатировать ся суточное движение, происходящее следующим образом.

Стань наблюдать нашу планету в тотчас, когда Америка начинает исчезать на восточном краю земного дис-
ка: съ Луны въ это время видно какъ на темной части Земли вырисовываются высочайшія вершины Кордильеровъ, представляющихся въ видѣ длинной линіи тѣней и свѣта, нѣкоторыми точками которой отливаются освѣщительной близиной; затѣмъ въ теченіи нѣсколькихъ часовъ на противоположномъ крайѣ развертывается огромное темное пятно, которое спускается расширяясь къ южной части диска, пока не займетъ почти всего полушарія; это Великій океанть, усѣянный множествомъ мелкихъ острововъ.

На сѣверѣ не далеко отъ льдовъ замѣчается сѣроватое пятно, намѣченное образовывать на темномъ фонѣ океана, къ югу, точку (полуостровъ Камчатка); это пятно затѣмъ развертывается по направлению къ западу, сходя почти къ экватору, края этого пятна представляютъ самый разнообразный очертанія. Это Азія, часть Стараго Свѣта наиболѣе отодвинутая къ крайнему востоку. Цвѣтъ этого пятна далеко не однообразный, на сѣверѣ онъ блѣдный, какъ собираниѣ свѣта и льды. Вся средняя материкова пятна занимаетъ широкой полосой яркой близину, которая на сѣверѣ и югѣ кажется обрамленной высокими горами (пѣни Алтая и Гималаевъ). Эта зона начинается въ великой степи Гоби, занимающая почти все центральное плато Верхней Азіи и продолжается въ Афганистанѣ и Персіи до песчаныхъ равнинъ Аравіи. Пустыни Нубіи и Сахары, проходящія по Африкѣ, являются не болѣе какъ ея продолженіемъ. Эта большая пустынная зона разсѣкаетъ весь старый миръ на двѣ почти равныя части полосою песковъ, отражающею солнечные лучи далеко въ небесныя пространства. Это млечный путь Земли.

Подъ этойю областию песковъ находится значительная часть земель Азіи, зажатая между горами и океаномъ, которыя отражаетъ на Луну свѣтло-зеленоватый цвѣтъ; эта часть Земли заключаетъ въ себѣ роскошныя области Китая и Индіи, лежащія къ югу отъ горъ Монголіи и Тибета. Выше надъ пустынею Сахары можно различать маленькое пятно, изрѣзанное и разсѣянное по всѣмъ направленіямъ; цвѣтъ его темный, какъ и большаго пятна диска, окружающаго всѣ континенты; это Средиземное море, южная граница области, отдѣляющейся неопределеннымъ, то сѣрымъ, то зеленымъ цвѣтъ-
Защитники конечных причин имейтъ гораздо больше права заявить, что Земля сотворена для Луны, чьмъ поддерживать противное мненіе. По отношению къ намъ Луна плохо исполняетъ свою роль и съ помощью облаковъ оставляетъ насъ три четверти времени въ темнотѣ. Земля, наоборотъ, цѣльную ночь блистаетъ въ лунномъ всегда чистомъ небѣ и „полномѣлья“ всегда наступаетъ въ полночь. Попробуйте-ка доказать лунному жителю, что Земля вовсе не создана спеціально для него.

Продолжительность дня и ночи, отсутствие времени года и годовъ, измѣреніе времени періодами въ двадцать девять дней, раздѣленными на одинъ день и одну ночь по четырнадцати съ половиной дней каждые и постоянное присутствіе свѣта Земли въ небѣ составляютъ для жителей Луны существенныя различія, которыя съ точки зрѣнія космографіан отличаютъ ихъ міръ отъ нашего. Созвѣздія, звѣзды и планеты кажутся съ Луны такими же, какими наблюдаютъ ихъ мы, но болѣе яркими и съ большимъ богатствомъ и количествомъ тоновъ по причинѣ постоянной чистоты неба. Невидимое съ Земли полушаріе, которое никогда не получаетъ земнаго свѣта, является особынной обсерваторіей для астрономическихъ наблюденій.

Таковымъ луннымъ міръ столь благій къ намъ и столь отличавшійся отъ нашего. Но знаніе о немъ, которымъ мы обладаемъ, еще не удовлетворяетъ нашего честолюбія. Когда же, наконецъ, наука приобрѣтетъ такихъ преданныхъ друзей, которые отважутся на окончателную побѣду, результаты которой будутъ познаніе громадными и неожиданными, пожертвованія на описческіе опыты такую сумму, которая расстраивается зря на отлипіе пушекъ и другіе подобныя дѣла? Дивныя открыванія ждутъ героевъ будущей астрономіи!

Можетъ быть на Лунѣ находятся послѣднія семьи луннаго человѣчества, обладающія настолько странными инструментами, чтобы открыть наши города, наши деревни, наши обсѣмненныя поля, наши произведенія промышленности, наши желѣзныя дороги, наши собранія и насть самихъ. Можетъ быть они присутствовали при нашихъ послѣднихъ войнахъ и съ недоумѣніемъ слѣдили съ высоты неба за стратегическими маневрами нашего невозмутимаго безумія! Можетъ быть астрономы этой сосѣдней провинціи дѣлали намъ знаки и ты-
счастью путей пытались привлечь к себе наше внимание и войти с нами в сношения! Нет никакого сомнения, что на Луне были живые существа раньше чем появлялись на нашей планете: силы природы нигде не остаются безплодными и времена, отмеченные великими геологическими нунами переворотами, результаты которых мы ясно видим, должны были быть, как на Земле, эпохами зарождения органических существ. Живут ли еще эти существа на Луне?

Захоти мы только и мы могли бы узнать это навсегда... Да, захоти мы только! Какое правдивое чудо! Какое неожиданное счастье! Какой фантастический восторг объять бы нас в тот день, когда мы навсегда увидим, как видели бы доказательства жизни на этом соседнем материке; когда мы здеш на Земле чертили бы с помощью электричества геометрических фигур, которые они видели бы и воспроизводили! Первое великое сообщение неба с Землей! Поищите во всей истории нашего человечества, подобное великое событие! Что я говорю? Поищите факты, которые с точкой зрения научного интереса и вытекающих из них умозаключений были бы равны этому факту и вы найдете только письма, пресмыкающихся у ног этого великана!

Не решаются, потому что не вполне утверждены, говорят серьезные люди. И эта же цивилизованная Европа, которая не решается посвятить в веками миллионами, чтобы коснуться небесной жизни, с легким сердцем тратить шесть миллиардов в год на вооруженный мир для неизбежной войны, для вечною истошения своих сынов! Но уложи сто тысяч трупов на поле сражения это — интересно... О безумной изы безумий!

Как бы то ни было, произведенная нами изслежованная над Лунным миром приводит нас к тому заключению, что при составлении понятия о природе мы должны уметь обнимать свойшей умственным кругозором время, как и пространство. Как в пространстве мы пролетаем миллионы и миллиарды верст, так и во времени мы должны пролетать столетия и миллионы столетий. Наш пункт и наш момент относительны только для нас, не имея ничего абсолютно в природе; для нея абсолютными являются только безконечность и вечность. Вселенная жизнь является целя...
творений и окончательным результатом существования матери и силы. Но будешь ли мир обитаем начаще времени, был ли он обитаем в прошлом и будет ли обитаем в будущем для вечности все равно! Луна—мир прошлого, Земля—мир настоящего; Юпитер—мир будущего: так понятно время представляет нашему уму, как понятно пространство. Но закон множественности миров навсегда. И что нам до часа, в который человечество появляется на том или другом мире? Небесный циферблат вечен и неумолимая стрелка, отмечающая судьбы будет вращаться всегда. Это мы говорим вчера и сегодня, для Природы же всегда—сегодня.

Вселенная существовала до того, когда первый взгляд человечества поднялся к Солнцу восхищаясь природою, как существующий теперь. Уже тогда были другие населенны пла- неты, другая солнца, блиставшие в пространстве, другие системы, совершавшие свой путь под нимпульсом первоначальных силь природы; и в самом звезд, существуют звезды, находящиеся так далеко от нас, что их свет дойдет до нас только через миллионы лет: светлый луч идущий от этих звезд к нам отправился не только до существования человечества здесь на Земле, но даже до существования самой нашей планеты. Наша человеческая личность, с которой мы так посимвимся и по образу которой сотворили себя Бога и всю вселенную, в центре творений не имеет никакого значения. Когда здесь на Земле глаза последнего человека закрываются и нашел шар, послуживший долгие века мгновенной жизни с его страстию, трудом, наслаждениями и горестями, любовью и ненавистью, религиозными и политическими бреднями и всякими другими безпользными причудами, будет погребен, окутанный пеленой глубокой ночи, которую не пробудят утешающее солнце, то и тогда, как сегодня, вселенная будет также цецильна; и тогда звезды будут блистать в небе, другая солнца зажигутся над другими землями, другия веены принесут с собою улыбки цветов и иллюзий молодости, другия утра и другие утры потекут друг за другом и мир будет двигаться, как в настоящее время, оно творение развивается в бесконечности и вечности.
ГЛАВА VII.

Приливы и отливы.

Вследствие регулярного движения прилива и отлива воды океана каждый день то опускаются то поднимаются. Это движение вода так сильно интересовало древних, что его назвали могилой человеческого любопытства. Тем не менее, при внимательном наблюдении оно представляет столь явное соотношение с движением Луны, что многие астрономы древности не замедлили подметить его. Так Клеомед, греческий писатель века Августа, говорит в своей космографии: „Луна производит приливы и отливы“. То же утверждают Плиний и Плутарх. Но факт не был доказан. Много его отрицали. В новейшее время сам Галилей и Кеплер не верили этому. Ньютон первый начал, а Лаплас кончил математически вычисления, доказывавшие, что приливы и отливы происходят вследствие притяжения Луны и Солнца.

Часть земной поверхности покрыта водами морей, которая вследствие своего жидкого состояния легко могут двигаться на этой поверхности, в силу притяжения Луны. Но так как различные части этих вод расположены вокруг земного шара и следовательно не на одинаковом расстоянии от Луны, то не в равной степени притягиваются ею. Нахождаясь прямо под Луной воды притягиваются сильнее, чем вся твердая часть Земли во всей своей совокупности; на противоположной же стороне земного шара воды морей, наоборот, притягиваются не так сильно, потому что более удалены от Луны. Результатом этого является то, что вследствие притяжения расположенные со стороны Луны воды поднимаются, а с противоположной стороны отстают позади.
твердой массы шара, которая притягивается сильнее, чем вода. Следовательно первые собираются со стороны Луны и образуют выпуклость, которой бы Луны не существовало бы, а вторые собираются с противоположной стороны образуя подобную же выпуклость. (Рис. 42). Прибавьте к этому, что Земля вращается вокруг самой себя в двадцать четыре часа, так сказать, подставляет Луну различным частям своей поверхности (вследствие чего две выпуклости водь, о которых мы только что сказали, для того чтобы занимать то же положение по отношению к Луне, постоянно меняют свое место на поверхности земного шара) и вы увидите, что пока Земля совершает полный оборот по отношению к Луне, т. е., в 24 часа 50 минут в одном и том же пункте этой поверхности, в одном и том же порту должно наблюдаться последовательно два прилива и следовательно два отлива.

Аналогичное влияние на воды морей производит и Солнце; но огромная масса этого светила больше чем возвышается огромным растоянием, на котором оно находится от Земли, так что, в конце концов, приливы и отливы, обозначенные Солнцем гораздо слабее тех, о которых мы только что сказали и которые обязаны собою действию Луны.

В общем своем ходяя явленье, следовательно, регулируется положением Луны относительно Земли; действием Солнца только изменяет его, заставляя наступать то...
раньше определённого часа, то позже; то уменьшая, то увеличивающая интенсивность явлений, в зависимости оттого, какое место занимает в небесном дне по отношению к светили ночей.

Принимая во внимание эти два обстоятельства: массу и разстояние, находить, что действительное производимое Солнцем должно относиться к действию производимому Луною, как 1 к 2,05 т. е., что в общем явлений приливов и отливов действие Луны измеряется двумя третями, а действительное Солнца только одной третьей. На экваторе Луна поднимает поверхность моря на 11 с четвертью верш., а с прибавлением 5 и трех четвертей, обозначаемых действием Солнца, это поднимается водь достигает 17 верш. Высота прилива идет все уменьшающаяся до полюса, где амплитуда колебаний падает до нуля и где приливов и отливов вовсе не было бы, если бы море не оставалось замерзшим.

Самые большие приливы и отливы происходят в новолуния и полнолуния, потому что в это время действию Солнца и Луны соединяются, тогда как во время квадратуры или четвертей (первой и последней) Луна и Солнце действуют на воды под прямым углом относительно друг друга.

Промежуток времени между двумя последовательными приливами различается в среднем 12 ч. 25 м.; но вместо наступления в самый момент прохождения Луны по меридиану прилив наступает только в некоторое время спустя после этого прохождения. Колебание поверхности моря в своей совокупности всегда прекрасно регулируется суточным движением Луны вокруг Земли; по каждой из фаз этого колебания запаздывает по отношению к моменту, в который она должна наступать вследствие привращенной скорости, инерции, трения, очертаний берегов, сопротивления и пр. Это запаздывание весьма различно в разных местах.

Во французских портах самые большие приливы и отливы наступают полтора дня спустя после новолуния и полнолуния.

Высота на которую поверхность моря последовательно подымается и опускается в действительности гораздо больше той, которую мы только что указали, допустив, что поверх-
нность приподнятых притяжением водь въ каждом моментъ принимаеть фигуру равновесия, въ зависимости отъ величины и направления притяженія Солнца и Луны. Мы видѣли, что наибольшая разница въ уровнѣ, которая можетъ существовать по этой гипотезѣ между приливомъ и сплывомъ за нимъ отливомъ, когда Солнце и Луна находятся на среднемъ разстояніи отъ Земли, равняется только 17 верш. между тѣмъ существоуютъ мѣстности гдѣ тоже разница достигаетъ въ вертикальномъ направлении болѣе 18 арш. а въ горизонтальномъ на берегахъ со слабымъ уклономъ—нѣсколькихъ верстъ; вы ложитесь, когда море находится у вашихъ ногъ и засыпаете подъ шумъ волнъ, а на другой день, при вашемъ пробужденіи море изчезло и вы гуляете по сухому берегу.

