Автомобильно-тракторные газогенераторные установки

Госл.техиздат
Москва, 1939
АВТОМОБИЛЬНО-ТРАКТОРНЫЕ ГАЗОГЕНЕРАТОРНЫЕ УСТАНОВКИ

Утверждено Всесоюзным комитетом по делам высшей школы при СНК СССР в качестве учебника для вузов технического профиля

МОСКВА ГОСЛЕСТЕХИЗДАТ 1939
Книга содержит в себе основной материал по топливу и его газификации, по конструкциям и расчету газогенераторных установок автомобильно-тракторного типа, по монтажу и эксплуатации этих установок и по организации топливного хозяйства

Н. П. Павловский и С. Ф. Орлов

«Автомобильно-тракторные газогенераторные установки»

Госиздат, Москва, 1939 г.

Оф. редактор И. С. Соловьев
Рецензенты Г. Т. Семенов-Жуков
Тех. редактор С. И. Шмелевская
Корректор Л. И. Крашенинникова
Сдано в производство 17/XI 1939 г.
Подписано к печати 14/XII 1939 г.
Тираж 10000 экз. Инд. 4200
Объем 16,23 печ. л. 17,3 уч. авт. л.
Формат бумаги 60×92 (1/16)
Колич. зм. в печ. л. 47260 Изд. 82
Цена книги 4 р. 50 к. Перепл. 1 р. 50 к.
Упак. Мелоблзаглядка 8-13005

Тип. «Красное знамя», Москва, Сущевская, 21 Зак. 3975

ПРЕДИСЛОВИЕ

Книга «Автомобильно-тракторные газогенераторные установки» написана в соответствии с программой одноименного раздела курса тяговых машин, изучаемого в лесотехнических институтах.

Книга является первой попыткой систематизировать имеющийся на момент издания материал по транспортным газогенераторным установкам и дать его учащимся в виде учебника.

Содержание книги охватывает основной материал по топливу и его газификации, по конструкциям и расчету газогенераторных установок, по монтажу и эксплуатации этих установок, а также по организации топливного хозяйства. Этот материал обеспечивает изучение курса в объеме, предусмотренном учебной программой, и может быть использован для дипломного проектирования. Методика изложения и систематизация материала книги основаны на опыте преподавания курса «Автомобильно-тракторные газогенераторные установки» и апробированы методическими органами высшей школы.

Газовые двигатели в книге не рассматриваются, так как они изучаются в разделе «Двигатели внутреннего сгорания» курса «Теплотехника». Особенности конструкции газогенераторных машин изучаются в разделе «Конструкции автомобилей и тракторов» курса «Тяговые машины».

Содержание книги не исчерпывает всего материала, имеющегося по транспортным газогенераторным установкам. Поэтому авторы прилагают внимание все замечания и поправки и просят направлять их по адресу: Ленинград, Лесотехническая академия им. С. М. Кирова, кафедра тяговых машин.

Главы 1, 2, 3, 4, 5, 9, 10, 11 написаны доцентом Павловским, а главы 6, 7 и 8 — ассистентом Орловым.

Н. П. Павловский и С. Ф. Орлов
ВВЕДЕНИЕ

Увеличение размера лесозаготовок и применение в лесопромышленной зоне сплошных концентрированных рубок потребовало широкой механизации работ по заготовке, вывозке, сплаву и разделке леса.

В соответствии с указанием товарища Сталина о том, что «Нужно немедленно перейти на механизацию наиболее тяжелых процессов труда, развивая это дело во всю (лесная промышленность, строительство, угольная промышленность, погрузка—выгрузка, транспорт, черная металлургия и т. п.)» 1, лесоразработки снабжаются огромным количеством тракторов, автомобилей и различных механизмов по разделке и погрузке—разгрузке леса.

Парк тракторов и автомобилей в лесу непрерывно возрастает в связи с общим ростом народного хозяйства и его потребностей в лесах. Первое развитие механизированных лесопунктов должно дать еще более резкое увеличение тягового парка.

Перевод авто-тракторного парка механизированных лесопунктов с жидкого топлива—лигнина и бензина, доставляемых в большом количестве из отдаленных районов, на дешевое твердое—древесину и древесный уголь—дает ряд существенных выводов:
1) более рациональное расходование жидкого топлива в общем энергетическом балансе страны;
2) освобождение железнодорожного транспорта от дальних перевозок жидкого топлива в лесозаготовительные районы;
3) снижение эксплуатационных расходов механизированных лесопунктов из-за резкого уменьшения затраты средств на твердое топливо по сравнению с жидким;
4) возможность организации механизированных лесопунктов в районах, далеко отстоящих от магистральных путей транспорта;
5) использование твердых топлив древесных отходов, требующих в условиях механизированных лесопунктов дополнительных расходов на сжигание в порядке очистки мест рубок.

Перевод авто-тракторного парка лесной промышленности в основном на древесное топливо является важнейшей задачей в области механизации лесозаготовок.

Глава 1

КРАТКИЙ ОЧЕРК ИСТОРИИ АВТОМОБИЛЬНО-ТРАКТОРНЫХ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК

ГАЗОГЕНЕРАТОРОСТРОЕНИЕ ЗА ГРАНИЦЕЙ

Идея получения горючего газа путем сжигания твердого топлива при ограниченном доступе воздуха возникла в начале девятнадцатого столетия.

Создание и усовершенствование стационарных установок шло достаточно быстро и к двадцатому столетию их конструктивное оформление достигло серьезных успехов. Современные промышленные установки типа «Дельвиг-Флейнэйр», «Паун», «Дейтц» и др. завоевали себе признание высоким качеством работы и чистым высокоокалорийным газом.

Первая газогенераторная автомобильная установка, смонтированная на грузовом автомобиле, появилась в 1905 г. в Шотландии, но техническое ее качество было крайне низким.

Дальнейшее конструирование авто-тракторных газогенераторных установок получило сильный толчок в период империалистической войны, когда страны, импортировавшие жидкое топливо, оказались в весьма стесненном положении и вынуждены были искать замену жидкого топлива суррогатами.

Первой страной, в большом количестве строившей и эксплуатировавшей газогенераторные транспортные установки, является Франция, где уже в 1916 г. между Парижем и Руаном ходил газогенераторный автобус, в 1917 г. был пущен в эксплуатацию газогенераторный автобус и к 1920 г. были оборудованы газогенераторными установками несколько тракторов и танк.

С 1922 г. Франция широко организует газогенераторостроение и проводит ряд концентрированных испытаний автомобилей и тракторов с газогенераторными установками. Эти испытания способствовали улучшению конструкции газогенераторных установок и газовых двигателей и изучению их работы.

В 1924 г. газогенераторные установки участвовали в маневрах французской армии. После этого автомобили, тракторы и танки, работающие на твердом топливе, стали широко внедряться в армию.

Интерес к газогенераторостроению проявляли и другие страны. Бельгия, например, вместе с Францией принимала участие в ряде первых конкурсных испытаний. В Австрии в 1923—24 гг. были испытаны на лесозаготовительных работах французские газогенераторные установки. Тогда же фирма «Кромаг» приступила к изготовлению газогенераторов по типу французских «Сатам» («Кромаг-Сатам»).

В Германии развитие газогенераторостроения для транспортных машин началось с 1920 г. Первые установки были выпущены фирмой «Пинц». В дальнейшем после ряда усовершенствований и экспериментальных исследований к строительству газогенераторных установок приступил еще ряд фирм, из которых наибольшую известность сейчас имеют «Имберг», «Дейп», "Менкз".

В настоящее время газогенераторостроение в Германии приняло большие размеры и близко связано с интересами военного ведомства.

Италия также является страной с сильно развитым газогенераторостроением. Оно пользуется поддержкой правительства и обеспечивается специальными декретами, появление которых относится к периоду войны Италии с Абиссинией. Подробных сведений об итальянских новейших установках не имеется.

Из остальных стран следует отметить Швецию, где получили известность газогенераторы «Абоген», и Финляндию (газогенераторы «Сандвикенс OTSO»). В ряде стран для быстрейшего внедрения газогенераторных машин их владельцам предоставляются льготы, например, уменьшается налоговое обложение, даются рассрочка при покупке, снижаются цены на машину в целом и т. д., что, несомненно, содействует распространению газогенераторов.

ГАЗОГЕНЕРАТОРОСТРОЕНИЕ В СССР

Началом газогенераторостроения в СССР можно считать 1921 г., когда проф. В. С. Наумов создал первую советскую автомобильную газогенераторную установку У-1 для угольного топлива. Совершенствуя ее, проф. Наумов сконструировал в 1928 г. установку У-2 (испытывалась на машине "Фиат"), в 1929 г. — установки У-3 и У-4 для трактора "Коммунар", премиёрымые на конкурсе, организованном обществом "Автодор" в 1931 г., а в 1934—35 гг. — установки У-5 и У-6 для автомобилей ГАЗ-АА. Установки У-5 и У-6 участвовали не только в пробегах, но и в производственной работе на лесозаводах в лесопунктах ленинградских трестов.

Большое значение для развития советского газогенераторостроения имели работы С. И. Декаленкова, который в 1918—1923 гг. использовал брошенные интервентами на севере газогенераторы двигатели и приспособил их для нескольких стационарных силовых установок; для питания этих установок С. И. Декаленков построил древесные газогенераторы своей конструкции.

Первые транспортные установки Декаленкова "Пионер" Д-1 — Д-5 были лишь экспериментальными образцами. Затем Декаленков дал полнопротяженные типы установок "Пионер" Д-6 для автомобилей ГАЗ-АА, "Пионер" Д-7 для трактора "Коммунар", "Пионер" Д-8, Д-8а, Д-10, ДГ-13 для автомобиля ЗИС-5 и "Пионер" Д-9 и ДГ-11 для трактора "Сталгнез-60".

Все установки С. И. Декаленкова работают на древесных чурах.

По автомобильным газогенераторам с 1926 г. ведет работу проф. В. П. Капров, который наряду с лабораторными и теоретическими исследованиями дал конструкции угольных установок для автомобилей ГАЗ-АА и Я-5.