Однако всѣ дѣйствительности интенсивность дѣйствующей на столь значительную массу воды, какъ воды океана, силы является безконечно малой. (Тѣжесть въ тысячу килограммовъ уменьшается на 0,112 гр. когда Луна находится въ зенитѣ или перигеѣ (подошвенная точка), увеличивается на 0,056, когда она находится на горизонтѣ и не мѣняется, когда Луна находится на 35° надъ или подъ горизонтомъ. Притяженіе нашего спутника заставляетъ варьировать тѣжесть въ тысячу килограммовъ на 0,168). Человѣкъ, вѣсомый 4 пуда вѣсить на 3 золотника меньше, когда свѣтило проходить надъ его головой, чѣмъ тогда, когда оно находится надъ горизонтомъ. Эта разница равняется всѣмъ хлѣбнымъ зерна. И однако у устройство континентовъ и очертаніе береговъ было медленно, но неумолимо измѣнено этимъ многоголымъ тараномъ, который дважды въ день безжалостно удираетъ въ дюны и береговыя скалы.

Воды моря, ограниченныя съ той и другой стороны континентами, колеблются въ этомъ, образующемъ родъ относительно не глубокаго сосуда, пространство, и ихъ колебаніе поддерживается дѣйствіями Солнца и Луны, интенсивность и направление которыхъ ежеминутно мѣняются. Когда всѣдѣствие этихъ дѣйствій, поверхность моря должна подниматься на извѣстной сторонѣ бассейна, то воды передвигаются въ эту сторону; скорость, съ которой совершается это передвиженіе водъ производить то, что онѣ не останавливаются, когда ихъ по-
верхность пришла в равновесие и продолжать двигаться в том же направлении, до тех пор, пока их скорость будет совершенно уничтожена действием притяжения и трения.

Рис. 43. Последовательное движение прилива в разных портах Франции.

о дн.; таким образом колебательное движение в вертикальном направлении принимается на берегах моря гораздо большее размеры, чем тк, которых оно достигало бы, если бы,
подъ влияніемъ дѣйствующихъ силъ, воды морей приходили каждый разъ въ равновѣсіе. Отсюда понятно не только то, почему море поднимается и опускается гораздо больше, чѣмъ повидимому должно бы подниматься и опускаться подъ дѣйствіями Луны и Солнца, но еще и то, почему напр., во время четверти прилива не наступаетъ ровно въ тотъ моментъ, когда Луна проходитъ по меридиану; въ этотъ моментъ дѣйствія Солнца и Луны находятся въ надлежащихъ условіяхъ, чтобы поддерживать воды моря на наиболѣй высотѣ, но поднимавшемся подъ влияніемъ этихъ дѣйствій при прохожденій Луны по меридиану воды, въ силу пріобрѣтенной скорости продолжаютъ подниматься и въ которое время спустя послѣ этого прохожденія.

Форма пѣкоторыхъ мѣстъ береговъ, гдѣ скрещиваются течение, ведетъ къ поднятию водъ на значительную высоту. Такъ приливы и отливы Атлантическаго океана являются при- чиною весьма интенсивныхъ приливовъ и отливовъ въ Ламаншѣ, съ водами котораго океанъ свободно сообщается. Когда на западѣ Франціи въ окрестностяхъ Бреста наступаетъ приливъ, то морскія воды мало-по-малу подвигаются къ Ламаншу. Такъ какъ Ламаншъ сжать берегами, то, вслѣдствіе возникающихъ на пути преградъ, воды моря поднимаются, результата- томъ чего и являются весьма высокіе приливы на берегахъ Канкальскаго залива, особенно въ Гранвилѣ. Отсюда воды продолжаютъ идти все дальше и приливы послѣдовательно достигаютъ своей наиболѣй высоты въ Шербурѣ, Гаврѣ, Діепѣ, Калѣ и пр. Это движеніе водъ приливовъ и отливовъ въ разныхъ портахъ Франціи приведено на нижеслѣдующей таблицѣ, указывающей запаздываніе наиболѣй высоты прилива относительно момента прохожденія Луны по меридиану въ новолуніе и полнолуніе; это запаздываніе отмѣчено подъ рубрикой прикладной часъ. Та же таблица содержитъ кроме того указанія средней высоты приливовъ и отливовъ въ тѣ же ся- мые промежутки времени. Это — разница между высотою прилива и отлива. Половину этой разницы, т. е., высоту под- нятія воды надъ среднимъ уровнемъ называютъ единствомъ высоты. Высота эта можетъ быть увеличена какъ въ силѣ такъ и въ направленіи вѣтромъ.
<table>
<thead>
<tr>
<th>Название портовъ</th>
<th>Прикладной часъ</th>
<th>Средняя высота прилива во время полнолуния и новолуния</th>
</tr>
</thead>
<tbody>
<tr>
<td>Байона (устье Адура)</td>
<td>4 5</td>
<td>3,9</td>
</tr>
<tr>
<td>Ройань (устье Жироцды)</td>
<td>4 1</td>
<td>6,6</td>
</tr>
<tr>
<td>Бордо</td>
<td>7 45</td>
<td>6,3</td>
</tr>
<tr>
<td>Сенъ-Назэръ (устье Луары)</td>
<td>3 45</td>
<td>7,5</td>
</tr>
<tr>
<td>Лорианъ</td>
<td>3 32</td>
<td>6,2</td>
</tr>
<tr>
<td>Брестъ</td>
<td>3 46</td>
<td>9,0</td>
</tr>
<tr>
<td>Сенъ-Мало</td>
<td>6 10</td>
<td>15,9</td>
</tr>
<tr>
<td>Гранвиль</td>
<td>6 40</td>
<td>17,2</td>
</tr>
<tr>
<td>Шербургъ</td>
<td>7 58</td>
<td>7,9</td>
</tr>
<tr>
<td>Гавръ (устье Сены)</td>
<td>9 8</td>
<td>10,0</td>
</tr>
<tr>
<td>Дьепъ</td>
<td>11 8</td>
<td>12,3</td>
</tr>
<tr>
<td>Булонь</td>
<td>11 26</td>
<td>11,1</td>
</tr>
<tr>
<td>Кало</td>
<td>11 40</td>
<td>8,7</td>
</tr>
<tr>
<td>Дюнкеркъ</td>
<td>12 13</td>
<td>7,5</td>
</tr>
</tbody>
</table>

Это последовательное движение прилива весьма интересно. Предыдущий рисунок (43) дает общую картину этого движения для Франции. Вследствие запаздывания прилива, прикладной часъ, т. е. время, протекающее между прохождением Луны по меридиану и моментом высшей точки прилива удивительно варьируется. Такъ, въ то время, когда въ Гибралтарѣ воды прилива достигаютъ наивысшей точки ровно въ момент прохождения Луны по меридиану, въ Кадиксѣ это запаздывание равняется одному часу пятнадцати минутамъ, а на берегахъ Испании—трёмъ часамъ. Затѣмъ приливъ идетъ по пути указанному на приложенной при семъ картѣ (рис. 43). Общая форма этихъ кривыхъ съ очевидностью показываетъ, что скорость движения приливовъ уменьшается съ увеличеніемъ глубины моря.

Въ устьяхъ большихъ рѣкъ, особенно Сены, приливы являются любопытнымъ и оживленнымъ зрѣлищемъ, которымъ справедливо любуются туристы. Воды прилива поднимаются въ теченіе рѣки, падаютъ каскадами, катятся широ
кой волной, достигающей п'ескольких метров высоты, и причиняют повреждения всём прибрежным сооружениям, переворачивая одновременно с этим суда, не вышедших на глубокий м‘ста. Это странное скопление водь происходит в тёмь м‘стах, где дно р‘ки идет постепенно возвышаясь. Вследствие такою устройства дна, первья волны, распростра́няясь в неглубоких м‘стах, омерзаются посл‘дующими, которые падают через первья, так что по закону механи́ки волны движутся т‘мь скорее, ч‘мь глубже вода. Это явление называется Баръ или Маскаре. 1)

1) Нужно видеть это вр‘лице в Квадебекъ, выборъ для этой экскурсіи день наибольшаго прилива—въ март’, сентябръ или октябръ. Въ Квадебекъ наблюдают баръ, а въ Эзьеръ—бушующи волны.

Въ указанный день и часть, осв‘ненныхъ столбиками деревьевъ, портъ и величественная аллен слойщ покрываются любопытными. Это—м‘стные жители, иногда не приезжающиесъ этимъ грандиознымъ вр‘лицемъ, а также иностранцы, ст‘хватся любоваться, или научать это явленіе. Задолго до прибытия волны ветеръ вѣтринны глаза ищутъ ихъ на горизонтъ и неопытымъ ежеминутно кажется, что эти волны видятся въ концѣ залива. Глухой шумъ возв‘щаетъ приближеніе волны, когда она еще находится въ п’есколькихъ верстахъ; засыпая его, всѣ корабли и суда торопятся выйти въ открытые море и отдаютъ теченіе, которое продолжая спускаться въ море уноситъ ихъ на встр‘чу волнъ. Мелководныя суда ищутъ глубокихъ м‘сть, считающаяся по указаніямъ опытныхъ м‘стныхъ моряковъ наиболѣе надежными. Всѣдствіе движенія песковъ эти м‘ста часто м‘няются. Горе неосторожной барки, которая изъ л‘ности или презр‘нія къ опасности остались позади! Всѣдствіе наклонаго положенія водь, падающиыхъ каскадами ихъ живо втягиваютъ въ водоворотъ и никаакое знаніе и храбрость тутъ не помогутъ, какъ это часто подтверждается печальнымъ кораблекрушеніямъ.

Широкая волна быстро приближается, поднимая одну за другой лодки и барки, которые то взлетаютъ на гребень волны, то исчезаютъ между ними. Подъ лучезарнымъ солнцемъ, среди тихо колеблемой зернистымъ зелени все море яростно движется, кружится и волнуется.

Но скоро вр‘лице м‘няется, чтобы стать еще болѣе грандиознымъ, еще болѣе любопытнымъ. Огромная, плющая во главь прилива волна, вздувается, поднимается, выпускается и вдруг разрывается и ея вершина съ шумомъ рушится; иногда образуется огромная танцующая отъ одного до другого берега волна, это каскадъ, быстрый вверхъ по текущему р‘ки съ быстротою машины галопомъ лошади. Волны подобно въ ней ст‘нной бьгутъ, разрушая всѣ препятствія, ударяясь о всѣ выступы, ежеминутно выпрямляясь, какъ гигантск‘й султанъ, чтобы упасть на бе-
Распространяясь съ востока на западъ въ направленіи противоположномъ вращенію Земли вокругъ своей оси, приливы подобно тормозамъ замедляютъ вращеніе Земли, что постепенно удлиняетъ продолжительность дня. Послѣдствіемъ этого разстоянія и затопить его. Земля дрожить подъ ногами зрительей, видящихъ, какъ въ мгновеніе, въ которое нельзя обмѣниться словомъ, мимо нихъ проносится бушующія волны въ своемъ необузданномъ бѣгѣ.

Тогда же за прохожденіемъ этой волны шумъ стихаетъ и рѣка принимаетъ свой мирный видъ. Но течение измѣнило направленіе и быстро подымается отъ устья къ верховью.

Первой причиной этого движения вода и вступленія волны приливовъ въ Сену является слабый уклонъ ложа этой рѣки. Разница въ уровѣ между Руаномъ и Гавромъ, двумя пунктами, удаленными другъ отъ друга на 120 верстъ съ лишнимъ, считая по берегу рѣки, равняется всего только 8 аршинамъ; вѣкій разъ, когда въ Ламанши приливы достигаютъ наибольшей высоты, скопившись въ немъ воды стремится притги въ равнинѣ и оливуютъ въ заливѣ, а затѣмъ въ ложъ рѣки. Въ этомъ случаѣ разница въ уровняхъ увеличивается еще больше вслѣдствіе разности въ плотностяхъ воды, такъ какъ вода океана плоть въ рѣчной.

Таково научное объясненіе этого прекраснаго явленія, оно можетъ быть не такъ пріятно, какъ поэтическое его объясненіе, данное Бернарденомъ де-Сен-Пьеромъ.

Однажды Сена, дочь Переры и Вакха, гуляя по берегу моря, попалась на глаза старому монарху океана, который, восхитившись ея красотою, пустился за нее въ погоню. Она уже почти догнала ея, какъ Вакхъ и Перера, къ которымъ воззвала нимфа, не имѣя возможности снасть свою дочь, обратили ее въ лазурную рѣку, которая съ этого времени и хранитъ свое названіе и разносить повсюду по своимъ берегамъ веселые и плодородіе. Впѣтушъ однако не перестала ее любить, какъ и она не перестала питать къ нему своего отвращенія. Два раза въ день она, рыча, гонится за нею и каждый разъ Сена убѣгаетъ въ лугъ подымаясь къ истокамъ, противъ естественнаго теченія рѣки.*

Разъ въ Квадебекъ, когда послѣ всегда интереснаго зрѣлища бар-ра Сены, я шель пѣшкомъ черезъ красивый, растущій по дорогѣ въ Ниво лѣсъ, меня догналъ крестьянинъ, съ которымъ я немедленно вступила въ разговоръ. На мой вопросъ, что онъ думаетъ и что думаютъ въ его старинной семѣ о явленіяхъ, которое они могли наблюдать столько лѣтъ, крестьянинъ отвѣтилъ: Не знаю, какъ объясняютъ это явленіе ученыя, но по нашему тутъ итъ ничего другого, какъ прекрасно известное отреченіе соленой воды въ пресной. Онъ видалъ ли далеко не отличаются одногообразными характерами, тутъ есть какое то естественное предрасположеніе, котораго мы не знаемъ. Впрочемъ же то, что пресная вода,сходя въ море, дранишь соленную воду, съ которой трудно смыть-
делстоя на Луну было удаление Луны от Земли и увеличение продолжительности месяца. Правда, эти действия крайне медленны, но в вечноности столетия проходят, как день. Трудно не сказать, что это уникальное явление, происходящее в водах Маскаре.

Рис. 43 bis. Маскаре в Квадебек.

домбивший математик Дарвин, сын знаменитаго Чарльза Дарвина, пришел на основании своих вычислений к заключению, что вода легко прослушить до Трувилля. Прекрасно! Солнечный свет сердится, сердится, накапливает гнездо и в извеченное время, особенно в равноденствие, когда она и без того раздражена, растет проучить пресную воду и гонится за нею. Утвяще вас, это как в прошлые притяжения Луны.

Прибавим, что подобные явления происходят во всех реках с аналогочными сесскими устьями.

В восхитительном заливе горы Сан-Мишель прибытие волн большого прилива, составляет одно из прекраснейших зрелищ.
чению, что было время, когда обращение Земли вокруг своей оси происходило только в 3 часа, как и обращение Луны вокруг Земли; это время совпадает с эпохою происхождения Луны, 54 миллиона лет тому назад, отделявшейся от Земли, бывшей в то время жидкую внутри, вследствие своего родного солнечного прилива. Тогда вычисления показали бы, что земной день должен был длиться и стать, наконец, в 70 раз больше, нежели нынешнего, что составило бы пять с четвертью дней в году, и что такую же продолжительность будет иметь в это время лунный месяц. Но для того, чтобы Луна и Земля обращали каждая друг к другу постоянно одну и ту же сторону, понадобилось бы не менее 150 миллионов лет.