Всесоюзный научно-исследовательский институт сельскохозяйственной техники (ВИСХОМ) спроектировал в 1930—31 г. установку СЖ-2 (конструктор инж. Семенов-Жуков) для тракторов СТЗ и В-3 (конструктор инж. Введенский) для трактора "Коммунар".

В 1932 г. Центральный научно-исследовательский институт механизации и энергетики лесной промышленности (ЦНИИМЭ) испытывал рабочих на дровах газогенератор, сконструированный проф. Н. С. Ветчениным; затем ЦНИИМЭ разработал конструкцию древесного газогенератора "Васта" для трактора "Сталгнос-60", угольного газогенератора ЦНИИМЭ-5 для легкового автомобиля ГАЗ-А и ЦНИИМЭ-6 для автомобиля ЗИС-5.

В 1932—34 гг. коллективом "Автодор" был создан ряд древесных газогенераторных установок "Автодор" для тракторов и автомобилей.

Ленинградский индустриальный институт (конструктор инж. В. М. Володин) дал в 1935 г. угольную газогенераторную установку ВМБ для автомобилей ГАЗ-АА, конструкция которой легла в основу установок НАТИ-угольных.

Ленинградская лесотехническая академия им. С. М. Кирова (кафедра тяговых машин) в 1935 г. создала установку ЛТА для автомобиля ГАЗ-АА на древесной щепе, в 1936 г. угольную и древеснощепную установку ЛТА для тракторов С-3Х-3Т, в 1937 г. угольную и древеснощепную установку ЛТА для автомобилей ЗИС-5 и в 1938 г. щепную и угольную для трактора ЧТЗ-60.

Газогенераторской (конструктор инж. А. А. Введенский) дал в 1934 г. древесную установку Б-4 для автомобиля ЗИС-5 и в 1935 г. установку В-5 для автомобиля ГАЗ-АА.

Крупнейшим научным учреждением в СССР в области авто-тракторостроения является Научный авто-тракторный институт (НАТИ). Он ведет большую работу по созданию собственных конструкторских газогенераторных установок.

За период с 1930 г. НАТИ разработала установки: НАТИ-1 для автомобиля, НАТИ-2 для тракторов СТЗ и ХТЗ, НАТИ-3 для тракторов СТЗ, ХТЗ и речных катеров; НАТИ-4, НАТИ-5 для трактора "Коммунар", НАТИ-6 для речных катеров, НАТИ-9 для тракторов СТЗ и ХТЗ, НАТИ-10 для автомобиля ЗИС-5, НАТИ-11 и НАТИ-14 для автомобиля ГАЗ-АА; НАТИ-13 и Г-25 для тракторов ЧТЗ, НАТИ-19 для тракторов СТЗ-НАТИ ИТА, НАТИ-21 для автомобиля ГАЗ-АА, НАТИ-23 для автомобиля ЗИС-5 и др.

Трест Лесосудомашстрой (конструктор инж. И. П. Щетинин) спроектировал установку ЛС-1-5 для трактора "Сталтинец-60".

Центральный научно-исследовательский институт лесосплава дал проект автомобильной установки конструкции Кузнецева.

В конструировании газогенераторных установок судового типа принимали участие Центральный научно-исследовательский институт водного транспорта, Центральный научно-исследовательский институт лесосплава, трест Лесосудомашстрой, НАТИ, ряд отделных конструкторов (Наумов, Декалецков и др.).

В заключение необходимо отметить, что ряд научно-исследовательских институтов, кроме проектирования, занимался исследованием собственных и импортных установок, исследованием процесса газификации и т. д. (НАТИ, Всесоюзный научно-исследовательский дизельный институт, ВИСХОМ и др.).

Эти работы, а равно работы по отдельным теоретическим вопросам и по описанию конструкций авто-транспортных газогенераторных установок (проф. В. Ю. Гиттис, проф. В. П. Карпов, Е. А. Флоров, И. С. Мезин, А. А. Введенский и др.) содействовали развитию отечественного газогенераторостроения.

Однако до 1935 г. газогенераторные установки выпускались лишь единицами.

Перелом в развитии газогенераторостроения в Советском Союзе наметился лишь после постановления ЦК ВКП(б) и СНК СССР от 19 января 1935 г. «О недостатках в работе Наркома лесной промышленности, проведении лесосплава и о мерах к его улучшению».

В этом постановлении был признан необходимым скорейший перевод тракторов и автомобилей, работающих на лесных работах, с жидкого топлива на древесное, для чего Наркомтяжпрому было поручено оборудовать тракторы ЧТЗ и грузовые автомобили, выпускаемые Наркомгежом, газогенераторными установками, организовав в соответствии с этим с 1 квартала 1935 г. производство газогенераторов и деталей, необходимых для переоборудования двигателей.

Постановление Совета народных комиссаров Союза ССР от 28 февраля 1938 г. «Об увеличении мощностей газогенераторных установок, тракторов и других видов транспортных машин» дает неоценимую оценку производству и внедрению газогенераторных машин в народное хозяйство, а также обозначает Наркомаша в 1938 г. 4500, в 1939 г. — 25 000 и в 1940 г. — 55 000 газогенераторных тракторов и автомобилей.

В постановлении от 15 ноября 1938 г. «Об улучшении работы лесозаготовительной промышленности СССР» Сознеком Союза ССР и ЦК ВКП(б) признали важнейшей задачей в области механизации лесозаготовок перевод в 1939 г. авто-тракторного парка лесной промышленности в основном на древесное топливо и обязали перевести в течение 1939 г. ванну на лесное топливо по Наркомле СССР 2300 тракторов ЧТЗ-60 и 1000 автомашин ЭИС, по Глазнюкову — 200 тракторов и 400 автомашин, по ПОЛЕС НКТС — 120 тракторов и 400 автомашин.

То же постановление обязывало лесозаготовительные предприятия организовать на всех газогенераторных базах топливно-заготовительные пункты для заготовки древесного топлива в летний период и обеспечить к 1 сентября 1939 г. не менее чем десятидневные запасы топлива естественной сушки, а также построить сушилки простейшего типа.

Наркомашу было предложено не позднее 1 марта 1939 г. изготовить и испытать совместно с Наркомлемом СССР тракторный газогенератор, работающий на древесном угле.

Указания партии и правительства о переводе авто-тракторного парка лесной промышленности с жидкого на древесное топливо послужили стимулом к созданию высококачественных конструкций, разработанных крупнейшими научными учреждениями и заводами Союза.
Глава II

ТОПЛИВО

В автомобильно-тракторных газогенераторных установках используется весьма разнообразное топливо.

В газогенераторах могут применяться каменные угли, торф, древесина и древесный уголь, солома, отбросы хлопкового производства, подсоленчай, шелуха и др.

Самыми распространенными, а для газогенераторных установок, эксплуатируемых в лесной промышленности, единственноными видами топлива являются древесина в виде древесных чурок, щепы, брикетов из древесных отходов и древесный уголь в виде угля и брикетов из угольной мелочки.

ДРЕВЕСНОЕ ТОПЛИВО

Состав

Твердое топливо состоит из горючей (органической) части и негорючей части (бэлласти).

Горючая часть топлива состоит из органических соединений, включающих углерод, водород, кислород, азот и серу.

Негорючая часть содержит в себе минеральные соединения (золу) и воду.

Углерод, водород, кислород и азот входят в состав каждого топлива, наличие же в топливе воды, серы и золы зависит как от вида топлива, так и от ряда других причин.

Можно считать, что в среднем органическая масса древесины содержит 49,5% углерода, 6,3% водорода и 44,2% кислорода вместе с азотом.

Процентное содержание углерода, водорода, кислорода и азота в различных породах древесины (в абсолютно-сухом состоянии) приведено в табл. 1.

Кроме указанных элементов, образующих органические вещества, в состав древесины входят и минеральные вещества: поташ, сода, навоз и др., дающие при сгорании золу. Содержание золы в древесине колеблется от 0,2 до 1,7% и зависит от породы дерева, возраста дерева, условий и места произрастания. Кроме того, содержание золы неодинаково в отдельных частях дерева: наибольшее ее количество находится в коре и ветвях.

По Д. И. Менделееву, в среднем абсолютно-сухая древесина содержит 50% углерода, 6% водорода, 43,4% кислорода с азотом и 0,6% золы. Эти данные почти полностью совпадают с данными табл. 1.

Углерод, водород и кислород, находящиеся в составе древесины, образуют сложные органические вещества: целлюлозу, лигнин, дубильные вещества, смолы и т. д. Целлюлоза и лигнин являются главнейшими горючими веществами древесины.

Элементарный состав целлюлозы (по данным Гесса) и лигнин (по данным Фукса) приведен в табл. 2 (в процентах).

<table>
<thead>
<tr>
<th>Древесные породы</th>
<th>C</th>
<th>H</th>
<th>O</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Береза</td>
<td>48,88</td>
<td>6,06</td>
<td>44,67</td>
<td>0,10</td>
</tr>
<tr>
<td>Бук</td>
<td>49,06</td>
<td>6,11</td>
<td>44,17</td>
<td>0,09</td>
</tr>
<tr>
<td>Дуб</td>
<td>50,16</td>
<td>6,02</td>
<td>43,45</td>
<td></td>
</tr>
<tr>
<td>Ясень</td>
<td>49,18</td>
<td>6,27</td>
<td>43,98</td>
<td></td>
</tr>
<tr>
<td>Ель</td>
<td>50,31</td>
<td>6,20</td>
<td>43,08</td>
<td>0,04</td>
</tr>
<tr>
<td>Пихта</td>
<td>50,38</td>
<td>5,92</td>
<td>43,39</td>
<td>0,05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Органические вещества</th>
<th>C</th>
<th>O</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Лигнин</td>
<td>64,4</td>
<td>29,7</td>
<td>5,9</td>
</tr>
<tr>
<td>Целлюлоза</td>
<td>44,34</td>
<td>49,28</td>
<td>6,38</td>
</tr>
</tbody>
</table>

В хвойных породах количество лигнин достигает 29%, целлюлозы — 54%, а в лиственных породах содержание лигнин доходит до 26% и целлюлозы — до 45%.

Смолы находятся как в коре, так и в самой древесине. В зависимости от породы дерева процентное содержание их может изменяться; по данным Швалбе и Беккера, в сосне содержится смол 3,45%, в ели — 2,30%, в береze — 1,78% и в буке — 0,70%.

Теплотворная способность

Качество топлива определяется количеством тепла, выделяющимся при его сгорании. По Менделееву, один килограмм угля — главного элемента топлива — при полном сгорании выделяет 8137 кал. Одни килограмм свободного водорода (H), находящегося в органическом соединении с углеродом и другими элементами, выделяет при сгорании 34 180 кал. Связанный водород, находящийся в соединении с кислородом в виде воды (H₂O), при сгорании топлива не выделяет тепла. Количество связанного водорода в топливе в 8 раз меньше по весу количества кислорода и определяется отношением \(\frac{O}{8} \), где \(O \) — вес кислорода топлива в кг.
Вода, имеющаяся в составе топлива, при сгорании последнего требует для своего испарения определенного количества тепла, выделяемого другими элементами; поэтому связанный водород понижает тепловорную способность топлива.

Азот (N) в горении не участвует, выделяясь из органических соединений в свободном состоянии.

Один килограмм серы (S) при сгорании в SO₂ выделяет 2181 кал. Примеси серы в топливе не желательны, так как они разрушают действие на металлические поверхности топок. В составе древесины сера отсутствует.

Минеральные вещества, содержащиеся в топливе, при его сгорании образуют золу.

Тепловойная способность топлива определяется с учетом его состава и того количества тепла, которое выделяется при полном сгорании его элементов. Все тепло, выделяемое 1 кг топлива при горении в свободном состоянии, будет его тепловойной способностью. Различают высшую и низшую тепловойные способности топлива. Высшая тепловойная способность определяется при условии образования воды в результате сгорания входящего в его состав водорода. Низшая тепловойная способность определяется при условии превращения в пар воды, содержащейся в топливе и образующейся при сгорании водорода.

То количество тепла, которое расходуется на превращение воды в пар, теряется бесполезно, и поэтому низшую, или рабочую, тепловойную способность топлива всегда соответствует меньше высшей тепловойной способности. При определении низшей тепловойной способности топлива количество тепла, расходуемого на превращение 1 кг воды в пар, принимается равным 600 кал, а количество воды, образующейся при сгорании 1 кг топлива, равным 9Н. Погрешность, что топливо содержит в себе углерода С\% О, водорода Н\%, кислорода О\% и серы S\% и что при полном сгорании углерода выделяет C-8137 кал, свободный водород — \(\frac{34810}{8} \) кал и сера — S-2181 кал, можно определить тепловойную способность данного вида топлива.

Для определения тепловойной способности топлива существуют ряд формул: Дюонга, Общества германских инженеров, Д. И. Менделеева и др.

Формулы Дюонга:

\[
H_{\text{раб.}} = \frac{8137 \times 34180}{100} \left(1 - \frac{O}{8}\right) + 2181 S - 600 W
\]

(общая);

\[
H_{\text{раб.}} = \frac{8137 \times 34180}{100} \left(1 - \frac{O}{8}\right) - 600 W
\]

(для древесины);

где С, H, O, S, W — содержание углерода, водорода, кислорода, серы и влаги в топливе.

Формулы Общества германских инженеров:

\[
H_{\text{раб.}} = \frac{8100 \times 29000}{100} \left(1 - \frac{O}{8}\right) + 2500 S - 600 W
\]

(общая);

\[
H_{\text{раб.}} = \frac{8100 \times 29000}{100} \left(1 - \frac{O}{8}\right) - 600 W
\]

(для древесины).

Приведенные формулы не дают точного определения тепловойной способности топлива, так как они выведены с учетом свободного состояния элементов, участвующих в горении. Поскольку элементы топлива находятся между собой в химическом соединении и часть тепла, выделяемого при сгорании, затрачивается на разрушение этого соединения, вычисление по этим формулам дает результаты, значительно отстоящие от действительного значения тепловойной способности.

В СССР определение тепловойной способности топлива производится по формулам Д. И. Менделеева:

\[
H_{\text{все.}} = 81 C + 300 H - 26 (O - S) \quad \text{(общая)};
\]

\[
H_{\text{все.}} = 81 C + 300 H - 26 O \quad \text{(для древесины)};
\]

\[
H_{\text{раб.}} = 81 C + 300 H - 26 (O - S) - 6 (9 H + W) \quad \text{(общая)};
\]

\[
H_{\text{раб.}} = 81 C + 246 H - 26 O - 6 W \quad \text{(для древесины)}.
\]

Формулы Менделеева дают более точное определение величины тепловойной способности топлива по сравнению с формулами Дюонга и Общества германских инженеров, хотя и здесь в некоторых случаях неточность вычисления может достигать 5—10%.

Кроме приведенных формул, для определения тепловойной способности топлива существует ряд других (Коновалова, Гогуля), однако все они также не дают точных результатов. Поэтому в тех случаях, когда необходимо иметь более точную величину тепловойной способности топлива, следует определять ее сжиганием топлива в калориметрах.
На теплопроводную способность древесины наряду с влажностью оказывают влияние такие факторы, как порода дерева, его возраст, условия местопрошествия и т. д.

Так, например, в одной и той же породе древесины с повышением возраста дерева увеличивается содержание углерода и уменьшается содержание влаги и кислорода. Кроме того, в зависимости от возраста дерева изменяются и его влажность.

Влияние большинства этих факторов на теплопроводную способность, однако, еще не в полной мере изучено.

В табл. 3 приводятся величины теплопроводной способности древесины отдельных пород, определенные различными исследователями.

Таблица 3

<table>
<thead>
<tr>
<th>Породы дерева</th>
<th>Теплопроводная способность абс.-суходревенности в ккал/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>по Мюллеру Стеннову</td>
</tr>
<tr>
<td>Дуб</td>
<td>4 907</td>
</tr>
<tr>
<td>Ель</td>
<td>4 857</td>
</tr>
<tr>
<td>Береза</td>
<td>4 907</td>
</tr>
<tr>
<td>Осина</td>
<td>4 533</td>
</tr>
</tbody>
</table>

Расхождения в величинах вызваны тем, что при их определении не учитывались все вышеуказанные факторы, влиющие на теплопроводную способность.

Определение теплопроводной способности древесины можно производить и для единицы ее объема, т. е. с учетом удельного веса древесины, который неодинаков для различных пород. Если теплопроводную способность древесины умножить на ее удельный вес, то получится удельная теплопроводная способность древесины, характеризующая отдельные породы с точки зрения получаемого количества тепла при сжигании единицы объема. Удельная теплопроводная способность древесины приводится в табл. 4.

Таблица 4

<table>
<thead>
<tr>
<th>Породы дерева</th>
<th>Теплопроводная способность, отнесенная к единице веса абс.-суходревесины ккал/кг</th>
<th>Удельный вес абс.-суходревесины</th>
<th>Удельная теплопроводная способность в ккал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дуб</td>
<td>4 857</td>
<td>0,64</td>
<td>3 108</td>
</tr>
<tr>
<td>Береза</td>
<td>4 919</td>
<td>0,57</td>
<td>2 804</td>
</tr>
<tr>
<td>Сосна</td>
<td>5 064</td>
<td>0,42</td>
<td>2 127</td>
</tr>
<tr>
<td>Ель</td>
<td>4 857</td>
<td>0,38</td>
<td>1 846</td>
</tr>
<tr>
<td>Осина</td>
<td>4 779</td>
<td>0,37</td>
<td>1 768</td>
</tr>
</tbody>
</table>

Влажность древесины оказывает большое влияние на величину теплопроводной способности, которая уменьшается с увеличением влажности. Нищую (рабочую) теплопроводную способность древесины в зависимости от влажности можно определить по эмпирической формуле проф. А. А. Надежина:

\[
H_{раб} = 4370 - 50 W_{отн.}
\]

где \(W_{отн.}\) — процент относительной влажности древесины.

На основе этой формулы проф. Надежин построил график (рис. 1), по которому можно определить теплопроводную способность древесины, если известен процент ее относительной влажности.

Температура горения

Тепловой эффект при горении древесины определяется таковым температурным пределом ее сгорания при условии, что горение происходит полное и без потерь, с теоретически необходимым количеством воздуха.

Теоретическая температура горения древесины вычисляется по формуле:

\[
t_0 = H_{раб} + t \cdot \Sigma \gamma,
\]

где:
- \(H_{раб}\) — нижняя (рабочая) теплопроводная способность,
- \(t\) — температура воздуха,
- \(\Sigma \gamma\) — сумма теплоемкостей продуктов горения.

Теоретическая температура горения древесины в топке равна +1 590°C.

Влажность

Влажность древесины называется количество находящейся в ней воды, выраженное в процентах от веса древесины. Вода, находящаяся в древесине, разделяется на капиллярную, заполняющую полости клеток, коллоидальную, содержащуюся в стенках клеток, и химически связанную, входящую в состав веществ живых клеток: Наибольшую массу воды в древесине составляет вода капиллярная и коллоидальная; химически связанная вода имеет незначительное количество. Количество капиллярной воды изме-
является в древесине в зависимости от объема пор, степени насыщения водой и местоположения древесины в стволе, количество же коллоидной воды зависит от породы дерева.

Влажность древесины можно определять по отношению к абсолютно-суходому весу древесины или к первоначальному весу сырой древесины. Влажность, определенная по первому способу, называется абсолютной, а по второму — относительной.

Для определения абсолютной влажности пользуются формулой:

$$W_{абс.} = \frac{G_1 - G_3}{G_3} \cdot 100,$$

а для определения относительной влажности:

$$W_{отн.} = \frac{G_1 - G_3}{G_1} \cdot 100,$$

где:

G_1 — первоначальный вес древесины;
G_3 — абсолютно-суходой вес древесины;
$W_{абс.}$ — абсолютная влажность древесины в %;
$W_{отн.}$ — относительная влажность древесины в %.