Если Луна будучи в 81 раз меньше могущественнее, чем Земля, производить на Землю такие приливы, то какое же влияние должна была производить Земля на Луну, когда эта последняя была еще жидкую и находилась ближе к нам. Этому именно влиянию вероятно обязаны Луна тём, что не может больше свободно вращаться вокруг самой себя. Постоянно замедляя первоначальное движение Луны вокруг самой себя, Земля под конец остановила это движение и Луна навсегда осталась обращённой к нам одной своей стороной. Жаль! 1).

Здесь уместно спросить себя не производит ли Солнце и особенно Луна такого же действия на земную атмосферу, какое, как мы только что видели, производит на море? Без всякого сомнения. Солнце и Луна производят на атмосферический воздух такое же действие какое производит на море, результатом чего должны являться в атмосфере настоящие приливы и отливы. Но как мы можем убедиться в их существовании?

Мы не находимся в таком месте, откуда могли бы видеть внешнюю поверхность земной атмосферы, как видимь.

1) Приливами и отливами пользуются для введения и выведения судов из порта. Но отсюда ненужно заключать, как сделять аббат Плюєн, автор "Зрьмнц Природы", что приливы и отливы созданы наочно для введения судов в Гаврь. Эти конечные причины—не божествен, но весьма и весьма человеческих.
внешнюю поверхность моря. Значит, можем убедиться в атмосферических приливах и отливах не посредством наблюдения того всходящего, то нисходящего движения этой поверхности, а иначе. Находясь на дне атмосферы, мы не можем замечать атмосферических приливов и отливов, как, находясь на дне моря, не замечали бы приливов и отливов в океане. Ясно, однакож, что единственным послѣствием, которое мы испытали бы находясь на днѣ моря, была бы периодическая смена давленія воды вслѣдствіе послѣдовательного увеличения или уменьшения толщины, поддерживающую нами слой жидкости. Значит атмосферическіе приливы и отливы могут быть замечены нами только вслѣдствіе периодических измѣнений давленія атмосферы в мѣстах нашего нахожденія, т. е. вслѣдствіе послѣдовательного увеличения или уменьшения столба жидкости в барометрѣ, который служит для измѣренія этого давленія. Вычисление показывают, что эта разница равняется всего нѣскольким линіям.

Сведения к этому вопросу является весьма опредѣленнымъ. Ежедневная наблюдения показывают, что столбикъ жидкости в барометрѣ испытываетъ иногда измѣненія, обязанная собою случайнымъ причинамъ, могущимъ достигать 10, 20 и 30 линій и что при обыкновенныхъ условіяхъ онъ иногда подымается на нѣсколько линій не смотря на то, что не замѣчается никакихъ атмосферическихъ пертурбаций. Если нѣкоторая доля влиянія на эти измѣненія и принадлежитъ атмосферическимъ приливамъ, то нужно сознаться, что эта доля весьма не велика, и что въ ней нельзя видѣть главную причину измѣненій погоды, которую такъ интересно было бы умѣть предсказывать, и которая разрушаетъ всѣ понятія, дѣлавшіяся съ этой целью.

Луна производитъ не только атмосферическіе и морскіе, но и подземные приливы и отливы. Перре, мой покойный коллега по Дижонской академіи, классифицируя по датамъ землетрепенія, нашелъ, что землетрепеній происходитъ больше въ новолуніе и полнолуніе, а также, когда Луна находится въ перигей на наименьшемъ разстояніи отъ Земли. По эта разница незначительная. Больше вѣрными приливами и отливами являются приливы и отливы коры земного шара, съ очевидностью доказанныя Реккеромъ въ Потсдамѣ. По его наблюде-
півмісячного в рік два рази на день почва Землі поднімається і опускається в нашій широті на 6 і четвере десятих вершка, а на екваторі на 11 сь половини. Цього не замічають потому, що не мають отправної точки незалежної від цього движення земної кори.

Здісь ми приходими до спорному відомості о впливу Лун при діях земних кор

— 130 —
ГЛАВА ВІІІ.
Влияние Луны.

Если бы пословица Vox populi vox Dei (Глас народа—гласс Божий) была върна, то можно было бы утверждать, что Луна оказывает на Землю и ея жителей самого необыкновенного влияния. По народному повѣрью она должна оказывать влияние на перемѣну погоды, на состояние атмосферы, на растенія, животныхъ, людей, женщинъ, айда, зерно, однимъ словомъ—на все въ мирѣ. Луна вошла во всѣ формы разговорной рѣчи отъ выраженія „lune de miel“ (медовый мѣсяцъ новобрачныхъ) до „lune roussa“ (апрѣльские утренники). Что правда въ этихъ традиціяхъ? Не все конечно въ нихъ правда, но и не все, можетъ быть, ложь.

Очень радъ васъ видѣть, сказалъ однажды Людовикъ XVIII членамъ депутаціи отъ Бюро Долготъ, явившимся представить королю „Connaissance des temps“ и „l’Annuaire“ такъ какъ вы объяснили мнѣ что такое „lune roussa“ и какое влияние она оказывает на урожай. Лапласъ, къ которому обратился король съ этими словами, былъ пораженъ какъ громомъ, действительно онъ, писавший такъ много о Лунѣ, никогда не думалъ о lune roussa. Обведя вопрошающимъ взглядомъ стоявшихъ вокругъ него и не видя никого, кто бы былъ расположенъ отвѣтить, Лапласъ рѣшилъ отвѣтить самъ „Ваше Величество, lune roussa не занимаетъ никакого мѣста въ астрономическихъ теоріяхъ и мы слѣдовательно не въ состоянии удовлетворить любопытства Вашего Величества“. Вечеромъ во время игры, король высказывалъ большое удовольствие по поводу затрудненія, въ которое поставилъ членовъ своего Бюро Долготъ. Узнавъ объ этомъ Лапласъ пришелъ къ Араго съ просьбою просвѣтить его на счетъ этой пресловутой lune roussa,
виновницы его неприятного замешательства. Араго отправился спроситься у садовников Парижского Зоологического сада и вот результаты его опроса.

Садовники называют "lune rousse" ту Луну, которая появляется в апреле и достигает полнолуния или в конце апреля, или, как это чаще бывает, в течение мая месяца. По народному поверью светлый апрельский или майский Луну оказывает гибельное действие на молодые побеги растений. Утверждают, что ночью, когда небо бывает чистым, лиственные и почки, обращенные к лунному свету, желтуют, т. е. замерзают, хотя температура атмосферы стоит на несколько градусов ниже нуля. К этому прибавляют, что когда небо бывает покрыто облаками, задерживающими лучи ночного светила и мешающими им доходить до растений, то несмотря на одинаковую температуру, указанных гибельных действий не замечается. Эти явления повидимому указывают, что свет нашего спутника обладает холодящим свойством, однако, направляя к Луне самые широкие червячки самых больших рефлекторов и помышляя затем в их фокусах самые чувствительные термометры, никогда не замечали ничего, что могло бы оправдывать столь странные заключения. Итак, с одной стороны ученье отнесли lune rousse к числу народных предрассудков, а с другой, садоводы убеждены в точности своих наблюдений. Вот объяснение этого.

Физик Уэльсерь первым констатировал, что ночью предметы могут приобретать температуру отличную от температуры, окружающей их среды. Этот факт теперь вполне доказан. Помещая на открытом воздухе небольшое количество ваты, пуха и пр., часто находят, что их температура бывает на 6, 7 и даже 8 градусов Цельсия ниже температуры, окружающей предметы атмосферы; под этими случая подпадают и растения. Не следует, стало быть, судить о холоде, испытываемом ночью растением по одному указанию термометра повышеннаго в атмосфере. Положите термометр плашмя и его температура при вполне чистом небе упадет ниже температуры воздуха. Растение может сильно замерзать, хотя температура и будет поддерживаться на несколько градусов выше нуля.
Эти различия в температуре происходят только в совершенно ясную погоду. Если небо покрыто облаками, то разница совершенно исчезает, или становится незначительной.

Прекрасно, в апрельском и майском ночи температура атмосферы равняется всего в несколько градусов выше нуля. Растения, выставленные в это время на свет, т. е. на чистое небо, могут замерзать вопреки показаниям термометра. Наоборот, если Луна не блестит в небе, если небо покрыто облаками, то, так как температура растений падает ниже температуры атмосферы, растения замерзают. Стало быть совершенно естественно, как думают садовники, что при одинаковых термометрических условиях растение может замерзнуть или не замерзнуть в зависимости от того, видна ли Луна в небе, или она находится за облаками, если садовники ошибаются, то только в объяснении факта, приписывающего действию светлого ночного светила. Лунный свет является здесь лишь указанием на ясную атмосферу, а ночной замерзание растений происходит вследствие чистоты неба; Луна исключительно не способствует этому; будет ли Луна над горизонтом или под горизонтом, явление все равно произойдет.

Так что именно происходит poche. Вследствие ночного лучепускания, выставленные на открытом воздухе тела охлаждаются и это охлаждение сгущает на них распространенные в атмосфере пары воды. Роса не сходит с неба, как не поднимается и с земли. Легкого покрова, листа бумаги, тучки, достаточно, чтобы помешать лучепусканию и способствовало образованию росы, как и мороза.

Луну же приписывают способность разрушать старые здания. Свет Луны повидимому предпочитает руины и уеди-

1) Что касается времени появления lune rousse, то я давно уже должен был напомнить давно вышедшее упомянутое Араго, так как Луна, хотя и может вступать в новолунье в апреле, но может и не достигать полнолуния ни в апреле, ни в мае. Единственным приемлемым определением является следующее: lune rousse называется та Луна, которая начинается после Пасхи. (См. К. Фламмарион, Астрономический ежегодник l'Annuaire astronomique на 1910 г.).
ненныя мѣста, и люди ассоціируютъ съ этимъ опусшеніемъ, производимыя дождемъ и солнцемъ. Изслѣдуйте башни Собора Парижской Богоматери и сравните между собою южную и сѣверную ихъ стороны и вы убѣдитесь, что первый несравненно болѣе попорченъ и изтѣщенъ, чѣмъ второй. Сторожа скажутъ вамъ: „это Луна". Но такъ какъ это свѣтило проходить въ небѣ одинаковый съ Солнцемъ путь, то въ высшей степени трудно определить долю участія каждаго изъ нихъ въ этомъ разрушеніи; припоминайтъ же, что дождь и вѣтеръ приходятъ съ этой именно стороны, нельзя ни на минуту усомниться, что они-то въ соединеніи съ солнечной теплотой и являются агентами разрушенія, и что Луна въ этомъ совершенно неповинна.

Теперь другое. *Lune mange les nuages*, таково распространенное среди деревенскихъ и особенно побережныхъ жителей мнѣніе.

Думаютъ, что облака разсѣиваются, когда на нихъ падаютъ лучи Луны. Можно ли смотрѣть на это мнѣніе какъ на недостойный вниманія предразсудокъ, когда такой ученый какъ Джонъ Гершель ручался за его достовѣрность?

Говорятъ, что лунный свѣть не абсолютно одинаковъ на поверхности Земли, гдѣ обыкновенно дѣляются опыты съ чесовицами и зеркалами, и въ воздушныхъ пространствахъ, гдѣ носится облака. Въ полднѣніе въ течение пѣсколькоыхъ дней безъ перерыва Луна нагрѣвается Солнцемъ. Ея температура весьма повыщена. Составляющіе облака пары воды могутъ находиться въ томъ состояніи неустойчиваго равновѣсія, когда малѣйшее вліяніе можетъ превратить ихъ въ замѣтные шары. Но отъ этого воды не становится меньше въ атмосферѣ, какъ и могутъ убѣдиться поднимаясь на воздушномъ шарѣ; облака исчезаютъ потому, что переходятъ изъ видимаго въ скрытое состояніе. Стало быть ничего не должно, что наблюдения моряковъ и многихъ ученыхъ основаны собою не простому совпаденію, но основаны на дѣйствительномъ фактѣ. Часто можно видѣть, какъ при полномъ Солнцѣ въ пѣсколько минутъ уменьшаются и исчезаютъ облака, вслѣдствіе перемѣны высоты въ атмосферѣ. Въ этомъ случаѣ Луна была бы ни причемъ.
Прибавим, что лунный свет неускает химическое действие. Со времен изобретения фотографии, известно, что Луна действует на пластинки и с величайшей точностью рисует себя на них.

Что касается влияния Луны на погоду, то световое и тепловое действие нашего спутника так слабо, что никакого не объясняют народных предрассудков. В новолуние лунный шар не посылает нам ни световых, ни тепловых лучей; с полнолунием же, наоборот, совпадает максимум подобного рода действий, а между этими двумя периодами световое и тепловое действие лучей постепенно уменьшается или увеличивается; и значит не видно, какова была бы причина предполагаемых перемен погоды. Атмосферические приливы и отливы, как мы видели выше, являются не чувствительными. Впрочем, прежде чем сказать причину этих изменений нужно, чтобы они были обнаружены, а этого еще никто не сделал.

Араго написал, что в Париже максимум дождливых дней совпадает с временем между первой четвертью и полнолунием, а минимум — между последней четвертью и новолунием. То же написал Шумлер для Штутгардта. По Гаспарену получили обратные результаты для Оранжа, а Пуатвень для Монпелье. Эти результаты вполне зависят от

1) Вопрос, производит ли Луна ощутительное тепловое и химическое действие не лишень интереса, как с теоретической точки зрения, так и с точки зрения роли, которую, как полагают, играет Луна в объяснении метеорологических явлений, и поэтому она была подвергнута опыту изучению.

Фотографические измерения показали, что лунный свет в 300,000 раз слабее солнечного. Нужно было бы представить себя все небо покрытым полною Лунами, чтобы получить интенсивность равную таковой дневного света.