Зная какую-либо одну из указанных влажностей, можно определить другую по формулам:

$$W_{абс.} = \frac{W_{отн.}}{100 - W_{отн.}} \cdot 100,$$

$$W_{отн.} = \frac{W_{абс.}}{100 + W_{абс.}} \cdot 100.$$

Абсолютно-суходой вес древесины определяется различными способами. Чаще всего применяется способ высушивания образцов древесины до постоянного веса в сушильном шкафу при температуре 105°Ц.

В соответствии с тем или иным состоянием по содержанию влаги древесина может рассматриваться как свежесрубленная, мокрая, абсолютно-сухода, комнатно-суходая и абсолютно-суходая.

Влажность свежесрубленного дерева зависит от его породы, места и условий произрастания, времени рубки и других факторов. В табл. 5 приведены цифры, определяющие влажность свежесрубленной древесины (по данным Гослескода, Ващеновой и Иркут для Ленинградской области) в зависимости от времени года.

Содержание воды внутри древесины уменьшается от периферии к центру. Наибольшее количество воды содержится в колыцев и верхней частях ствола.

Мокрой называется древесина, долгое время находившаяся в воде. Мокрая и свежесрубленная древесина на воздухе постепенно высыхает.

Влажность абсолютно-суходой древесины зависит от температуры и влажности окружающего воздуха и времени сушки. В среднем влажность воздушно-суходой древесины принимается в 25% абс. Древесина с влажностью до 20% может быть непосредственно использована в качестве топлива для автомобильно-тракторных газогенераторных установок.

Воздушно-суходая древесина, находясь некоторое время в отапливаемом помещении, высыхает еще больше. Древесина, содержащая 8—13% влаги, называется комнатно-суходой.

Если древесина при температуре 100—105°Ц в течение определенного времени высушивается до постоянного веса, она теряет всю капиллярную и коллоидную влагу. В таком состоянии ее называют абсолютно-суходой. Абсолютно-суходая древесина, высушенная на воздухе, сейчас же впитывает в себя имеющуюся в воздухе влагу. Это впитывание продолжается до тех пор, пока между влажностью древесины и окружающего воздуха не установится равновесие.

Породы древесины и размеры древесного топлива

Древесина в газогенераторных установках употребляется в виде чурок и щепы и в редких случаях в виде дров и брикетов. Чурки и щепа должны иметь такие размеры, чтобы они непрерывно опускались в газогенератор, не образуя сводов, нарушающих процесс горения и газообразования. Для этого чурки должны иметь размеры сторон от 40 до 80 мм в зависимости от конструкции газогенераторов, а дробленая щепа (80—40) × (60—20) × (30—5) мм.

Для постоянства процесса горения и устойчивого газообразования размеры топлива должны быть примерно одинаковы. Более крупные чурки и щепа могут вызвать образование сводов в газогенераторе, а более мелкие — увеличить сопротивление поступлению воздуха и выходу газа.

При работе газогенератора на щепе требуется более частая очистка газогенераторной установки.

Кроме древесных чурок и щепы, в газогенераторных установках могут применяться полуметровые расколотые дрова. Такое топливо используется в ряде судовых газогенераторных установок. В автомобильно-тракторных установках оно распространения не получило.

В качестве топлива для автомобильно-тракторных газогенераторных установок могут быть использованы как хвойные, так и лиственные породы древесины. Лучше из них следует считать

<table>
<thead>
<tr>
<th>Порода дерева</th>
<th>Абсолютная влажность древесины в %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сосна</td>
<td>83</td>
</tr>
<tr>
<td>Ель</td>
<td>103</td>
</tr>
<tr>
<td>Береза</td>
<td>82</td>
</tr>
<tr>
<td>Осина</td>
<td>118</td>
</tr>
</tbody>
</table>

Газогенераторные установки
твердые лиственные породы — дуб, бук и березу. Эти породы обла-
dают наибольшим объемным весом и удельной тепловой
способностью и при сухой перегонке выделяют наименьше коли-
чество смол. По составу и тепловой способности газ, полу-
чаемый при газификации отдельных пород, почти одинаков.

Хвойные породы, особенно ель, значительно быстрее засоряют
воздух и систему очистки, так как при сгорании дают большее
количество угольной мелочи.

Сухая перегонка древесины

Процесс химических изменений, происходящих в древесине от
действия на нее высоких температур без доступа воздуха, назы-
вается сухой перегонкой древесины. Этот процесс характеризуется
выделением из древесины ряда параобразных, газообразных, жид-
ких и твердых продуктов, образующихся при определенных темпе-
ратурных условиях.

При нагревании древесины от +100° Ц до +170° Ц из нее выде-
ляется вода в парообразном состоянии. С повышением температуры
от +170° Ц до +270° Ц начинается разложение древесины и ее
образование газов, содержащих в себе кислород (CO₂ и CO), а
также выделение паров уксусной кислоты. При температуре +270° Ц до +280° Ц начинается экзотермический процесс интенсивного обугливания древесины и образование серного углекислого газа.

При температуре от +280° Ц до +380° Ц из древесины выде-
ляются уксусная кислота, метан, метиловый спирт и легкие смолы и образо-
вается черный уголь, хрупкий и легко воспламеняющийся. В интер-
вале от +380° Ц до +500° Ц получаются некоторые жидкые про-
дукты и тяжелые смолы. При температуре выше +500° Ц выделяе-
мые из древесины летучие продукты начинают разлагаться, выде-
ляется водород, концентрация углерода в черном угле продол-
жает возрастать, и уголь приобретает повышенную механическую
прочность, становится твердым и трудно воспламеняющимися.

Количество отдельных продуктов, образующихся в результате
сухой перегонки древесины различных пород, неодинаково. Наибо-
ле, количество уксусной кислоты и метилового спирта у листовь-
ных пород почти в два раза больше, чем у хвойных, а количество
смоля у хвойных пород и в особенности у сосны значительно боль-
ше, чем у лиственных.

Процентное содержание и перечень продуктов сухой перегонки
древесины для различных пород приводятся в табл. 6 (по данным
Класа).
был уголь отличается отсутствием воды и только частичным разложением древесины.

Результаты анализа газов, выделяющихся при определенных температурных фазах сухой перегонки древесины при обугливании хвойной древесины в печах Шварца, приведены (по данным Юона) в табл. 8.

<table>
<thead>
<tr>
<th>Температура обугливания хвойной древесины в °C</th>
<th>Процентный состав газов</th>
<th>Теплотворная способность м³ газа в кал</th>
</tr>
</thead>
<tbody>
<tr>
<td>200—280</td>
<td>66,5</td>
<td>0,2</td>
</tr>
<tr>
<td>280—380</td>
<td>37,5</td>
<td>5,5</td>
</tr>
<tr>
<td>380—500</td>
<td>31,5</td>
<td>7,5</td>
</tr>
<tr>
<td>500—700</td>
<td>12,5</td>
<td>8,8</td>
</tr>
<tr>
<td>700—900</td>
<td>0,6</td>
<td>36,5</td>
</tr>
</tbody>
</table>

Таблица 8

Эти данные показывают, что водород и углеводороды, образующие при повышении температуры обугливания энергию выделяются из древесины, при температурной фазе 200—280°C. Выделяются еще в незначительном количестве. Следовательно, газ из бурого угля имеет более высокую теплотворную способность, отнесенную к 1 кг первоначальной влажности древесины, чем газ из угля последующего высушивания. Это подтверждается данными Ж. Дюдона, полученными при газификации сосной древесины и углей из этой же древесины различной температуры высушивания, приведенными в табл. 9.

<table>
<thead>
<tr>
<th>Наименование топлива</th>
<th>Удельный вес угля</th>
<th>Влажность угля в кг</th>
<th>Теплотворная способность м³ угля в кал/кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Г л а в н а я</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Береза</td>
<td>0,400</td>
<td>175</td>
<td>7 778</td>
</tr>
<tr>
<td>Ель</td>
<td>0,215</td>
<td>120</td>
<td>7 565</td>
</tr>
<tr>
<td>Сосна</td>
<td>0,270</td>
<td>137</td>
<td>7 519</td>
</tr>
<tr>
<td>Осина</td>
<td>0,376</td>
<td>140</td>
<td>7 259</td>
</tr>
</tbody>
</table>

Таблица 9

При купчом углежении вес 1 м³ угля и его теплотворная способность несколько выше, чем при печном.

Черный уголь как бессольное и однородное по своему составу топливо является весьма ценным для автомобильно-тракторных газогенераторных установок. Заготовки угля значительно проще, чем древесных чурок, и может производиться непосредственно на лесосеке; для выкижки могут быть использованы отходы лесосек — вершинки, сучья и т. д. Неудобство в обращении и обработка...
мелочи при перевозках угля снижают его эксплуатационные качества. Однако эти недостатки можно устранить, упаковывая угол в пакеты.

БРИКЕТИРОВАННОЕ ТОПЛИВО

Как уже указывалось, в качестве топлива для автомобильно-тракторных газогенераторных установок могут применяться различные отходы древесины — мелкие ветви, сучья, опилки, стружки, хвоя, шишки и древесноугольные брикеты. Однако их нельзя непосредственно использовать в газогенераторах, так как они неоднородны по размерам, имеют малый вес и низкую удельную теплотворную способность, быстро огарают и засоряют газогенераторы, их неудобно хранить и перевозить. Поэтому отходы такого рода необходимо предварительно брикетировать.

Древесные и древесноугольные отходы чаще всего брикетируют следующим образом: высушенные в сушилке до 5—10% абсолютной влажности, измельчают до порошкообразного состояния в специальных приборах (дробилках, валячках, шаровых мельницах), полученную массу перемешивают с древесным пеком (твердый остаток от разгонки смоль) и прессуют под большим давлением (от 300 до 800 кг/см²), придавая получившимся брикетам удобную форму.

Количество древесного пека, употребляемого при брикетировании в качестве связующего вещества, составляет 9—20% от веса отходов, причем брикеты, полученные при большем количестве пека в указанных пределах, отличаются большей прочностью.

При изготовлении брикетов из хвои и шишек древесный пек не употребляется, так как связующие вещества содержатся в самих отходах.

После прессования угольные брикеты необходимо прокаливать при температуре 250° Ц без доступа воздуха.

Древесные отходы возможно брикетировать и без добавления связующего вещества по способу А. А. Глотова. По этому способу отходы после измельчения и высушивания высушивают в ретортах и подогревают до температуры 300—400° Ц. После этого древесную массу прессуют на горячем прессе, нагретом до температуры 350° Ц. Брикеты, полученные таким способом, называются экзобрикетами.

Теплотворная способность древесноугольных брикетов близка к теплотворной способности угля. Например, у брикетированного березового угла она равна 7400—7600 кал/кг при удельном весе в 0,9—1,2, у брикетов из сосового угля — 6520 кал/кг при том же удельном весе.

Теплотворная способность экзобрикетов из древесных опилок равна 5179—6286 кал/кг при удельном весе 1,0 (по данным Уральского научно-исследовательского лесохимического института).

Для изготовления брикетов необходимо соответствующее оборудование.

Сравнительных данных, позволяющих судить о целесообразности брикетирования древесных отходов для использования их в качестве топлива для автомобильно-тракторных газогенераторных установок, у нас в СССР, нет. По удобству, обращения и высокой калорийности древесноугольные брикеты являются весьма ценным топливом.

ТОРФ

Кроме древесного топлива, Советский Союз располагает огромным количеством торфа, составляющим свыше 50% всего мирового запаса. Поэтому торф как топливо для автомобильно-тракторных газогенераторных установок должен занять видное место, особенно в тех районах, где он является основным топливом.

Торф отличается большим содержанием летучих веществ; его теплотворная способность — 3000—3100 кал/кг при воздушно-сухом состоянии, т. е. при влажности 25—35%.

В автомобильно-тракторных газогенераторных установках его можно использовать в виде кускового торфа, торфяного кокса и торфяных брикетов.

В табл. 11 приведены данные Украинского института топлива об органическом составе торфа, его теплотворной способности и объемном весе.

<table>
<thead>
<tr>
<th>Виды торфа</th>
<th>Относительная влажность в %</th>
<th>зола A</th>
<th>углерод C</th>
<th>водород H</th>
<th>сера S</th>
<th>азот N</th>
<th>кислород O</th>
<th>Радиальная теплотворная способность кал./кг</th>
<th>Вес 1 м³ в кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кусковой</td>
<td>30,0</td>
<td>[8,0]</td>
<td>36,3</td>
<td>3,6</td>
<td>0,2</td>
<td>1,6</td>
<td>20,3</td>
<td>3100</td>
<td>400</td>
</tr>
<tr>
<td>Торфобрикеты</td>
<td>15,0</td>
<td>10,0</td>
<td>43,7</td>
<td>4,3</td>
<td>0,2</td>
<td>2,0</td>
<td>24,8</td>
<td>3850</td>
<td>850</td>
</tr>
<tr>
<td>Торфяной кокс</td>
<td>5,0</td>
<td>10,0</td>
<td>78,5</td>
<td>1,6</td>
<td>0,2</td>
<td>1,4</td>
<td>3,3</td>
<td>7350</td>
<td>400</td>
</tr>
</tbody>
</table>

Содержание серы в торфе незначительно: в зависимости от места залегания оно колеблется от 0,12% (верховой торф) до 0,42% (низинный торф).

При газификации торфа выделяются ряд продуктов сухой перегонки: уксусная кислота, метиловый спирт, ацетон, аммиак, смолистые погоны. По количеству и качеству эти продукты (кроме аммиака) близко подходят к однородным продуктам сухой перегонки древесины.

Недостатком торфа, затрудняющим его применение в качестве топлива для газогенераторных установок, является значительная зольность.

Содержание золы в торфе колеблется в зависимости от места и района залегания. Средняя зольность верхового торфа 2—5%, низинного 7—12% и выше.

Кроме того, содержащаяся в торфе зола плавится легче, чем древесная. Средняя температура начала деформации золы тор-
фах + 1050° Ц, температура размягчения + 1125° Ц и жидкостного состояния + 1180° Ц.

Все это при газификации торфа может привести к значительному образованию шлака над колосниковой решеткой, что создает значительное сопротивление отсасыванию газа из газогенератора.

Плохая теплопроводность торфа ухудшает процесс газификации и требует увеличенного и форсированного подогрева торфа в газогенераторе.

Под действием различных факторов (тепловое воздействие, действие атмосферных осадков, механическое воздействие) торф быстро трескается и образует торфяную крошку размером до 25 мм. Нормальные куски торфа, заготовленного для газификации, должны иметь в диаметре 50—70 мм. Торфяная крошка должна оседать от этих кусков; в газогенератор ее засыпать нельзя, так как она резко ухудшает процесс газификации.

Применение торфяного кокса и торфобрикетов для газогенераторов весьма желательно, так как их теплотворная способность выше, чем у кускового торфа. Однако для получения высококалорийного торфяного кокса хорошего выжига необходимо специальные заводы, так как кокс кучного выжига не имеет необходимых качеств и дает много отходов.

Изготовление торфяных брикетов также требует заводского оборудования; размеры торфобрикетов, выпускаемых существующими заводами, не подходят для автотракторных газогенераторных установок.

Таким образом, торфяной кокс и торфобрикеты обходятся значительно дороже кускового торфа. Поэтому наиболее выгодным видом торфяного топлива в большинстве случаев будет кусковой торф. Заготовка кускового торфа крайне несложна и сводится к разделке торфяных кирпичей и к сбору подходящих кусков на местах хранения формированных кирпичей.

Торф может быть использован только в специально приспособленных авто-тракторных газогенераторах.

При проектировании торфяных газогенераторов следует учитывать некоторую общность торфов к древесине по ряду показателей (продукты сухой перегонки, состав, теплотворная способность и др.) и его специфические особенности (влажность, легкокипячивость, плодородие, теплопроводность). В настоящее время авто-тракторная про мышленность еще не выпускает газогенераторных установок для торфа.

КАМЕННЫЕ УГЛИ

Топливом для автомобильно-тракторных газогенераторных установок могут служить и каменные угли. По давности происхождения каменные угли разделяются на бурые, собственно-каменные угли и антрациты.

Бурые угли

Бурые угли являются растительным образованием, переходным от торфа к собственно-каменным углам.

Бурые угли обладают большей зольностью. В авто-тракторных газогенераторных установках бурые угли могут употребляться только в виде кокса или брикетов. Теплотворная способность бурого угля колеблется от 6000 до 7400 кал/кг. Содержание серы в углях достигает 2,5%, влаги 18% и золы 20% в среднем. В горючей массе бурого угля содержится углекислого 67—78%, кислорода 17—28% и водорода 5%. Состав и теплотворная способность бурого угля изменяются в зависимости от его месторождения.

Собственно-каменные угли

Каменные угли являются одними из лучших топлив и обладают большой теплотворной способностью. Существует много видов каменного угля, отличающихся как по составу, так и по свойствам.

По классификации, принятой для наиболее распространенных в СССР донецких углей, последние разделяются на следующие виды: 1) длиннопламенный, 2) газовый, 3) паровочный жирный, 4) битумный, 5) коксовый, 6) паровочный спекающийся и 7) тощий.

Содержание золы в донецких каменных углях колеблется от 1,3 до 32%, серы — от 0,8 до 6%, влаги — от 1,3 до 21%. Высшая теплотворная способность равна 6700—8500 кал/кг. Концентрация углерода доходит до 90,6%.

На воздухе каменный уголь постепенно окисляется. Окисление изменяет состав угля и оказывает влияние на его свойства. В результате окисления уголь становится рассыпчатым, теплотворная способность его понижается, и в некоторых случаях уголь может самовозгораться.

Антрацит

Наиболее давним по происхождению углем является антрацит. Он обладает максимальной концентрацией углерода, при перегонке не дает смолистых погонов, отличается большой твердостью и значительной плотностью. Кокс антрацита не спекается. Состав антрацитов почти одинаков, но физическое строение их бывает различно, что обычно видно по излуку.

В состав органической массы антрацита входят: C₀ = 95%, H₂ = 1,9%, O₂ = 2%, N₂ = 1,4% и S₀ = 1,7%.

Влагость его колеблется около 5%. Теплотворная способность органической массы равна 8100—8200 кал. Зольность антрацитов довольно высока и в отдельных сортах достигает 25%.

Температура плавления золы весьма различна, в некоторых сортах антрацита она снижается до +880° Ц.

Спекаемость каменных углей, образование шлака и наличие в них относительно большого количества серы затрудняет их непосредственное применение в газогенераторах автомобильно-тракторного типа.

Самый процесс газификации углей сопровождается высокими температурами в газогенераторе.

Указанные обстоятельства необходимо учитывать при проектировании газогенераторных установок для этого вида топлива.
Глава III

ГАЗИФИКАЦИЯ ТОПЛИВА

СПОСОБЫ ГАЗИФИКАЦИИ ТОПЛИВА

Генераторный газ представляет собой сместь водорода, окиси углерода, метана, тяжелых углеводородов, кислорода, азота и углекислоты. Водород, окись углерода, метан и тяжелые углеводороды являются горючими газами, азот и углекислота — негорючими (балластом). Кислород не является горючим газом, но он поддерживает горение. Кроме указанных газов, в генераторном газе имеются водяные пары.

Процесс обращения твердого топлива в газообразное при подводе воздуха, водяного пара, или их смеси называется газификацией топлива.

Способы газификации топлива разнообразны; поэтому получающиеся в результате газификации газы отличаются как своим составом, так и качествами.

Газ, получаемый в результате газификации топлива с подводом одного воздуха, носит название «воздушного» газа. Впервые он был получен английским Сименсом; поэтому воздушный газ называется также «газом Сименса».

Газ Сименса, полученный при газификации угля, состоит из CO, CO₂ и N₂.

Идеальный воздушный генераторный газ содержит 34,7% CO и 65,3% N₂ (посчет см. на стр. 41). Теплотворная способность воздушного газа составляет всего 1050 кал/м³.

Если к рассеканному углероду подводить водяной пар, то в результате возникающих химических реакций при газификации получается газ, представляющий собой смесь окиси углерода, углекислоты и водорода. Такой газ носит название «водяного» газа. Для его получения в генераторе должна поддерживаться высокая температура.