Из тщательных опытов Мелони, Пиаци, Шмидта, лорда Росса и Маре Деви слеетует, что теплота лунных лучей в атмосфере, которой мы дышим, равняется едва 12 миллионным градусам. На вершине Тенерифе в значительно более тонком слое атмосферы эта теплота, как найдено, равняется одной трети теплоты свечи, помешенной на расстоянии 6 арш. 11 верш. Но и это — все еще крайне слабая теплота.
перемены погоды, какая бы она ни была, и ничего не доказывают относительно участия в этом Луны.
Состояние наших знаний еще не дает возможности что-либо основывать на фазах Луны. Факт принятия большинством земледельцев и моряков в регулировании погоды первого места фазам Луны, объясняется тьм, что они не считаются с одним — двумя днями до или после явления и замечая одно, совпадающее с их предсказаниями, случай, не замечая десятков противоречивых случаев.
Основанное на движениях Луны предсказание задолго вперед погоды, не было бы в состоянии впустить ни малейшего доверия.
Предсказание погоды, впрочем, не может основываться и на других данных. В настоящее время абсолютно безпред можно высказывать догадки относительно состояния погоды не только за год, но даже за неделю вперед.
Нет, конечно, никакого стыда признаться в своем незнании по тьм вопросам, на которые никто не может отвечить — знаю.
Чему обязан своим огромным успехом календарь Матье Ленсберга и другие? Да ясно, что банальными предсказаниями, которые там напечатаны. Спекулируя на счет человеческой доверчивости, всегда можно быть уверенным в успехе; предсказания могут не сбываться, тьм, не меньше публика не перестанет заглядывать в эти календари. Впрочем, относительно загадок предсказаний и суеверий можно сказать, что пораженная в одном случае на сто, когда пред-
сказанию сбылось, память оставляет незамеченными девяносто девять других случаев 1).

Положение личностей, относительно которых предсказывают также играет не маловажную роль. Так, в календаре Матье Ленсберга на 1774 г. предсказывалось, что на основании положения Венеры одна дама, пользуясь этой высшейшей разработкой, сыграет в апреле месяце, свою последнюю роль. В этот именно месяц Людовик XV заразился осною и Г-жа Дюбарри была удалена из Версаля. Этого было достаточно, чтобы Люксембургскому календарю втрои вдвое больше.

Главным источником дохода Берлинской Академии была въкогда продажа издававшегося ею календаря. Стыдно видеть в этом календаре всякого рода предсказаний, едва ли могла наука или на основании недопустимых принципов; однако знаменитый учений предложил не печатать их больше и заменить ясными, точными и върными замятками по наиболее интересующим публику вопросам. Попытались было провести эту реформу, но доход от календаря не только уменьшился, что берили ученые сочли себя вынужденными возвратиться к первоначальным календарям и снова давать предсказаний, в которых сами не верили.

А происхождение французского астрономического сборника, печатающегося ежеегодно во всех двух соть летъ указания относительно положения в небе Солнца, Луны, планеты и главнейших звездъ, не было ли разъ какъ и происхождение всѣхъ альманаховъ скорѣе метеорологическаго, чѣмъ астрономическаго и не вводить ли онъ въ заблуждение

1) Одна маленькая книжка, которую я держу передъ глазами, утверждаетъ, что на войну направленная въ папского звука есть сплющилась о висящую на его груди икону, свидетельствуя тѣмъ, что самъ Богъ покровительствовалъ ему. Допустимъ, что этотъ одинъ изъ тысячи наблюдателей фактовъ, дѣйствительныхъ. Прекрасно, въсколько летъ спустя сынъ Наполеона III, крестьянъ наняли Пя IX, носивший на груди крестъ, икону и четки паль подъ 17 ударами зулусовъ. Но этого совершенно противоположного первому факта не замѣть и не придумать на основаніи его къ заключенію, что онъ сторицею уничтожаетъ всѣ аргументы предыдущаго случая, который самъ былъ произвольно истолкованъ. Такъ ржится легковѣріе.
некомпетентную публику, которая судить о нем по названию, так как он называется „Знаменитая погода“? Этот сборник вычислений вовсе не занимается погодою в обыкновенном смысле этого слова. Но это название импонирует публике.

Примем к поучительную историю того проповедника, который порицая лотерей сказала: „Потому что приснились три числа (и он назвал их) семью лишают необходимого, а бедных, того что им следует, чтобы купить билет и т. д. При выходе одна женщина подходит к проповеднику „Батюшка, справляется она, я запомнила два первых номера, скажите, какой третий?“

Народ прислушивает Луну еще влияние на первую систему, на деревья, на рубку леса, на посев в некоторых овошей, на посев ячменя и пр. Низкие ответствов на задаваемые сторонникам влияния Луны вопросы вытекает, что ни одного из них не сбывал ни одного опыта, который подтверждал бы их уверенность в этом влиянии Луны.

Не будучи в состоянии абсолютно отрицать некоторых не опровергнутых влияний Луны, наблюдение не дает нам права разделять народных поверьй. Ученых иногда упрекают в том, что они не хотят согласиться с очевидностью, но здесь очевидность далека от действительности. Ничего не отрицая, наука может допускать только то, что установлено.
ГЛАВА IX.
ЗАТМЕНИЯ.

Мы подходим к одному из наиболее замечательных и поражающих небесных явлений. Как в самом деле не поражаться этим таинственным угасанием Солнца, когда среди ясного дня при чистом и безоблачном небе ослепительный диск Солнца, пожираемый невидимым драконом, мало-помалу уменьшается, так что от него остается одна тусклая полоска и, наконец, совсем исчезает? Как не бояться этого необыкновенного продолжения ночи, как не воображать, что это явление дело злоого гения, как не бояться божеского гніва, когда не знаешь, что это явление обязано собою временному положению Луны перед лучезарным світилом и является неизбежным последствием движения нашего спутника? Такое именно впечатлініе во всѣх вѣка производило затмение на всѣх невѣжественных людей: по мнѣнію большинства, это явление обязано собою тому, что невидимый дракон пожирает Солнце. Къ такому же роду впечатліній относится и впечатлініе производимое затмением Луны, которое тоже заставляет опасаться какого-нибудь нарушения въ гармонической правильности небесныхъ движений.

Затменіе, какъ и кометы, всегда истолковывались, какъ указание на неизбежныя бдствія. Тщеславие человѣческое видятъ въ затменияхъ и кометахъ предостерегающій насть перест Божій, какъ будто мы являемся пѣлью творенія.

Припомнімъ, что произошло въ самой Франціи по поводу объявленія солнечного затменія, которое должно было произойти 21 августа 1560 года. Для однихъ оно предсказывало огромный государственный переворотъ и разрушеніе Рима, для другихъ—всемирный потопъ, для третьихъ не болѣе не
меньше, какъ пожаръ всего земного шара, наконецъ, для меньшее фантастичныхъ затмения должно было заразить воздухъ. Увѣренность въ этихъ страшныхъ послѣдствияхъ затмения была такова, что по приказу врача масса пораженныхъ ужасомъ людей заперлась въ наглухо закрытыхъ погребахъ жарко на- топленныхъ и раздушенныхъ, чтобы защититься отъ гибель- ныхъ вліяній затменія. Пети разсказывается, что передъ приближеніемъ рѣшительной минуты ужасъ достигъ наивысшаго предела и одинъ деревенскій священникъ будучи не въ силахъ справиться съ службою въ виду большаго наплыва исповѣдниковъ, думавшихъ, что пробить ихъ послѣдній часъ, вынужденъ былъ сказать на проповѣдь: „не торопитесь, ибо въ виду наплыва кающихся затмение отсрочено на пятидцать дней“.* По добрые прихожане трудныѣ вѣрили въ отсрочку затменія, чѣмъ въ его гибельнаго послѣдствія 1).

1) Всѣдствіе объявленнаго астрономами кольцеобразнаго затменія на 1 апрѣля 1764, уже въ то время существовавшая Французская газета напечатала слѣдующую статью, признакую однимъ деревенскимъ священникомъ, которому должно было быть известно только полное затмение: „Какъ бы утренняя служба, которая должна быть совершена въ разныхъ приходахъ 1-го будущаго апрѣля, не была нарушена всѣдствіе ужаса и любопытства, которые могутъ быть возбудженны въ народѣ кольцеобразнымъ солнечнымъ затменіемъ, поэтому небезопасно было бы опубликовать слѣдующее: „По случаю солнечнаго затменія, всѣдствіе котораго въ десять часовъ утра наступить полный мракъ, предлагается какъ городскимъ, такъ и деревенскимъ священникамъ начать службу четвертаго воскресенья великаго поста рѣчью обыкновеннаго. Просить также духовенство предупредить народъ, что затменія не имѣютъ на насть никакого вліянія ни нравственнаго, ни физическаго, что они не предвѣщають ни нехорошая, ни заразы, ни войны, ни другихъ несчастныхъ случаевъ и являются необходимымъ сдѣствіемъ движения небесныхъ тѣлъ такихъ же естественныхъ, какъ восходъ или заходъ Солнца, или Луны“.

На эту статью было сдѣлано воспроизведеніе, въ которомъ указывалось, что всѣдствіе кольцеобразнаго затменія не можетъ произойти „полочного мрака“. Но несмотря на это, всѣдствіе распространившагося по всей Франціи слуха, въ большинствѣ приходовъ въ деревняхъ и даже въ Парижѣ служба была совершена ранѣе обыкновеннаго. Впечатлѣніе было произведено, и никто не обращалъ вниманія на опубликованное заявленіе астрономовъ. И даже двадцать тѣль спустя послѣ этого ихъ упрекали въ заблужденіи.
История передаёт массу замечательных событий, на исход которых повлияли затмения. Так, перед началом сражений под Аребеллами войско Александра Великого чуть было не обратилось в бегство вследствие явления подобного рода. Смерть афинского генерала Никия и гибель его войска в Сицилии, событие с которого начинается падение Лонской, имело своею причинно лунное затмение. Известно, как на о. Ямайке угрожаемый голодной смертью Христофор Кolumб нашел средства разобрать себя съестными припасами, объявляя караимам, что в тот же вечер лишить их свята Луны... Затмение это началось, как казалось, сдалось Колумбу. Это было затмение 1-го Марта 1504 г., наблюдавшееся в Европе в Ульме Стофферером, а в Нюрнберге Кербера, Вальтером и наступившее на Ямайке в 6 часах вечера. Не будем приводить других подобного рода фактов, которыми кипит история, они все это известны.

С течением поры как узнали, что затмения являются естественным и неизбежным послевствием комбинированного движения трех больших небесных тел Солнца, Земли и Луны, что эти движения регулярны и постоянны, и что посредством вычислений можно предсказать будущих затмений, как можно определить время прошедших, больше не бояться затмений. Астрономы XIX ст. Пенгре вычислили все затмения, которые произошли в течение трех тысяч лет, а в 1887 г. Онольгер опубликовал список всех бывших и будущих солнечных и лунных затмений от 1207 года до Р. Х. до 2163 года по Р. Х.

Всем известно, что Луна, обращаясь вокруг Земли, производит, то солнечное затмение, становясь между Солнцем и Землей, то лунное, становясь за Землей, относительно Солнца. При солнечном затмении Луна заслоняет все или часть Солнца для некоторых пунктов Земли и в зависимости от пункта, затмение имеет тот или другой характер: здесь оно полное или кольцеобразное, там частичное, причем скрытая часть является больше или меньше, а дальше не наблюдается никаких следов затмений. При лунном затмении, наоборот, наш спутник весь или частью перестает быть освещенным Солнцем, потому что в это время про-
ходить по тёмн Земли и этот вид Луны одинаков для всём жителей земного полушария, над горизонтом которого находится Луна.

Отсюда не трудно понять, что вычисление лунного затмения представляет гораздо меньше трудностей, чём вычисление солнечного затмения, потому что для первого нужно указать только общие условия явления, одинаковые для всём наблюдателей, тогда как для другого указания общих условий затмения недостаточно в силу различий видов его в зависимости от области и ширины зоны для которой солнечное затмение является центральным. Поэтому древние не знавшие движения Луны с такою точностью, как мы, не имели средства точно предсказывать солнечные затмения. Они умели предсказывать только затмения Луны основываясь на том, что они происходят почти периодически и всём отличаются одинаковым характером, так что достаточно было произвести наблюдения и записать всём тё затмения, которые произошли в один и тот же период времени, чтобы наилучшее предсказать и всём тё, которые произойдут в следующий период.

Благодаря гораздо большему знанию, которым мы обладаем относительно движения Луны, мы в настоящее время в состоянии вычислять и предсказывать за много лет и даже столетий впередь не только общие условия лунных затмений, но и мельчайшие подробности солнечных. А также благодаря ретроспективному изслёдованню можем даже составить себе представление обо всём обстоятельствах, сопровождавших какое нибудь прошедшее затмение в той или другой местности и найти таким образом точную дату известных исторических событий, относительно времени совершения которых существуют разногласия. Полное солнечное затмение является поистине весьма редким событием для данной местности. (Так, напр., 22 мая 1724 г. в XIX ст. в Париже не было ни одного полного солнечного затмения и только К в двадцатом столетии, 17 апреля 1912 г. Париж увидит почти полное затмение, настоящее же полное затмение в столице Франции будет наблюдаться только 11 августа 1999 г.). Городтъ разсказывает, что во время войны, происходившей между Лидийцами и Мидянами, полное солнеч-
ное затмение разом остановило воюющих и положило конец войне. Историки не могли определить точно когда эта война произошла и предполагали ее между 626 и 583 гг. до нашей эры; астрономические вычисления показывают, что эта битва произошла 28 мая 585 г. до Р. Х.

Объясним в нескольких словах эти явления.

Солнечные затмения наступают всегда в новолуние, а лунные—в полнолуние. Это обстоятельство давно уже позволило узнать причину, которой обязаны собою затмения. Во время полнолуния Луна, проходя между Землею и Солнцем, может скрыть от наших взглядов большую или меньшую часть этого светила. В новолуние же наоборот, между Солнцем и Луной находится Земля и она может помешать солнечным лучам доходить до поверхности Луны. Таким образом все легко объясняется.

Если бы Луна вращалась вокруг Земли в той же самой плоскости, в которой Земля вращается вокруг Солнца, то она в каждое полнолуние исчезала бы в тени отбрасываемой Землею, а в каждое новолуние затмевала бы Солнце, как это можно видеть на рис. 44. Но Луна проходит иногда над конусом, а иногда под конусом тени, между тмм, как может быть скрыта от глаз только тогда, когда проходить в этой тени.
В этом легко убедиться изледованное рисунок 44. На нем Солнце представлено вверху. Внизу рисунка можно видеть Землю, сопровождаемую Луной. Эта последняя, как мы знаем, обращается вокруг Земли. Проходя в полнолуние (нижняя часть орбиты) через тень Земли, Луна не получает больше солнечного света. Это — луное затмение, полное или частичное в зависимости от того, что оно погружено ли наш спутник в тень весь, или частично. С каждой стороны тени находится полутень (происхождение которой можно уяснить с помощью пунктирных линий) обозначена собою тем, что только часть солнечного света проникает в эту область. Вторая весьма узкая полутень производится окружающей наш шар атмосферой.