Практически для получения водяного газа в газогенератор подают воздух, а после того как температура в нем в результате сгорания углерода поднимается выше +1100 °C, через генератор пропускают пар, который, реагируя с рассеканным углеродом, образует водород и окись углерода.

Состав водяного газа из угля колеблется в широких пределах: 50—65% H₂, 29—42% CO, 2—6% CO₂, 0,1% CH₄, 0,1% O₂, 3,5% N₂, 2600 кал/м³.

Теплотворная способность этого газа составляет 2000—
Воздух в газогенератор подводится под колосниковую решетку. Действием разрежения, создаваемого рабочей движителем, воздух поднимается вверх. Горение топлива на колосниковой решетке происходит по экзотермической реакции — с выделением тепла. Зона, в которой происходит этот процесс, называется зоной горения. При этом кислород воздуха соединяется с углеродом топлива, образуя углекислоту по формуле:

\[C + O_2 = CO_2 \]

По высоте зона горения обычно колеблется в пределах 120—150 мм и имеет температуру 1100°—1300° Ц.

Зона подсушки и сухой перегонки.

Зона восстановления.

Зона надгорения.

Зона паров.

Воздух

Рис. 2. Схема газогенератора прямого процесса газификации топлива. Реакция происходит по формуле:

\[CO_2 + C = 2CO. \]

Исследования Ле-Шателье показали, что повышение температуры способствует протеканию этой реакции.

Пары воды, проходя слой раскаленного угля, реагируют с ним по формулам:

\[H_2O + C = CO + H_2 \]
\[2H_2O + C = CO_2 + 2H_2. \]

Эти реакции эндотермические и протекают одновременно, причем первая преобладает при высоких температурах (выше 900° Ц).

Зона, где происходит образование CO (восстановление углекислоты) и образование водорода, занимает по высоте 200—300 мм и называется восстановительной.

Так как образование генераторного газа происходит в зонах горения и восстановления, они вместе называются активной зоной.

Слой топлива, расположенный над зоной восстановления, нагревается проходящими газами до температуры 900—300° Ц и подвергается термическому разложению без доступа кислорода.

* После исследования Всесоюзного теплотехнического института им. Ф. Э. Дзержинского дается возможность предполагать образование окиси углерода параллельно с образованием углекислоты.

Газогенераторы горизонтального процесса газификации

Стремление сделать газогенераторную установку более компактной привело к необходимости уменьшить размеры активной зоны путем иного расположения зон горения и восстановления, т. е. к созданию газогенераторов горизонтального процесса газификации.

Газогенераторы горизонтального процесса газификации приводятся на рис. 3. Воздух подводится под колосниковую решетку 1 и движется горизонтально в направлении, показанном стрелками, по облицованному огнеупорным материалом топливнику 2. Газ отсасывается через патрубок 3. Лучи 4 служат для загрузки топлива. Зольник 5 очищается через люк 6.

Над колосниковой решеткой расположена зона горения, где образуется углекислота; вправо по хodu газа находится зона восста-
новления: зоны подсушки и сухой перегонки располагаются в верхней части генератора. В генераторе горизонтального процесса так же, как и в генераторах прямого процесса, можно газифицировать только бессмолярные топлива, так как из этих газогенераторов продукты сухой перегонки могут отсасываться вместе с газом.

Газогенератор обратного процесса газификации

Схема газогенератора обратного процесса показана на рис. 4. Воздух в газогенератор подводится через отверстия 1, расположенные на периферии топливника 2, имеющего овальнообразный обзорок. Газ отбирается в нижней части генератора через патрубок 3. Генератор верху имеет загрузочный 4, а внизу зольниковый 5 люки с герметически закрывающимися крышками.

В месте подвода воздуха, около отверстий 1 располагается зона горения, где кислород воздуха вступает в реакцию с углеродом, образуя углекислоту.

Проходя через газы нижележащий уголь нагревается до 900—1000° Ц, и углекислota в нем восстанавливается в окись углерода по реакции CO₂ + C = 2CO.

В этой зоне, носящей название восстановительной, протекают также реакции между водяным паром и углеродом топлива с образованием водорода, окиси углерода и углекислоты:

$$\text{H}_2\text{O} + \text{C} = \text{CO} + \text{H}_2$$

В нижних слоях этой зоны восстановительной зоны происходит частичное об- разование метана.

Чем ниже температура восстановительной зоны, тем больше может образоваться метана. Поэтому большей процент метана в генераторном газе указывает на низкую температуру в зоне восстановления, что неизбежно приводит к плохому восстановлению углекислоты и, следовательно, к получению малокалорийного газа. Слои топлива, расположенные выше зоны горения, также нагреваются. В слоях с температурой 900—300° Ц происходит сухая перегонка, сопровождающаяся выделением газообразных летучих (метан, этилен, смея) и жидких погонов. Продукты сухой перегонки, проходя активную зону, частично ста-}

Рис. 4. Схема газогенератора обратного процесса газификации

калорийного газа. Слои топлива, расположенные выше зоны горения, также нагреваются. В слоях с температурой 900—300° Ц происходит сухая перегонка, сопровождающаяся выделением газообразных летучих (метан, этилен, смоль) и жидких погонов. Продукты сухой перегонки, проходя активную зону, частично ста-
Газификация топлива

Кислоты. Так как 1 кг углерода при своем сгорании выделяет 8100 кал, а \(\text{O}_2 \) и \(\text{CO}_2 \) не обладают теплоотводной способностью, то реакция будет иметь следующий вид:

\[
\text{C} + \text{O}_2 = \text{CO}_2 + 9700 \text{ кал.}
\]

Как известно из закона Гесса, теплота реакции не зависит от промежуточных реакций, а только от начального и конечного состояний системы. Комбинация реакции, в которых участвуют необходимые и для которых известны тепловые эффекты, может легко подсчитать тепловой эффект реакции, для которой неизвестны промежуточные стадии.

Различают тепловой эффект при постоянном давлении и при постоянном объеме. Тепловой эффект реакции меняется в зависимости от состояния реагирующих веществ, среды, в которой происходит реакция, и от температуры. В дальнейшем изложения тепло-трубного столба и температуры 0° Ц.

Необходимые для вычисления теплоты реакции величины тепло-трубных способностей различных компонентов генераторного газа при 0° Ц и 760 мм рт. ст. приведены в табл. 12, составленной по данным проф. Шопе.

<table>
<thead>
<tr>
<th>Наименование газа</th>
<th>Вычислена тепло-трубная способность 1 м³ газа в кал</th>
<th>Вычислена тепло-трубная способность 1 м³ газа в кал</th>
<th>Вычислена тепло-трубная способность 1 м³ газа в кал</th>
</tr>
</thead>
<tbody>
<tr>
<td>Окись углерода (CO)</td>
<td>3050</td>
<td>3050</td>
<td>68320</td>
</tr>
<tr>
<td>Водород (H₂)</td>
<td>3070</td>
<td>2570</td>
<td>57570</td>
</tr>
<tr>
<td>Метан (CH₄)</td>
<td>9470</td>
<td>8510</td>
<td>190620</td>
</tr>
<tr>
<td>Этилен (C₂H₄)</td>
<td>14870</td>
<td>13910</td>
<td>311584</td>
</tr>
</tbody>
</table>

Таблица 12

Химическое равновесие реакции

Всякая химическая реакция между некоторыми веществами в силу динамического равновесия сопровождается обратными реакциями с выделением первона-чальных реагентов.

По закону действующих масс, скорости реакций пропорциональны концентрации реагирующих веществ.

С течением времени скорость прямой реакции уменьшается (так как уменьшаются количества исходных веществ), а скорость обратной реакции увеличивается. Через некоторое время наступает такое состояние, когда скорости прямой и обратной реакций уравниваются, так как все количество образовавшихся в единицу времени продуктов прямой реакции будет полностью вступать в обратную реакцию с образованием исходных веществ, или, как говорят, наступает состояние химического равновесия. Соотношение между реагентами и продуктами реакции имеет строго определенное значение при данной температуре и носит название константы равновесия. Математически константа равновесия выражается как отношение объемных концентраций продуктов реакции к объемным концентрациям реагентов \(K_p \) или отношение парциальных давлений продуктов реакции, выраженных в мм ртутного столба, к парциальным давлениям реагентов \(K_p \).

При определении константы равновесия для реакции, в которой участвует более чем одна молекула данного вещества, концентрационное равновесие этого вещества ведется в степени, показатель которой равен числу молекул данного вещества, входящего в уравнение реакции.

Концентрация или парциальное давление твердых тел в расчетах не учитывается.

Пример. Для реакции \(\text{C} + \text{CO}_2 \rightarrow 2\text{CO} \) константы равновесия будут:

\[
K_p = \frac{p_{\text{CO}}^2}{p_{\text{CO}} p_{\text{CO}_2}}; \quad K_v = \frac{(\text{CO})^2}{\text{CO}_2}.
\]

Если предположить, что \(\text{CO}_2 \) и C вступают в реакцию при атмосферном давлении 760 мм рт. ст. и, после того как достигнуто равновесие, в газе содержится 74% CO и 26% CO₂, константа равновесия по парциальному давлению будет:

\[
K_p = \frac{P_{\text{CO}}^2}{P_{\text{CO}} P_{\text{CO}_2}} = \frac{(74 \times 760)^2}{26 \times 760} \approx 1600,
\]

а по концентрации:

\[
K_v = \frac{(\text{CO})^2}{\text{CO}_2} = \frac{(74)^2}{26} \approx 210.
\]

Если в результате реакции число газовых молекул не изменяется, численное значение константы не зависит от того, применяются ли для вычисления единицы давления или единицы объемных концентраций, и тогда \(K_p = K_v \).

Пример. Реакция \(\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2 \).