С другой стороны, когда в новолуние наш спутник проходит ровно перед Солнцем, его тень падает на Землю и рисует на поверхности нашего шара маленькую круговую, на которой движется по разным местностям земного шара в зависимости от вращения Земли вокруг своей оси. Для всех местностей, в которых проходит эта тень, солнце оказывается в течение некоторого времени закрытым, это солнечное затмение — полное, если Луна находится довольно близко от нас, т. е. в видимый диметр пре восходит диаметр Солнца, количество, если Луна находится в наиболее отдаленных частях своей орбиты и меньше солнечного диска, частичное, если центры Луны и Солнца не совпадают и Луна затмевает Солнце только сбоку.

Таблицы Солнца и Земли показывают, что на всем земном шаре в каждом 18 лпינם можно наблюдать в среднем всего 70 затмений: 29 лунных и 41 солнечное. В году никогда не бывает больше семи и меньше двух затмений. Когда в году бывает только два затмения, то оба они солнечны.

Такова общая теория затмений, изледуемая теперь подробности явления и начнем с затмений Луны.
вовсе не произойдет в течение 18 лет 11 дней, а также, что частичное затмение наступит 18 лет 11 дней спустя, между тем как не происходило ни разу в предыдущий период. Поэтому одного пользования этим периодом, составлившим единственное средство предсказания затмений для древних народов, в настоящее время, когда астрономические теории позволяют достигать при изысканиях несравненно большей точности, оказывается недостаточно. Этим методом можно пользоваться лишь для получения грубого наброска ряда затмений, которые должны произойти.

Но с точки зрения популяризации Астрономии эта периодичность затмений не менее интересна и я предлагаю здесь моим читателям полный цикл всех лунных затмений. Не найдется ни одного человека, который не наблюдал многих из этих затмений и с которыми не были бы связаны более или менее интересные события его интимной жизни.

Изучение этого списка затмений показывает одновременно ценности и недостатки вышеуказанного метода. Как видно из него, одни и те же затмения наступают вновь через каждые 18 лет 11 дней и 7 или 8 часов (отмеченный в списке час совпадает с серединой затмения). Дата затмения отодвигается на один день, если в промежуток этого периода бывает одним високосным годом больше,
как например в период от 7 февр. 1860 г. до 17 февр. 1878 г. Величина затмеваемой части диска Луны также остается почти одинаковой; но частичное затмение может стать полным, так как, затмение 13 окт. 1856, во время которого было затемнено 99 сортых лунного диска, было полным 25 октября 1874 г., когда затемненная часть равнялась 105 сортам, т. е. было затемнено нынешко большие лунного диска. Разница в часах составляет наилбольшую замечную для публики разницу, так как она может сделать затмение видимым или невидимым для определенного места, в зависимости от того будет ли происходить в то время, когда Луна взошла, или — когда она зашла.

Благодаря этому циклу лунных затмений можно вычислить все могути произойти лунные затмения до бесконечности 1).

Мы приходим теперь к солнечным затмениям.

1) С 1858 года (год моего вступления в Парижскую Обсерваторию) я наблюдал весь бывший видимым в Париже затмение. Многие из них представляли интереснейшие особенности.

Затмение 1-го июня 1863 г. я наблюдал в обществе моего остроумного учителя Бабиер и покойного друга Гольдшмидта. Лунный диск оставался видимым все время; он был окрашен в красный цвет, хотя прохождение Луны за Землей продолжалось больше часа. До и после момента полного затмения освещенный лунный серп был голубоватого цвета, очевидно обязанного собою смежности большого цвета с красным.

В течении всего затмения лунный диск приобретал разных цветов. В этот вечер наш спутник проходил в области неба весьма устойчивой звездами и движением. Луны перед ними заставляло думать, что эти звездочки проходили по краю диска, многия из них то пропадали, то снова оказывались в поле зрения.

В середине затмения Луна имела такой же интенсивный свет, какая звезда Альфа в Лебеди, наколько больше звезды Девы и гораздо больше Антареса. Когда Луна выступила из тени Земли образовавшиеся впереди этого серпа казались весьма освещенными как восточной своей половиной и почти темными в западной, так как продолжалось почти до конца затмения. Эта разница в цвете общей стороны лунного диска без сомнения происходила от солнечных лучей, которые, скользя по земному шару, были остановлены льдами Гренландии, тогда как с другой стороны сталися по Черному морю.

В затмение 4 октября 1865 г. я заметил один интересный факт, а именно, что исходящий от Тихо свет, как и цирку и кратеры затемненных частей лунного диска, были совершенно замутными.
Солнечные затмения.

Указанным только что методом можно пользоваться и для предсказания за долго вперед времени солнечного затмения, но нельзя предсказывать будет ли видно это затмение в данной местности; и даже в том случае, когда известно, что затмение будет видно, нельзя знать велико ли оно будет.

Это происходит от того, что солнечные и лунные затмения явления — не одной и той же природы. Лунный затмение

Въ затмение 12 июня 1870 г. интенсивность лунного свёта была меньше таковой Сатурна и больше Альфы Ориона. Въ течение слѣдующих за центральным затмением десяти минут этот свёта значительно увеличился. Значительную роль въ этомъ играютъ состояніе земной атмосферы и лучепусканіе.

25-го декабря 1874 г. въ 6 часъ утра. Въ этотъ мѣсяцъ въ течение пяти наканунь дней было три затмения: 10 октября Луна затмела Солнце, 14-го прошла передъ Венеру и 25 въ свою очередь была затмѣна Землею. Если астрономическія наблюденія во многомъ отличаются отъ дру́га, то они еще больше отличаются вслѣдствие переменъ метеорологическихъ условій, въ которыхъ приходится ихъ производить. Такъ напр., изучая затмение Солнца 10-го числа приходилось подставлять свое лицо горячимъ лучамъ настоящаго дѣятелъ солнца, въ прохожденіе Луны передъ Венеру — искать планету въ ослаблѣнномъ блескъ яснаго неба полуосвѣчеными глазами, а 25-го въ лунное затмение — наблюдать его въ утренней холодной атмосферѣ, подобной атмосферѣ зимнихъ ночей. Но всѣ эти непріятности, которымъ подвергается тѣло, еще ничего не значатъ, если не налетаетъ облако, какъ нарочно дѣло для того, чтобы закрыть ожидающее явленіе, и если все таки въ концѣ концовъ можно придать къ удовлетворительнымъ результатамъ.

Полнолуна должна была войти въ полутьму въ 4 ч. 55 м., но она снулась уже довольно низко къ западному горизонту и густой туманъ и облака окружали ее въ котораго рода бумаговато-пудрово. Видъ Луны былъ далеко не яснымъ, хотя общія черты физическаго устройства Луны и различались довольно отчетливо. Вѣлькая искупавшая лучи горы Аристотеля блистала какъ разъ въ нижней части вертикального диаметра диска и оставалась видимой даже тогда, когда она область вступила въ тѣнь. Мѣшало различить полутьму только приблизительно часть снусти, послѣ вступленія въ ее Луны. Въ 5 ч. 20 м. еще ничего не различалось. Только и въ 5 ч. 30 м., въ 5 ч. 45 м. Луна была замѣтно уголба на сѣверо-востокъ т. е. вверху навысь (правое изображеніе).

Въ 6 ч. нашъ спутникъ былъ затмѣнъ приблизительно на четверть своего диаметра; земная тѣнь кончалась постепенно, а не рѣзной
обязаны собою тому, что святло ночи действительно теряет свои святъ и видимъ во всѣхъ тѣхъ странахъ, въ горизонтъ которыхъ находится Луна. При солнечномъ же затмѣніи, наоборотъ, святло дня нисколько не теряет своего святъ. Становясь передъ Солнцемъ Луна закрываетъ часть его диска большую или меньшую въ зависимости отъ мѣста, которое занимаетъ наблюдатель на землѣ, которая сверхъ того вращается вокругъ самой себя и меняетъ такимъ образомъ движение тѣни на своей поверхности.

чергой. Видны были проходившія по всѣмъ направленіямъ передъ святоломъ ночей тѣльца, то были летавшія на громадной высотѣ птицы. Въ 6 ч. 25 м. конусъ тѣни достигъ середины луннаго диска, но доѣлъ до нижнихъ слоевъ атмосферы, святло Дианы казалось угасло и погрузилось въ лежавшія на горизонтѣ темныя облака. Въ 6 ч. 30 м. оно исчезло; въ это время тѣнь достигла дна Японии и горы Фанелия. Это была самая большая фаза затмѣнія видимая въ Парижѣ.

Нѣсколько минутъ спустя въ 6 ч. 37 м. на восточномъ горизонтѣ заблистало Солнце. Ни „Знаміе Поздѣ“ (Connaissance des Temps) ни „Ежегодникъ Бюро Долготъ“ (L’Annuaire du Bureau des longitudes) не предсказа- ли точно условій этого затмѣнія. Одни предсказывали затмѣніе на небѣ, другой предполагалъ, что полная Луна возвратится въ 6 ч. утра. Въ 1887 г. Ежегодникъ говорилъ, что полное солнечное затмѣніе 19-го авг. будетъ видно въ Египтѣ (вмѣсто Россіи). Для солнечнаго затмѣнія 1905 г. я долженъ быть исправить для своего Ежегодника неточныя фазы, опуб- ликованныя въ „Знаміе Поздѣ“. Эти ошибки тѣмъ болѣе прискорбны, что дѣлаться въ офиціальныхъ изданияхъ.

Затмѣніе, о которомъ я только что сказалъ, было полнымъ, но было видно въ Парижѣ только наполовину, по причинѣ захода Луны.

Затмѣніе 3 сентября 1876 г., бывшее только частичнымъ, въ треть луннаго диска, по счастью наблюдалось въ Парижѣ въ первую половину при весьма чистомъ небѣ, затмѣ небо покрылось облаками. Въ Гаврѣ Луну наблюдали, какъ бы обрамленную колыцмъ, прекрасно ее оттѣнявшими.

23 авг. 1877 г. съ 10 ч. 28 м. вѣч. до 12 ч. 13 м. по полуночи происходило красивое полное лунное затмѣніе, которое могло наблюдать всѣ во Франціи и Европѣ, такъ какъ въ этотъ вечеръ небо было особенно чистое. Въ течение всего времени полнаго покрытія диска (1 ч. 45 м.) Луна оставалась совершенно видимой и окрашенной въ красивый крас- ный цвѣтъ. Полное лунное затмѣніе 4 октября 1884 г. я наблюдалъ въ Обсерваторіи въ Жювиан при облачномъ, но вѣтры довольно благопрі- ятномъ для наблюдения небѣ. Особенность этого замчательнаго затмѣнія (почти централизнаго; продолжительность — 1 ч. 32 м.) состояла въ почти полномъ потемнѣніи Луны; во все то время когда былъ закрытъ весь
При некоторых весьма редких обстоятельствах, когда видимые диаметры Солнца и Луны бывают почти одинаковыми, затмение даже может быть полным в одном месте и кольцеобразным в другом, потому что Луна находится не на одинаковом расстоянии от всех точек земной поверхности. Полное затмение бывает в тех странах, в которых наступает в полдень.

Иногда можно наблюдать, как одиноко облако бросает свою тень на поле, остальная части которого непосредственно освещаются солнцем. Так как эти облака нижутся, то их тень бегут по полю, часто довольно быстро. Таким образом тень Луны при полных солнечных затмениях лунный диск, поэтому оно по справедливости должно быть поставлено всего на несколько степеней выше затмений, при которых наш спутник совершенно исчезает. Тень Земли была охарактеризована прозрачной тенью приближительно в 2° ширине, повидимому, обязанной собою атмосфере и показывающей, что эта атмосфера имела 360 верст высоты.

Частичное затмение 3 авг. 1887 г. не представляло ничего замечательного за исключением разве того, что подвергнувшаяся затмению часть лунного диска оставалась все время видимой.

Полное затмение 28 января 1888 года было почти центральным (продолжительность—1 ч. 38 м.), как можно видеть на рисунке 47, который представляет прохождение во время этого затмения Луны через тень Земли. A, B, C, D отмечает положения Луны при входе, выходе и прохождении через тень; LL—прохождение; ЕE—эклиптика. Это затмение происходило при превосходных атмосферических условиях, несмотря на время года. Я наблюдал его в Обероврория в Ницце. Луна оставалась совершенно видимой, весьма ясной и окрашенной в зеленокрасный цвет, вертаясь северным в течение всего затмения. Луна сохраняла блеск почти равный блеску звезды Проконь. Края оставались сверкающими, тьма внутренность диска.

Этот центр Луны во время затмения происходит от пределения лучей, которые происходят окружающую земли шар атмосферы и освещает Луну, будучи окрашенными сами, как при закате и восходе Солнца. Степень тонов окраски варьируется в зависимости от состояния атмосферы и ее прозрачности. Насколько мы смогли судить об этом при предложенным при сем раскрашенном рисунке (рис. 46) показывающему цвет Луны наблюдавшейся во время полных затмений: 4 окт. 1884 г. и 28 янв. 1888 г.

Последующие наблюдения приведены в Астрономических Ежегодниках (C. Flammariion. l'Annaire astronomique) где указываются наблюдавшимся за год и будущее интересным для наблюдения небесных явлений.
перемещается по поверхности земного шара, от одного края освещенного полушария к другому. Тень воздуха шара является другой более точным примером. Тень Луны иногда бывает весьма малой, так, в затмении 17 мая 1882 г. наблюдавшееся в Египте, она равнялась только 20 верстам ширины. Но эта ширина может доходить до 50, 100, 200 и 300 верст. В России в затмении 19 августа 1885 г., оно доходило до 220 верст. Эта ширина тени зависит от разницы в величине солнечного и лунного диска в день затмения. Тень бежит со скоростью зависящей от вращения Земли вокруг самою себя и движения Луны; ее можно определить наблюдая это движение тени с горы.

Астрономы всегда заранее определяют общие условия каждого солнечного затмения, и, чтобы каждый мог себя представить их, чертят карты затмений, предназначенные указывать ход их на земном шаре. Рис. 48 показывает в чем состоит такая карта; она начерчена для кольцеобразного затмения 1-го апреля 1764 г., которое прошло через Париж.

Линия ABC показывает пункты, в которых затмение началось в самый момент восхода Солнца, а линия ADC в которых затмение кончилось при восходе Солнца. Для всех же пунктов, расположенных по линии ЛЕС, составляющей середину между двумя предыдущими, Солнце восходило в середине затмения. Точно также линии AFG, ANH, AIC соответственно заключают в себе пункты, где заход Солнца происходил в конце, начале или середине затмения. Узкая полоса LL, представленная тремя параллельными кривыми отмечает путь, по которому следовал конус лунной тени, пробиваясь, как мы только что сказали, по поверхности Земли. Как видно из этой картины, эта тень прошла к югу от островов Зеленого Мыса, по Канарским островам и югу о. Мадеры, затем — по Португалии, Испании, Франции, Голландии, Дании и Швеции. Затмение было центральным к югу Сиссабон, Мадриду, Парижу и Швеции. По обеим сторонам от этой полосы затмение было частичным, все больше и больше слабым по мере удаления от пути кольцеобразного затмения. Во всех пунктах, по которым проходит линия MM, это затмение равно было 8 десятых, а во всех пунктах линии
NN—6 десятых, уменьшаясь так в зависимости от зон P, Q, R, S, за этой последней затмения совсем не происходило, несмотря на присутствие Солнца над горизонтом.

Подобные карты чертили для каждого солнечного затмения.

Поставив во время солнечного затмения против Солнца проткнутую булавкой карточку, а за нею экран, предназна-

Рис. 48. Ход солнечного затмения и его величина в разных странах.

ченный получать, проходящие через отверстие в визитной карточке, солнечные лучи, можно видеть на экране изображение солнечного диска с выемкой, образовавшейся вследствие положения Луны между Солнцем и Землей. Иногда между листьями дерева проходят солнечные лучи, освещая часть Земли в середине, отбрасываемой листьями тени. Положение листьев между Солнцем и Землей играет ту же роль, ка-
кую, как мы только что сказали, играет Луна, становясь во время солнечных затмений между Солнцем и Землей. При этом освещенная в средине тени часть Земли может быть круглой или овальной. (Рис. 49). Во время солнечных затмений более или менее обозначающаяся выемка воспроизводится во всех этих освещенных пространствах и все они принимают вид одинаковых эллипсов с выемками, находящимися все на одной стороне. Этту особенность тени де-

Рис. 49. Теоретическое объяснение солнечных затмений.

ревьев во время затмений не трудно заметить. Это действительно отражение Солнца через маленькое отверстие. В 1905 году я заметил, что когда солнечная пятна видны невооруженным глазом, то их можно заметить и на земле и в особенности на лист бумаги, когда на нем получается солнечное изображение.

Познакомимся теперь с частостью солнечных затмений и мы будем иметь полное представление об этих интересных явлениях.

Таблицы солнечных и лунных затмений показывают, что в течение восемнадцати лет на всей Земле можно наблюдать в среднем 70 затмений, 29 лунных и 41 солнечное. Никогда в течение одного года не происходит больше семи и меньше двух затмений. Когда в году происходит всего только два затмения, то оба они—солнечные.
На всем земном шаре количество солнечных затменей больше количества лунных, в отношении 3-х к 2-м. Для данной же местности, вследствие объясненных выше причин, а именно, что лунные затмения видны одновременно во всех тых странах, над горизонтом которых находится Луна, наоборот, лунные затмения более часты, чем солнечные.

Рис. 50. Полное солнечное затмение, наблюдавшееся 22 дек. 1870 г. в Сицилии.

В каждом восемнадцати-летний период в среднем происходит двадцать восемь центральных солнечных затмений, т. е. могущих в зависимости от обстоятельств стать кольцеобразными или полными; но так как земная зона, в которой затмение может иметь тот или другой из этих характеров, весьма узка, то в данном месте полны или кольцеобразные затмения наблюдаются весьма редко.

В 1715 г. Галлея нашел, что с 1140 по 1715 г. т. е. в 575 летний период в Лондоне не было ни одного полного солнечного затмения. С с затмения 1715 г. Лондон не видел другого. Монпелье, город.
находящаяся вследствие соединения многих элементов, способствующих этому явлению, в более счастливых условиях имел в течение пятисот лет только следующие четыре солнечных затмения: 1-го января 1388 г., 7 июня 1415 г., 12 мая 1706 и 8 июля 1842.

В XIV в. в Париже ввиду только одного полного солнечного затмения, 22 мая 1724 г. В XIX в. где в нем не наблюдалось ни одного. В XX в. в Париже произойдет полное солнечное затмение 17 апреля 1912 и полное в течение 2 минут 18 секунд — 12 августа 1999 г. В XXI в. мы будем иметь два полных затмения; 12 августа 2026 г. и 3 сентября 2031 г.

Вычисления показывают, что наибольшая возможная продолжительность всего солнечного затмения от начала до конца равняется 4 ч. 29 м. 44 с. для местностей находящихся на экваторе и 3 ч. 26 м. 32 с. — под параллелью Парижа. Момент полного покрытия диска не может продолжаться более 7 м. 58 с. на экваторе и 6 м. 10 с. в широтах Парижа. При кольцеобразных затмениях Луна не может отражаться целиком на солнечном диске более 12 м. 24 с. на экваторе, 9 м. 56 с. — в широтах Парижа. Понятно, что продолжительность этих явлений проходит всев степень в только что указанных пределах.

Наибольшая продолжительность времени полного покрытия диска во время последних полных солнечных затмений равнялась:

<table>
<thead>
<tr>
<th>Затмение</th>
<th>Дата</th>
<th>Продолжительность</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 дек. 1879 (Алжир)</td>
<td>2 м. 10 с.</td>
<td></td>
</tr>
<tr>
<td>12 дек. 1871 (Австралия)</td>
<td>4 м. 22 с.</td>
<td></td>
</tr>
<tr>
<td>16 апр. 1874 (М. Добры Хаджыл)</td>
<td>3 м. 31 с.</td>
<td></td>
</tr>
<tr>
<td>6 апр. 1875 (Китай)</td>
<td>4 м. 33 с.</td>
<td></td>
</tr>
<tr>
<td>29 июля 1878 (Соед. Штаты)</td>
<td>3 м. 11 с.</td>
<td></td>
</tr>
<tr>
<td>17 мая 1882 (близ Бухары)</td>
<td>1 м. 50 с.</td>
<td></td>
</tr>
<tr>
<td>6 мая 1883 (о. Королевский)</td>
<td>5 м. 24 с.</td>
<td></td>
</tr>
<tr>
<td>19 авг. 1887 (Венгаль Китай)</td>
<td>3 м. 50 с.</td>
<td></td>
</tr>
<tr>
<td>1 янв. 1889 (Северная Америка)</td>
<td>2 м. 17 с.</td>
<td></td>
</tr>
<tr>
<td>17 июня 1880 (Азиатская Турция)</td>
<td>4 м. 10 с.</td>
<td></td>
</tr>
<tr>
<td>16 апр. 1893 (Сенегал)</td>
<td>4 м. 40 с.</td>
<td></td>
</tr>
<tr>
<td>9 авг. 1896 (Новая Земля)</td>
<td>2 м. 47 с.</td>
<td></td>
</tr>
<tr>
<td>22 янв. 1398 (Индостан)</td>
<td>2 м. 26 с.</td>
<td></td>
</tr>
<tr>
<td>28 мая 1900 (Испания)</td>
<td>2 м. 14 с.</td>
<td></td>
</tr>
<tr>
<td>18 мая 1901 (Суматра)</td>
<td>6 м. 33 с.</td>
<td></td>
</tr>
<tr>
<td>9 сент. 1903 (Тихий океан)</td>
<td>6 м. 24 с.</td>
<td></td>
</tr>
<tr>
<td>30 авг. 1905 (Испания)</td>
<td>3 м. 51 с.</td>
<td></td>
</tr>
<tr>
<td>14 янв. 1907 (Пустыня Гоби)</td>
<td>2 м. 30 с.</td>
<td></td>
</tr>
<tr>
<td>3 янв. 1908 (Тихий океан)</td>
<td>4 м. 18 с.</td>
<td></td>
</tr>
</tbody>
</table>
Полный цикл солнечных затмений изобилует большим количеством затмений, чьим лунный цикл, но нашим читателям не безынтересно будет знать его весь (см. стр. 160 а).
Сколько цифр и как мало поэзии и какая суша! Но какъ дать список затмений въ стихахъ? Впрочемъ, какой-нибудь современный диалектический стихотворецъ пожалуй и могъ бы попытаться. Но, что я говорю! Ничего нѣть новаго подъ Солнцемъ, и, поднимъ глаза на почтенную полку моей этажерки съ книгами, не вижу ли я развъ поэму въ шести стихахъ на латинскомъ языкѣ аббата Босковича (Парижъ, 1779 г.) посвященную Людовику XVI, которому онъ предсказывалъ царствованіе безъ затмений. Да, затмения воспринимались въ стихахъ и въ прозѣ. Для насъ же было важно изучить ихъ съ научной точки зрѣнія.
Многія изъ затмений предыдущаго списка имѣли огромное значеніе для изученія солнечной атмосферы. Дѣйствительно, только въ эти рѣдкіе и драгоценныя моменты, когда Луна совершенно закрываетъ ослѣпительный свѣтъ Солнца, можно видѣть чудеса, окружающія это свѣтило, — центръ невообразимаго космическаго движенія, необыкновенныхъ похождений и изверженій, которыя мы изучимъ въ книгѣ посвященной божественному Солнцу.
Рис. 50, представляющій затмѣніе 22 декабря 1870 г., даеъ намъ первое понятіе о видимыхъ вокругъ свѣтила дня протуберанцѣ и окружающей его славѣ.
Затмѣнія доказали, что вокругъ Солнца существуетъ огромная безпрестанно горящая водородистая атмосфера, высота которой постоянно меняется и въ которой плаваютъ металлические пары, атмосфера, пересѣкаемая безпрерывно выбрасываемыми изнутри солнечнаго тѣла расплавленными материалами. Надъ этой атмосферой вокругъ пылающаго очага кручится безчисленное количество маленькихъ тѣлъ, уносимыхъ въ солнечномъ водоворотѣ. Мы не можемъ составить себѣ никакого представления о томъ стремительномъ, происходящемъ въ этихъ грозныхъ областяхъ, движеніи, при которомъ массы болѣе объемисты, чѣмъ Земля, цѣликомъ перемѣщаются, бросаются, разбиваются и возстаютъ въ нѣсколько минутъ. Но не будемъ забывать впередъ въ изученіи Солнца.
Приложенный ниже список (стр. 160а) даёт полный перечень солнечных затмений. Присоединяя его к данному выше списку лунных затмений, мы будем иметь полное число всех возможных затмений. Изъ исследований этого второго списка, как и изъ исследований первого, видно, что по окончании серии, через 18 л. 11 с третьей дней ть же явления повторяются снова. Нужно только заметить, что они невидны в одних и тьх же местах.

Какъ мы уже сказали выше, во весь девятнадцатый въкъ во Франціи было видно одно только полное затмение. Но и частичные затмения, не будучи весьма рѣдкими, происходить не такъ уже часто для одного и того же места и черезъ весьма неравные промежутки времени.

Ихъ нужно схватывать такъ сказать 1) на лету и не под-

1) Съ 1858 г. я наблюдалъ всѣ затмения предыдущаго списка, который не были въ свою очередь затмены облаками образующимися въ столь непостоянной парижской атмосферѣ. Многія изъ нихъ представляли интересныя особенности.

Затмение 15 мая 1858 г. было самымъ большимъ (90 сотыхъ); оно прошло ровно въ полдень; но покрытое облаками (14 и 15 мая утромъ) небо не позволило наблюдать начала затмения. Однако, благодаря просвѣтамъ его можно было наблюдать до момента самой большой фазы (1 ч. 10); послѣ чего облака снова закрыли собою Солнце и двѣной свѣтъ былъ такъ слабъ, что походили на свѣтъ, наблюдающійся при закатѣ Солнца. Находящиіе въ клѣткѣ птицы перестали пѣть и было замѣтно, что они испугались. Скоро небо вновь прояснилось и послѣдняя фазы затмения можно было наблюдать. Это затмение было кольцеобразнымъ въ Англіи, но тамъ погода была еще хуже, чѣмъ въ Парижѣ.

Условія, при которыхъ происходило затмение 18 июля 1860 г. были еще менѣе благоприятными. Для наблюдения его не был
ражать тому самонадеянному маркизу времен Людовика XV, который однажды сопровождал элегантное общество дам в закопченом стекле, так как весь день небо было покрыто облаками и прояснилось только к концу затмения. Его видели ровно столько, чтобы убедиться, что астрономы не обманулись. Это затмение было полным в Испании, куда задали для наблюдения и французские астрономы, оно доказало, что розовые облака, которые появились вокруг Солнца принадлежали, как можно было до этого думать, не Луне, а Солнцу.

Затмение 6 марта 1867 г. чуть было не оказалось совсем закрытым облаками, а то, что можно было видеть от этого затмения, можно было наблюдать, не прибегая к закопченному стеклу. В момент наибольшей фазы (79 сотых) уменьшение света под этим облачным небом казалось не более того, которое могло произойти под еще более покрытым облаками небом. Ощутимая разница замечалась между неровностями внутреннего края солнечного серпа, обозначенными собою неровностями края Луны отравившегося на Солнце и отчетливостью видимого его края, который был не темным иным, как тот край самого Солнца.

Затмение 22 декабря 1870 г. произошло во время осады Парижа в холодный день и тоже было закрыто облаками. Я наблюдал его устроеншимся на парижском крыше доме, так как по случаю войны был в это время артиллерийским капитаном. Накануне я при...
обсерваторию. Такъ какъ дамы изъ за туалета прибыли пол-минуты спустя послѣ затмения и раздосадованный не хотѣли выйти изъ своихъ каретъ, то маркизъ съ гордой увѣренностью вскликнул: Войдите! войдите! г. Кассини мой хорошій другъ и будетъ очень радъ повторить затмение для насъ. Въ послѣднемъ столѣтіи этотъ анекдотъ ходилъ на счетъ Араго.

Немного есть астрономическихъ явлений, которыя такъ поражали бы человѣческое воображеніе, какъ полный солнечный затмѣнія. Дѣйствительно, что за странное зрѣлище это внезапное исчезновеніе свѣта дня въ самый полдень при чистѣйшемъ небѣ? Въ тѣ времена, когда человѣчество не знало естественныхъ причинъ, производящихъ эти явленія, такое исчезновеніе Солнца считалось сверхъестественнымъ и въ немъ съ ужасомъ видѣли проявленіе божьяго гнѣва. Съ тѣхъ же поръ, какъ эти причины были открыты и явленія съ покорною вѣрностью отвѣчаютъ нашимъ вычисленіямъ, всѣкій страхъ готовилъ фотометръ, который изобрѣлъ въ 1867 г. во время моихъ первыхъ путешествій на воздушномъ шарѣ, для измѣренія перемѣны интенсивности свѣта. Въ центральную fazu наблюдалось потемнѣніе 83 сотыхъ солнечнаго диска (рис. 51). Летающая и щебетающія птицы замолкли и попряталися въ теченіе приблизительно часа былъ слышанъ только отдаленный звукъ пушекъ. Температура понизилась на 2½ градуса.