После окончания реакции достигается равновесие при следующем составе газа по объему (при давлении 760 мм ртутного столба):

\[
\begin{align*}
\text{CO}_2 & = 47,5\% \; \text{об.} \\
\text{CO} & = 22,82\% \; \text{об.} \\
\text{H}_2\text{O} & = 22,82\% \; \text{об.} \\
\text{H}_2 & = 6,85\% \; \text{об.}
\end{align*}
\]

1 См. стр. 35.
Константы равновесия будут:

\[K_c = \frac{(CO_2) \cdot (H_2)}{(CO) \cdot (H_2O)} = \frac{(47,5) \times (6,85)}{(22,825) \times (22,825)} \approx 0,625; \]

\[K_p = \frac{P_{CO} \cdot P_{H_2}}{P_{CO_2} \cdot P_{H_2O}} = \frac{47,5 \times 6,85 \times 100}{22,825 \times 22,825 \times 100} = 0,625, \]

откуда:

\[K_c = K_p = 0,625. \]

Скорость реакции

Все химические реакции для своего завершения требуют известного промежутка времени, т. е. протекают с определенной скоростью. Одни реакции протекают очень быстро, другие медленно. Скорость химической реакции определяется как производная концентрации по времени.

Математически скорость реакции может быть выражена следующим образом:

\[\dot{v} = - \frac{dC}{dt}, \]

где \(dC \) — изменение концентрации реагентов.

Скорость реакции зависит от 1) температуры, 2) концентрации,
3) давления, 4) поверхности реагирующих веществ и ее характера,
5) катализаторов, 6) явления диффузии.

Опытным путем установлено, что скорость реакции пропорциональна концентрациям участвующих в реакции веществ, возведенным в степень, показателем которой является коэффициент этих веществ в уравнении реакции. Например реакция:

\[aA + bB \rightleftharpoons mM + nN \]

протекает вправо и влево, т. е. является обратной. Скорость ее в правом направлении будет:

\[\dot{v}_1 = k_1 (A)^a \cdot (B)^b, \]

где:

\(A \) и \(B \) — объемные концентрации участвующих в реакции веществ;
\(a \) и \(b \) — соответствующие молекулярные количества этих веществ;
\(k_1 \) — коэффициент скорости реакции, равный величине изменения концентрации веществ в единицу времени. Для твердых тел коэффициент скорости реакции \(k \) зависит от их размеров и структуры.

Скорость реакции в левом направлении будет:

\[\dot{v}_2 = k_2 (M)^{m} \cdot (N)^n. \]

Истинная скорость конечной реакции в правом направлении будет:

\[\dot{v}_a = k_1 (A)^a \cdot (B)^b - k_2 (M)^{m} \cdot (N)^n. \]

В случае установившегося химического равновесия

\[k_1 (A)^a \cdot (B)^b = k_2 (M)^{m} \cdot (N)^n, \]

или

\[\frac{k_1}{k_2} = \frac{(M)^{m} \cdot (N)^n}{(A)^a \cdot (B)^b} = K_c. \]

Следовательно константу равновесия численно можно считать равно отношению коэффициента скорости реакции в одном направлении к коэффициенту скорости реакции в другом направлении.

В последующем изложении для каждой реакции указывается тепловой эффект, коэффициента химического равновесия и скорость ее протекания.

Реакция: \(C + O_2 = CO_2 + 97 200 \text{ кал} \)

Тепловой эффект реакции

В современной литературе тепловой эффект одной и той же реакции характеризуется различными величинами. Это происходит потому, что для расчетов пользуются опытными данными различных авторов.

Тепло, выделяющееся при сгорании углерода, по данным Менделяева и академика М. А. Павлова, равно 8137 кал/кг, а по данным исследований американского ученого Гуднефера оно равно 8075 кал/кг. Для расчета теплового баланса рекомендуется брать среднее значение из двух приведенных данных, т. е. 8100 кал/кг, так как эта цифра совпадает с большинством данных о теплопроводности, выделяемой при сгорании углерода (Шустер и др.).

Указанная величина теплоты сгорания углерода принимается для дальнейших расчетов. Теплопроводная способность 1 кг углерода 8100 кал, следовательно, при горении кг-мол углерода выделяется 12 \times 8100 кал, а так как теплопроводности \(CO_2 \) равна нулю, реакция с учетом теплового эффекта примет вид:

\[C + O_2 = CO_2 + 97 200 \text{ кал}. \]

Химическое равновесие реакции

Константа равновесия этой реакции определяется по выражению:

\[K_p = K_c = \frac{CO_2}{O_2}. \]

При температуре \(898^\circ \text{C} \) \(K_c = 3,5 \times 10^{17} \), т. е. при этой температуре углекислота в смеси превышает содержание кислорода в \(3,5 \times 10^{17} \) раз.

з
Скорость реакции

Скорость реакции в общем виде выражается уравнением:

$$\frac{dC}{dt} = k_1 (C_0 - C),$$

где:

C_0 — начальная концентрация кислорода,
C — кислород, израсходованный в течение времени t.

По данным Рида и Уилера, при повышении температуры с $+350^\circ C$ до $500^\circ C$ скорость реакции возрастает в 400 раз (скорость реакции при температуре $+350^\circ C$ принята за единицу), а при температуре выше $+982^\circ C$ она протекает почти мгновенно и поэтому является необратимой при температурах, имеющихся в слое горящего топлива. Выделяющееся при этой реакции тепло расходуется на эндотермические реакции образования окиси углерода и водорода.

Реакция: $C + CO_2 = 2CO - 39440$ кал.

Тепловой эффект реакции

Тепловые эффект реакции подсчитывается из условия равенства тепловых эффектов правой и левой частей уравнения. Теплотворная способность двух кг-мол окиси углерода (136 640 кал) больше теплотворной способности 1 кг-мол углерода (97 200 кал) на 39 440 кал, следовательно, реакция идет с поглощением этого количества тепла.

Химическое равновесие реакции

Константа равновесия этой реакции определяется по формуле:

$$K_p = \frac{P_{CO}^2}{P_{CO_2}}.$$

Измение константы в интервале от 815 до 1204$^\circ C$ представлено на рис. 5 (данные Рида и Уилера). На рис. 6 дана кривая процентного содержания CO и CO$_2$ в равновесных смесях при температурах от $+400^\circ C$ до $+1000^\circ C$. Как видно, из этой диаграммы, при температуре 500$^\circ C$ CO$_2$ в смеси содержится в большом количестве, но это содержание постепенно падает, и при температуре 950$^\circ C$ в смеси остается только 1,3% CO$_2$, после чего дальнейшего изменения в системе не происходит.

Скорость реакции

При горении топлива развиваются высокие температуры, при которых CO$_2$ реагирует с углеродом. Установлено, что в этом случае протекают две реакции:

$CO_2 + C = 2CO$ — быстрая,
$2CO = C + CO_2$ — медленная.

Опыты Рида и Уилера показали, что при 850$^\circ C$ первая реакция протекает в 166 раз быстрее, чем вторая. Скорость восстановления CO$_2$ углеродом в CO имеет большое практическое значение.

Рис. 5. Константа равновесия реакции $C + CO_2 = 2CO$

Рис. 6. Процентное содержание CO и CO$_2$ в равновесных смесях при различных температурах

Хаскинс, Адамс и Клемент провели ряд опытов над восстановлением CO$_2$ в коксе, древесном угле и антраците. Кривые зависимости процесса восстановления от времени контакта и температуры при газификации кокса приведены на рис. 7.

Если через k_1 и k_0 обозначить коэффициенты обеих скоростей реакций, скорость реакции восстановления выражается равенством:

$$\frac{d(CO)}{dt} = k_1 (CO_2) - k_2 (CO)_2^2,$$

где CO и CO$_2$ — концентрация окиси углерода и углекислоты в кг-мол.

Для температуры выше $+900^\circ C$, скорость обратной реакции можно принять равной нулю ($k_2 = 0$), тогда:

$$\frac{d(CO)}{dt} = k_1 (CO_2).$$
Значения коэффициента k_1 скорости первой реакции для мелкозернистого топлива (диаметр частиц 5 мм) даны в табл. 13.

<table>
<thead>
<tr>
<th>Температура в °C</th>
<th>k_1 для топлива с размерами частиц 5 мм</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>древесный уголь</td>
</tr>
<tr>
<td>800</td>
<td>0,021</td>
</tr>
<tr>
<td>900</td>
<td>0,159</td>
</tr>
<tr>
<td>1000</td>
<td>0,629</td>
</tr>
<tr>
<td>1100</td>
<td>1,530</td>
</tr>
<tr>
<td>1200</td>
<td>—</td>
</tr>
</tbody>
</table>

Разница в скорости восстановления в зависимости от свойств топлива показана на рис. 8.

Из приведенных в графике кривых видно, что наиболее интенсивно процесс восстановления протекает при прохождении углексолоты через древесный уголь, а наиболее медленно при прохождении через антрацит.

Для выяснения факторов, влияющих на активную способность топлива в восстановительном процессе, много исследований провед Бер.

Основные выводы, вытекающие из его работ, таковы:

1) наилучшее влияние на активность оказывает структура молекулы углерода в данном топливе;

2) чем ближе эта структура к древесному углю, тем активнее топливо, и наоборот, чем ближе она к графиту, тем оно менее активно.

Экспериментальные наблюдения показали, что мелкое топливо (мелкий уголь и мелкая щепа) более активно, чем крупное; по времени восстановления и качеству газа мелкое топливо дает лучшие показатели. Это положение практически подтверждено данными, полученными в Лесотехнической академии им. С. М. Кирова при испытаниях газогенератора «Автодор-1» на мелкой щепе и в научном авто-тракторном институте (НАТИ) при испытаниях угольных установок Г-21 и Г-23 на мелком угле.

Теоретически это положение легко объясняется, так как установлено, что реакции горения протекают на поверхности газифицируемого топлива, и поэтому величина последней в известной мере замедляет скорость реакции.

Однако сильно измельченное топливо для газификации пригодно, так как оно вызывает быстрое засорение газогенератора и препятствует подачи газа в двигатель.

Для определения времени, необходимого для восстановления углекислоты, может служить следующая формула скорости реакции восстановления:

$$\frac{dx}{dt} = k_1 \left(m - m + \frac{1}{2} x \right),$$

где:

- x — содержание CO в газе по истечении времени t;
- m — содержание CO_2 в газе в начале реакции;
- k_1 — коэффициент скорости реакции (см. табл. 13);
- t — время длительности реакции в секундах.