Небо было закрыто облаками и въ затмѣніе 10 октября 1874 г., но благодаря просвѣтамъ можно было наблюдать середину и конецъ затмѣнія. Въ максимальную fazу было закрыто 29 сотыхъ солнечнаго диска (рис. 51bis). Фотометръ показывалъ едва замѣтное уменьшеніе свѣта, а термометръ только 1,5° уменьшенія солнечной теплоты. Единственная особенность этого затмѣнія состояла въ томъ, что во время него можно было наблюдать лунный горы Дерфель и Лейбниц, силуэты которыхъ отражались на Солнѣ. Присутствие всѣдствіе этого на контурахъ Луны выемки были видны невооруженнымъ глазомъ. Эти горы отъчаянно южный полюсъ луннаго шара.

Наблюдавшееся многими астрономами затмѣніе 17 мая 1882 г. было частичнымъ и видимо въ Парижѣ при весьма чистомъ небѣ, но фаза достигала 24 сотыхъ солнечнаго диаметра. Рис. 51ter. представляетъ собою видъ Солнца въ максимальный моментъ фазы. Затмѣніе 19 авг. 1887 г., которое могло бы быть видимо въ Парижѣ при самомъ восходѣ Солнца, было закрыто облачнымъ небомъ.

Затмѣніе 28 мая 1900 и 30 авг. 1905 были полными въ Испаніи, куда яъ зѣвалъ ихъ наблюдать.
у просвѣщенныхъ людей исчезъ. Тѣмъ не менѣе, это грандиозное зрѣлище производитъ все такое же громадное впечатлѣніе на созерцающаго его. Въ предсказаній астрономомъ часть блестящаго диска Солнца какъ будто отскакивает на западѣ и чернѣетъ медленно подвигается впередъ, все больше и больше захватывая дискъ, пока отъ него не останется одинъ только тонкій серпъ. Одновременно съ этимъ свѣтъ дня убываетъ; страшный, блѣдный свѣтъ замѣняетъ блестящій, радовавший природу, и глубокая печаль писходить на мѣрѣ. Вскорѣ отъ лучезарного свѣта остается одна только узкая дуга и надежда повидимому не хочетъ покинуть эту землю, столь долго освѣщавшуюся отечески заботливымъ Солнцемъ. Жизнь еще связана съ небомъ невидимою нитью. Какъ вдругъ послѣдній лучъ дня гаснетъ и тѣмъ тѣмъ болѣе глубокая, что наступила внезапно, распространяется вокругъ насъ, погружая всю природу въ безмолвие и удивленіе... Звѣзды блистаютъ въ небѣ. Человѣкъ внимательно слѣдившій за явленіемъ и передававшій свои впечатлѣнія, вскрикиваетъ и умоляетъ пораженный удивленіемъ. Пѣвшая до того птица забивается трепещущая подъ листья; собака жмется къ ногамъ хозяина, курица прикрываетъ крѣльями цыплятъ... Живая природа умолкаетъ, онѣмѣвъ отъ удивленія.
Воцаряется ночь, глубокая, но часто неполнна, странная, необыкновенная ночь, так как Земля продолжает слабо освящаться красноватым светом, отблеском далеких областей атмосферы, лежащих за пределами конусообразной.

Рис. 53. Полное солнечное затмение 29 июля 1878 г. наблюдавшееся в Скалистых горах (Суть-Амер.-Соед.-Штаты).
лунной тьми и с другой стороны свѣтом, обязаннмь собою солнечной коронѣ. Не разъ во время затмѣнія видали блистающими всѣ звѣзды первой и второй величины, которыя находились надъ горизонтомъ, иногда же—только наиболее блестящія изъ звѣздъ и кометы. Температура воздуха внезапно понижается на нѣсколько градусовъ.

По какое чудное зрѣлище представляется всѣмъ взорамъ обращеннымъ къ одной и той же точкѣ неба! Вмѣсто Солнца въ небѣ парить черный дискъ, окруженный свѣтолой короной. Въ этой эфирной коронѣ видны расходящіеся отъ затмѣннаго свѣтила громадные лучи; розовое пламя какъ будто выходитъ изъ луннаго диска, закрывающаго божество дня. Въ теченіе двухъ—четырехъ минутъ астрономъ изучаетъ эту странную, окружающую Солнце корону, ставшую видимой благодаря прохожденію Луны передъ лучезарнымъ дискомъ, тогда какъ пораженный и все еще безмолвный народъ повинному съ нетерпѣніемъ ждетъ конца зрѣлища, котораго никогда не видѣть, и котораго вѣроятно никогда не увидѣть. Какъ вдругъ струя свѣта и единодушный вырвавшийся изъ тысячи грудеи крикъ счастья возвѣщаютъ возвращеніе радостнаго Солнца, все такого же чистаго, такого же свѣтлago, такого же вѣрнаго. Кажется, что въ этомъ всеобщемъ крикѣ слышится откровенное выраженіе нескрываемаго удовлетворенія: „Такъ это въ самомъ дѣлѣ Солнце, наше доброе Солнце! Оно не умерло, оно было только скрыто отъ насъ; да вотъ оно все цѣлкомъ, какое счастье! И всѣ таки какъ интересно было видѣть, какъ оно исчезло на мгновеніе!“

Послѣднее, наблюдавшееся во Франціи полное затмѣніе произошло 8 июля 1842 г.; оно было частичнымъ въ Парижѣ и полнымъ на югѣ Франціи. Признаюсь, я не былъ очевидцемъ этого затмѣнія, прежде всего потому, что не жилъ въ полосѣ, въ которой затмѣніе было центральнымъ, а затѣмъ и главнымъ образомъ вслѣдствіе своей крайней молодости (автору было въ то время четыре мѣсяца и одиннадцать дней). По мой учителъ Французскъ Араго вѣзжъ парно въ Восточнаго Пиренеи, мѣсто своего рождения, для наблюденія этого затмѣнія, и описание видѣннаго имъ явленія принадлежитъ къ лучшимъ изъ всѣхъ имѣющихся у насъ описаній этого вели-
колцнаго явления. Весьма красивое полное солнечное затмение, представляющее большое сходство съ предыдущимъ произошло 28 мая 1900 г.; я здѣсь для его наблюдения въ Испанію. Вотъ въ общихъ чертахъ отчетъ о немъ:

Непреложное величіе небесныхъ движений никогда не поражало меня такъ сильно, какъ во время наблюдения этого грандиознаго явления. Съ абсолютной точностью астрономическія вычисленія наше спутникъ, тяготѣя къ Землѣ, вступаетъ на линію проводимую теоретически отъ свѣтила дня къ нашей планетѣ и постепенно медленно становится какъ разъ противъ него. Затмение было полнымъ и произошло минута въ минуту согласно вычислениямъ. Затѣмъ темный шаръ Луны, продолжая свой регулярный обходъ, открываетъ солнечный дискъ и кончаетъ свое прохожденіе передъ нимъ. Тутъ есть для каждаго наблюдателя двойной философскій урокъ, двойное впечатлѣніе: величіе вселомогущества неумолимыхъ силъ, управляющихъ вселенную и силы ума человѣка этого мыслящаго атома, затерянаго на другомъ атомѣ и достигнаго усилиями своего слабаго ума, познанія законовъ, увлекающихъ его самого и остальной миѳ въ пространствѣ, во времени и въ невѣдомомъ.

Линія центральности затмения проходила черезъ Эльяшъ, живописный городокъ съ тридцатью тысячами жителей, лежащей недалеко отъ Аликантэ и я выбралъ этотъ пунктъ разсчитывая навѣрное на хорошую погоду.

Съ террасъ деревенскаго дома, принадлежавшаго гостеприимному мару и превращеннаго графомъ Бомиловинелъ въ обсерваторію, никакое предстоящее не заслоняло отъ насъ ни одной части неба и открывавшагося съ террасы вида. Весь горизонтъ разстилался вокругъ насъ. Передъ нами лежаль городъ, похожий на арабский, обрамленный восхитительнымъ оазисомъ пальмъ; нѣсколько дальше за Аликантэ съ одной стороны видѣлось синее море, съ другой—цѣль невысокихъ горъ, а прямо передъ нами невдалекъ—сады и поля. Нѣсколько стражниковъ поддерживали порядокъ во избѣжаніе наплыва любопытныхъ. Мой другъ Бомиловинель устанавливалъ инструменты, предназначенные фотографировать и спектроскопировать всѣ фазы явленія и работалъ со своими помощниками.
Графиня и моя жена заняли мѣста рядомъ со мною на террасѣ; мой помощникъ, аббатъ Морѣ изъ Буржа, занимавшийся изученіемъ Солнца, помѣтился неподалеку для наблюдения момента соединенія солнца и зарисовыванія короны. Разнообразные аппараты превратили деревенский домъ въ настоящую обсерваторію. Насъ окружало человѣкъ трицать интересующихся: губернаторъ, адмиралъ, генералъ, учителя, великолѣпно предлагая каждый свои услуги. Въ городѣ прибыло до десяти тысячъ иностранцевъ для наблюденія затмения.

Въ моментъ констатированного въ телескопъ первого соединенія луннаго диска съ солнечнымъ, я приказалъ выстроить изъ пушекъ, чтобы возвести сорока тысячъ человѣкъ ожидающимъ явленіе о началѣ затмения, а также для того, чтобы узнать разницу между этимъ телескопическимъ констатированіемъ явленія и прямымъ наблюдениемъ невооруженнымъ глазомъ (защищеннымъ только закопченнымъ стекломъ) столькихъ тысячъ случайныхъ наблюдателей. Это дѣлалъ уже Араго въ Перпиньянѣ въ 1842 г. Повѣрка была почти моментальной для большинства лицъ и разница показалась приблизительно въ десять секундъ. Итакъ, начало затменія было констатировано почти одновременно невооруженнымъ глазомъ и въ астрономическихъ инструментахъ.

Первый періодъ затменія не представляетъ ничего особенного замѣчательнаго. И только съ момента, когда болѣе половины солнечнаго диска покрывается луннымъ, явленіе поражаетъ своимъ величиемъ.

Около этого времени я обратилъ внимание стоявшихъ во дворѣ лицъ, сказавъ имъ, что скоро будутъ видны звѣзды и, указавъ мѣсто Венеры на небѣ, спросилъ не видитъ ли кто пнбудь ея? Восемь человѣкъ увидѣли ее тотчасъ же. Замѣтили, что красивая планета имѣла въ то время максимумъ блеска и что для надѣленнаго зоркимъ зрѣніемъ наблюдателя, который знаетъ ея положеніе на небѣ, она постоянно видна днемъ невооруженнымъ глазомъ.

Когда три четверти Солнца были затмѣны, возвратившись на ферму голуби забились въ уголъ и не шевелились. Мы говорили что въ день затменія вечеромъ, всѣдѣ за голубями на ферму возвратились куры и что маленькія дѣти
Рис. 54. Полное Солнечное затмение 28 мая 1900 г. наблюдавшееся в Эльшо (Испания).
(какъ-я замѣтилъ многочисленные въ Эльшѣ, гдѣ население навѣрно не убываетъ) перестали играть и жались къ юбкамъ своихъ матерей. Птицы пестрѣли устремились къ своимъ гнѣздамъ. Въ саду муравьи обнаруживали крайне волненіе, очевидно сбившись съ пути. Вылетѣли летучія мыши.

3 ч. 50 м. Свѣтъ весьма ослабѣвший, небо синщово-сѣрое, горы съ поразительною отчетливостью вырисовываются на фонѣ горизонта и казаться приближаются.

3 ч. 55 м. Понижение температуры весьма чувствительное. Холодный вѣтеръ пронизывается въ атмосферѣ.

3 ч. 56 м. Глубокое молчаніе вопаряется въ природѣ, которая вся повидимому присоединяется къ небесному явленію. Во всѣхъ кучкахъ людей тихо.

3 ч. 57 м. Свѣтъ значительно ослабѣлъ, сталъ тусклымъ, страшнѣмъ, ужаснымъ. Окружающій пейзажъ сталъ сѣро-синщовымъ, море кажется чернымъ. Это уменьшеніе свѣта не похоже на ежедневное его уменьшеніе послѣ заката Солнца. На всей природѣ лежитъ печать грусти. Съ этимъ съдвигающимся, но даже прекрасно знаю, что затмѣніе Солнца Луною—явленіе естественное, нельзя отдѣлаться отъ нѣкотораго впечатлѣнія грусти. Наступленіе необыкновеннаго зрѣлища—неизбѣжно.

Въ этотъ моментъ мы изслѣдаемъ вліяніе послѣдняго солнечнаго свѣта на семь цвѣтовъ спектра. Для того, чтобы опредѣлить насколько возможно точнѣ тональность свѣта затмѣнія, я приготовилъ семь большихъ картоновъ, выкрашенныхъ въ цвѣта спектра: фіолетовый, синій, голубой, зеленый, желтый, оранжевый, красный, и столько же кусковъ шелковой матеріи тѣхъ же цвѣтовъ. Все это было положено у нашихъ ногъ на террасѣ. Скоро мы увидѣли послѣдовательное и полное исчезновеніе четырехъ первыхъ цвѣтовъ спектра, которые въ нѣсколько секундъ стали черными въ слѣдующемъ порядкѣ: фіолетовый, синій, голубой и зеленый.

Три другихъ съ потемнѣніемъ солнца значительно ослабѣли, но оставались видимыми.

Замѣтимъ, что при нормальномъ состояніи вещей, т. е. всѣкій вечеръ, происходить обратное: фіолетовый цвѣтъ остается видимымъ послѣ краснаго.
Этот опыт доказывает, что последний испускаемый затемненными солнцем свет, принадлежит к наименьшему преломляемым лучам с более длинными волнами и более медленными колебаниями,— желтым и красным. Такова, следовательно, господствующая окраска солнечной атмосферы.

Констатировав это, мы снова обратились к Солнцу. Волшебное и великолепное зрелище! Началось полное покрытие солнечного диска. Черный диск Луны совершенно покрыл Солнце и из-за черных краев Луны выступила восхитительная корона ослепительного блеска. Казалось, что мы присутствуем при колоссальнообразном затмении, с тою разницей, что это затмение может быть наблюдало и невооруженным глазом, не утомляя съятчатой оболочки, и может быть спокойно зарисовано.

Эта сверкающая корональная атмосфера совершенно окружают солнечный диск довольно правильною толщиной, равною приблизительно одной трети солнечного полудиаметра. Ее можно считать атмосферою святла дня.

За этой короной разстиляется более широкий, но менее святлый ореол, изъ котораго вырываются длинные султаны, главным образом въ экваториальных областях солнца и области дъятельности пятен и протуберанцев. Вверху солнечного диска этот ореол представляет собою коническую форму. Внизу же раздвоется и одна часть его заканчивается точкою недалеко отъ Меркурія (рис. 54), который блистае святлом звёзды первой величины и какъ будто нарочно помѣщень здѣсь, чтобы позволить намъ опредѣлить протяженность и направление солнечного ореола.

Я зарисовываю эти мѣняющіяся съ движением Луны виды и, что меня больше всего поражаетъ, такъ это различіе между святом корональной атмосферы и святом ореола: первый кажется ярко бѣлаго серебряного святта, второй съреже и вѣроятно меньше плотнее. Получается впечатлѣніе, что Солнце окружео двумя ореолами абсолютно разной природы. Одинъ принадлежить солнечному шару и составляетъ его весьма святлую собственно атмосферу, другой же состоитъ изъ самостоятельно кружащихся вокруг Солнца частичъ, происходящихъ отъ изверженій, общей формы второго ореола.
должно быть обязано собою электрическим или магнитическим силам уравновешенных разнаго рода сопротивлениями. Внешней собственной атмосфере вулканический извержения отличаются отъ воздушного слоя.

Таково мое впечатлія, но въроятно оно соответствует действительности. Во външнемъ отношеніи разница между этими двуми ореолами—громадна. Общее очертаніе външняго ореола, распространенаго главнымъ образомъ въ экваторіальной зонѣ довольно похоже на таковое затмения 1889 г. равнымъ образомъ соответствовавшаго минимуму солнечной энергіи.

Нетъ сомнѣнія, что окружающий Солнце ореоль мѣняется съ дѣйствіемъ свѣтила. Въ эпоху наиболыней его дѣятельности ореолъ приобрѣтаетъ форму яснаго круга.

Въ каждое затмение наблюдаются сцены какъ восхищенія и удивленія, такъ часто и ужаса. Въ Африкѣ во время затмения 18 июля 1860 г. женщины и мужчины одни стали молиться другіе поцелуяли въ жилища. Животныя направились къ деревнямъ, какъ съ приближеніемъ ночи, утки собрались въ стаи, ласточки прилетѣли къ домамъ, бабочки попряталаси, цвѣты закрыли свои вѣнчики. Птицы, насекомыя и цвѣты казались подверглись сильному вліянію темноты, обязанной собою затмению.

Во время затмения 18 августа 1868 г., которое Жансенъ издал наблюдалъ въ Английскія владѣнія въ Индіи, предоставленные въ его распоряженіе туземцы, бросились спасаться какъ разъ въ тотъ моментъ, когда затмение началось и побѣже погрузиться въ священну рѣку. Ритуалъ ихъ религіи предписываешь имъ погружаться по шею въ воду, чтобы отворить вліяніе злого духа. Они возвратились только тогда, когда затмение уже кончилось.

Во время затмения 15 марта 1877 г. турки, несмотря на приготовленія къ войнѣ съ Россіей, произвели настоящей бунтъ и стрѣляли изъ ружей въ Солнце, чтобы высвободить его изъ когтей Дракона. Илюстрированные журналы приводили съ натуры эти весьма любопытная для нашего времени сцены.

Во время затмения 29 июля 1878 г., бывшее полнымъ въ Северо-Американскихъ Соединенныхъ Штатахъ, одинъ негръ,
охваченный ужасом и убежденный в наступлении кончины мира зарезал свою жену и детей.

Рис. 55. Лунное затмение 16 декабря 1880 г. в Ташкенте.

16 декабря 1880 г. в Ташкенте затмение Луны было встречено адской музыкой. Люди неутомимо били в барабаны,
чайники, каструли и пр. чтобы устрашить дьявола Читана, который пожирал Луну (рис. 55).

28 января 1888 г. было тоже самое в Пекине, но на этот раз по приказу мандаринов были в барабаны, чтобы обратить в бдение небесного Дракона, который затмил Луну.

28 мая 1900 г. и 30 августа 1905 г. в Испании я видел часть населения пришедшего в ужас с приближением полного солнечного затмения; изъ шумного опо превратилось в ужасно молчаивое.

Эти воспоминания могут быть умножены до безконечности.

Дополним этот длинный перечень затмений списком главных затмений полных или кольцеобразных, которые пройдут через Францию и ближайшую к ней страны в XX, XXI и XXII веках до 2200 года.

Будущий солнечный затмение полного или кольцеобразного с 1912 г. по 2200 г.**

XX столетие.

1912. 4 апреля. Кольцеобразное и полное. Полное во Франции (и даже около Парижа в 12 ч. с четвертью). Диаметр Луны несколько превосходит диаметр Солнца. Продолжительность несколько сек.

1914. 8 августа. Полное в России и Швеции.

1921. 26 марта. Кольцеобразное на север Англии.

1927. 16 июня. Полное в Англии и Швеции.

1936. 6 июня. Полное: Греция, Турция, Черное море, Азия.

1954. 17 июня. Полное Швеция и Россия.

1961. 2 февраля. Полное на юге Франции где начнется несколько времени спустя после восхода Солнца.

*) Все даты по старому стилю.
1966. 7 мая. Кольцеобразное въ Греціи и на Черном морѣ.
1976. 16 апраля. Кольцеобразное въ Алжирѣ и Тунисѣ.
1984. 17 мая. Кольцеобразное въ Алжирѣ почти при закатѣ Солнца.
1999. 29 іюля. Полное во Франціи пройдетъ по съверной части Парижа около десяти часовъ утра. Больше и красивое затмение; продолжительность нѣсколько минут.

XXI столѣтіе.

2005. 20 сентябр. Кольцеобразное пройдетъ по Гібралтарскому проливу и Алжиру около девяти часовъ утра.
2006. 16 марта. Полное; Малая Азія.
2015. 7 марта. Полное на съверѣ Англіи и Норвегіи.
2026. 30 іюля. Полное во Франціи; оно пройдетъ около шести часовъ вечера по Бордо и Тулузѣ. Это второе красивое полное солнечное затмение которого будетъ видимо во Франціи (29 іюля 1999—первое).
2027. 20 іюля. Полное въ Алжирѣ около девяти часовъ утра.
2028. 13 января. Кольцеобразное; на Средиземномъ морѣ около Барселоны кончится при заходѣ Солнца.
2030. 19 мая. Кольцеобразное пройдетъ по Сициліи и южной Италіи около 5 съ половиной часовъ утра.
2039. 8 іюня. Кольцеобразное въ Норвегіи около 6 часовъ вечера.
2048. 29 мая. Кольцеобразное въ Норвегіи около часа съ половиной пополудни.
2059. 23 октября. Кольцеобразное во Франціи, пройдетъ по Ангулему и Валансу около восьми часовъ утра.
2075. 30 іюня. Кольцеобразное пройдетъ по съверу Италіи и по Австріи около пяти часовъ утра.
2081. 21 августа. Полное во Франции проходить по Нанту, Мулэну, Лону, Генуе около семи с половиной часов утра.

Рис. 56. Полная и кольцеобразная солнечная затменя, проходящая по Франции или близ неё с 1812 по 1900 г.

2082. 14 февр. Кольцеобразное наступить в Тулу в Ницца около четырех часов вечера за полно- са до захода солнца.

2088. 8 апреля. Полное проходить по Тунису около одиннадцати часов утра.
2090. 10 сентября. Полное во Франции, оно пройдет около Парижа, но наступить только за десять минут до захода солнца.

Рис. 56 bis. Солнечные затмения, которые наступят в XX веке.

2092. 24 января. Кольцеобразное; кончится в Тулусе при заходе солнца.
2093. 10 июля. Кольцеобразное в Англии в полдень.
XXII столетие.

2103. 20 июня. Кольцеобразное пройдет по Тунису около девяти часов утра.

Рис. 57. Солнечные затмения, которые наступят в XXI веке.

2113. 24 ноября. Кольцеобразное начнется при восходе солнца в Испании и наступит четверть часа спустя в Алжире.
2126. 2 октября. Полное; пройдет по Швеции около семи с половиной часов утра.

2133. 20 мая. Полное, пройдет по северу. Англии около девяти часов утра.

2135. 23 сентября. Полное в Англии и Австрии пройдет по Лондону утром около семи и трех четвертей часа.
2136. 18 марта. Кольцеобразное пройдет по Тунису около трех часов вечера.

2142. 10 мая. Полное проходит по Англии и Дании в восьмери и три четверти часа утра.

2146. 28 февраля. Кольцеобразное и полное; кончится во Франции в Безансоне при заходе солнца, где будет с трудом видимо.

2151. 31 мая. Полное во Англии, Бельгии и Германии; пройдет по Лондону в шесть с половиной часов вечера.

2160. 21 мая. Полное во Франции пройдет около Парижа около семи с четвертью часов вечера и близ Рима около семи и трех четвертей.

2200. 1 апреля. Полное в Англии оно пройдет близ Лондона около пяти с четвертью часов вечера, но не будет продолжаться долго, так как диаметр Луны будет весьма мало превосходить диаметр Солнца.

Таковы полная и кольцеобразная затменя, которые должны произойти в течение трех грядущих столетий.

Так совершается небесные движения в вечной гармонии, чего нельзя сказать о развитии человеческих обществ. Кто может угадать каков будет лики Европы в два — три столетия? Может быть наш старый мир совершенно утратит под развалинами своей прошлой славы, изъеденный проказою милитаризма, который его совсем доконает.

Мы оставляем теперь Луну и Землю, чтобы перенестись на Солнце в центр небесной системы, к которой мы приближимся. К нему ведет нас логика. Мы хотели сначала дать себѣ отчет в том положении, которое мы занимаем в пространстве и начали с изучения нашей собственной планеты — подвижной базы всѣх наших наблюдений. Затѣм, исследовали положеніе, движение и природу Луны, нашего вѣрнаго спутника, пополнив наши знанія изученіемъ затмений, благодаря которымъ вошли на мгновенье съ Солнцемъ, открывъ его протуберанцы и свѣтящуюся атмосферу, становящіяся видимыми, когда лунный экранъ защи
щает наш взор от ослепительного очага. Мы уже говорили о Солнце по поводу обращения вокруг него Земли и знаем, что оно воззывает, как на трон, в центр земной орбиты. Остается сделать один только шаг, чтобы войти в сношения с владыкою мира, шаг этот — точное определение отношений существующих между разстоянием Солнца и Луны—нашего первого этапа в небе.

Рис. 59. Орбиты Земли и Луны.

Прежде всего нам нужно представить себе, что орбита Луны расположена вокруг Земли, тогда как орбита Земли образует круг на громадном разстоянии от Солнца (рис. 59). Наша планета, обращаясь в год вокруг лучезарного светила, уносит с собою Луну, которая вращается вокруг нас в один месяц. Но отношение разстояний этих двух светил гораздо значительнее указанного на рисунке и его довольно трудно представить. Попытаемся. Разстояние отъ
Земли до Солнца в 388 раз больше, а до Луны——в 48 с половиной дюймов длины. Разстояние до Луны будет равняться одной пятой линии. Хотя это и весьма небольшая величина, но ее можно все-таки измерить; это мы и сделали на (рис. 60). На ней внизу представлена Земля в виде точки, вокруг нее нарисована орбита Луны, радиусом в одну пятую линии, а вверху на 388 раз больше, чем размеры координатной линии, соответствующей действительному разстоянию и отстоящей величине Солнца по принятому масштабу, помеченного Солнце. Солнце действительно почти в два раза шире радиуса, что вдвое больше радиуса, расположенного, как шарик четвертого, одно под другим. По принятому нами масштабу солнечный шар вдвое меньше, чем в масштабе; отсюда видно, что Луна действительно касается Земли и является присоединенным к метеорологическому островам.

Представим себе теперь реальные пропорциональные величины.

Диаметр Земли имел бы 12.000 верст. От Луны можно было бы уложить в ряд 30 земных шаров, а от Земли до Солнца 11.700.

Повзяж железной дорогой, длиной в 60 километров, в час прибыть бы на лунную станцию через 38 недель и 7 дней бы по прямой линии 283 года, чтобы достигнуть столицы солнечной империи. Довольно долго. Сядем на пушечное ядро. Лунную орбиту мы пролетим на девятый день пути, но только через девять лет горя такого полета прилетим к порогу святой двери. И это еще долго. Помимется тогда вмем, с святовым лучом; в одну секунду с третьем мы достигаем Луны, а в восемь минут—Солнца. Поедемте же и добьемся туда!
Оловашиновъ Н.—Начатки естествознанія. Съ 283 рис. въ текстѣ. Изд. 7-е. Ц. 1 руб. 25 коп.
Уч. Ком. Мин. Землед. и Госуд. Имущ. одобрена для библ. учебн. завед. вѣдом. М. З. и Г. И.
Въ 5-мъ изд. Уч. Ком. Мин. Нар. Пр. допущ. условно въ качествѣ учебн. рук. въ низ. учебн. завед.
Учебн. Отд. Мин. Фин. допущена въ кач. учебн. рук. въ торгов. школы.
Пильцъ Э.—Задачи и вопросы для наблюдения окружающей природы. Пособіе для веденія образовательн. естествен.-историч. прогулокъ и для самостоят. занятій учен. Переводъ съ измѣненіями и дополненіями относительно рус. природы съ 4-го нѣмц. издания П. Фрейберга. Ц. 50 к.
Руководство къ зоологическімъ экскурсіямъ и собранію зоологическихъ коллекцій. Составлено Комиссіей для изслѣдований фауны Моск. губерніи подъ редакціей проф.-доцента Г. А. Кошевникова. Съ 56 рис. Ц. 1 руб.
Раевский В. А.—Ботанич. экскурсіи. Книжка для образовательныхъ прогулокъ съ дѣтьми. Съ рисун. въ текстѣ и 14 табл. въ прилож. Въ папковомъ переплетѣ. Ц. 2 руб.
Рэфусъ Э. перев. Коропчевскаго Д. А.—Исторія горы. Съ Карт. Изд. 2-е. Ц. 50 к.
Федерсенъ Артур.—Сто растеній. Перев. съ датскаго Е. Зограfbъ. Съ 180 рис. Ц. 30 коп.
Цель. Д-ръ.—Исцѣленіе животныхъ. Ошибочная мнѣнія, суевѣрія и предразсудки. Переводъ съ нѣмеч. В. Соколова, подъ редакціей Вл. О. Капелькина. Ц. 50 коп.
Особ. Отд. Уч. Ком. Мин. Нар. Пр. признана заслуживающей вниманія при допущ. уч. библ. среди. учебн. завед., а также безплатно народн. чит. и библ.
Чаплыгинъ И.—Сельско-хозяйственное естествознаніе. Съ рисун. Ц. 1 р. 25 к.

Цѣна 75 коп.