Или после интегрирования:

$$k_1 t = \frac{2.3}{1 + m} \cdot \lg \left(\frac{1}{m - \frac{1}{2} x} \right) + C.$$

Значение свободного члена C для каждого случая вычисляется особо. Для этого в формулу подставляют численные значения величин, соответствующие началу реакции, т. е.:

$$t = 0, \quad x = 0$$

и заданные m и k_1.

Если с топливом реагирует только углекислота, то значение $m = 1$, и тогда, приняв для начала реакции $x = 0, \quad t = 0, \quad m = 1$, определяют C:

$$0 = 2.3 \cdot \lg 1 + C,$$

но так как $\lg 1 = 0$, то и $C = 0$.

Формула для этого случая принимает вид:

$$k_1 t = 2.3 \cdot \lg (\frac{1}{1 - x}),$$

и время, необходимое для восстановления углекислоты, будет равно:

$$t = \frac{2.3}{k_1} \cdot \lg \left(\frac{1}{1 - x} \right).$$

Из полученного выражения видно, что стремление полностью восстановить углекислоту, т. е. получить $x = 1$, приводит к необходимости увеличения температуры и времени восстановления. Это положение иллюстрируется кривыми (рис. 9), построенными по данным Клемента, Адамс и Хаскинса. Названные исследователи полу-

1 Вывод формулы для V. S. Burtun of mines Bull., 1911 г., № 7, стр. 22.
откуда \(x < 0,347 \), или максимально теоретически возможное количество окиси углерода, получающееся при газификации древесного угля с подачей воздуха (газ Сименса), будет 34,7%.

Содержание азота в таком газе будет соответственно 65,3%.

Все вышеприведенное указывает, что для наиболее полного восстановления углекислоты необходимы следующие условия:
1) высокая температура (около 1000°—1100°);
2) достаточное время контакта углекислоты с углеродом восстановительной зоны;
3) возможно большая поверхность соприкосновения газа с топливом, для чего в восстановительной зоне должны доходить мелкий уголь.

В практической работе иногда встречаются препятствия для выполнения перечисленных условий. Так, для восстановления углекислоты в слое древесного угля при температуре +1000° Ц требуется время контакта около 2 секунд, и в случае скорости движения газов в 0,5 м/сек, необходимая высота активной зоны достигает 1 м, что, конечно, совершенно неприемлемо для компактных транспортных газогенераторов. В то же время практически удается получать генераторный газ хорошего качества в газогенераторах с небольшой восстановительной зоной при скорости движения газов по ней в несколько м/сек. Это обстоятельство было проверено в Институте азота и дало основание предполагать непосредственное образование окиси углерода при большой скорости подачи воздуха.

Как показали опыты, непосредственное образование СО происходит в зоне, но на высоте не превышающей 10—20 мм (для мелкого угля). На рис. 10 представлены кривые образования окиси углерода в зависимости от скорости подачи воздуха.

Уже при скорости подачи воздуха в 0,3 м/сек. активированный древесный уголь дает максимальный процент окиси углерода.

Реакция \(\text{C} + \text{H}_2\text{O} = \text{CO} + \text{H}_2 \sim 28690 \text{ ккал} \)

Тепловой эффект реакции

Тепловой эффект реакции подсчитывается из условия, что теплопроводная способность 1 кг-моль углерода (97 200 кал) меньше суммы

1 Скорость подачи воздуха рассчитана из условия, что все сечение топливника остается свободным. Фактически в генераторах для получения этих данных скорость газов в топливнике должна быть приблизительно в два раза больше, так как обычно 50% сечения топливника заполнено топливом.
teplofornykh sposobnostey molia okisini ugleroda (68 320 kal) i molia vodoroda (57 570 kal) na velicinnu 28 690 kal, i poetomu uakazannaya reaktsiya ydets s poglosheniem 28 690 kal.

Ximicheskie ravnovesie reaktsii

Konstanta etoj reaktsii oprimernayetsya iz uравнения:

\[K_p = \frac{P_{CO} \cdot P_{H_2}}{P_{H_2O}} , \]

gde \(P_{CO} , P_{H_2} \) i \(P_{H_2O} \) — parcial'nye davleniya, vyrazhennye v dolyah atmosfery.

Zavisimost konstanty ravnovesia ot temperaturey predstavlena na riss. 11.

Skostry reaktsii

Pri temperatureh ниже +900°C eto reaktsiya protokaet medlenno, no pri bol'he vyshikh temperatureh skorost' ee uvelichivayetsya.

Reaktsiya C + 2H_2O = CO_2 + 2H_2 — 17 940 kal

Teplovyi effekt reaktsii

Teplovyi effekt reaktsii pol'chtaetsya iz usloviy, chto teplofornaya sposobnost' 1 kg-mol ugleroda menye teplofornoy sposobnosti dvuy molov vodoroda na 17 940 kal, i poetomu reaktsiya protokaet s poglosheniem etogo kol'eccha tepla.

Riss. 11. Konstanty ravnovesia reaktsii H_2O+C=CO+H_2 i H_2O+ +1/2C=1/2CO_2+H_2

Po sustoyashchei teoriy eta reaktsiya raschitayetsya kak odnomolekulyarnaya, khozy v ney uachayut' dve chasti vody, i poetomu konstanta ravnovesia ee oprimerna iz vyrazheniya:

\[K_p = \frac{P_{CO} \cdot P_{H_2}}{P_{H_2O}} , \]

gde \(P_{CO} , P_{H_2} \) i \(P_{H_2O} \) — parcial'nye davleniya.

Znacheniya konstanty ravnovesia pri razlichnykh temperatureh predstavleny na riss. 11.

Skorost' reaktsii

Pri temperatureh 400—900°C eto reaktsiya protokaet bystrere реакции C + H_2O = CO + H_2, no pri bol'he vyshikh temperatureh skorost' obhiv reaktsiy predomerny razny.

Reaktsiya CO + H_2O = CO_2 + H_2 + 10 750 kal

Teplovyi effekt reaktsii

Teplovyi effekt etoj reaktsii pri ee protokanie slева na pravo imeet polozhitel'noe znacheniye i sproizведение otlichnoe.

Teplofornaya sposobnost' 1 kg-mol CO bol'she teplofornoy sposobnosti 1 kg-mol vodoroda na 68 320—57 570 = 10 750 kal, poetomu pri obrazovanii vodoroda vydeleetsya 10 750 kal, a pri obrazovanii CO pogloshtaietsya takoe zhe kol'cechho tepla.

Ximicheskie ravnovesie reaktsii

Konstanta ravnovesia reaktsii oprimerna iz uравнения:

\[K_p = K_0 = \frac{(CO_2) \cdot (H_2)}{(CO) \cdot (H_2O)} . \]

Izmenenie etoj konstanty v zavisimosti ot temperaturey predstavleno v vide krivy na riss. 12.

Iz grafika videnno, chto s uvelicheniem temperaturey sostoyanie CO v smese vozрастayet.

Skorost' reaktsii

Pri temperatureh vyshie 1500°C eto reaktsiya protokaet pochti mnogovo, a pri temperatureh, blizkix k regime gaziifikacii v generato- rakh,—medlenno. Harakternoy osobennostyu etoj reaktsii yavljaetsya krai ne medlennoe izmenenie ustanoyivshego ravnovesia mezhdu otdelnymi reagentami v temperaturem interval'e ot+900°C do+1500°C. Sleduet zatemnit', chto v prissutstvi oksihol' ukazala eto reaktsiya protokaet bystrere.

Vse tri vysherasmotrennye reaktsy obrazovanii vodoroda podrobno izuchali razdym avtotov.

Klemit i Adam prishli k zaklonieniu, chto v gaziogeneratoriah proishodit' pervye dvye reaktsii obrazovanii vodoroda, khozy glavnei neya yavljaetsya reaktsiya C + H_2O = CO + H_2, kotorya tol'ko do nekotoroy stepeni soorezyayetsja reaktsiyi C + 2H_2O = CO_2 + + 2H_2. Na osnovanii poluchennix dannyx ini postroen grafik (riss. 13), iz kotorogo videnno, chto velichina reaktsii mezhdu parom i
углеродом зависит от времени контакта, температуры и структуры самого топлива (древесный уголь более активен, чем кокс).

В результате более поздних исследований (Хаслах, Хичеко и Руджар), проведенных для выяснения существа реакции образования водорода, был построен график (рис. 14) зависимости получения CO, CO₂ и H₂ от процента неразложившихся водяных паров, проходящих через раскаленный углерод при температуре от +900° до +1100° Ц.

Характер кривых не зависит от вида топлива, и при температуре рах около +900° Ц и выше CO и CO₂ являются первоначально образующимися продуктами взаимодействия пара и углерода.

Пользуясь приведенным графиком, можно подсчитать количество водорода, образующегося по реакциям: C + H₂O = CO + H₂ и C + 2H₂O = CO₂ + 2H₂ в случае заданного процента разложения водяного пара.

Пример. Количество неразложившихся водяных паров равно 30%. Из графика видно, что из 1 кг-моль введенных водяных паров образуется 0,7 кг-моль водорода (70%), причем 0,5 кг-моль водорода получается по реакции C + H₂O = CO + H₂ (так как количество образовавшейся CO равно 0,5 кг-моль) и 0,2 кг-моль водорода — в результате реакции 1/2 C + H₂O = 1/2 CO₂ + H₂.

По этой же реакции количество образовавшейся CO₂ равно 0,1 кг-моль.

На рис. 15 приведена кривая, выражающая зависимость между CO и CO₂ и частью неразложившихся водяных паров в интервале температуры от +900° Ц до +1100° Ц.

По этой кривой видно, что отношение между CO и CO₂ остается постоянным до тех пор, пока неразложившаяся вода составляет 60%, после чего отношение начинает быстро увеличиваться. Это положение указывает на то, что неразложившаяся вода является решающим фактором при определении соотношения между CO и CO₂.

Рассмотренные факторы, влияющие на образование водорода, позволят сделать следующие выводы:

1) количество образующегося водорода увеличивается с температу

Рис. 13. Зависимость процента разложения водяного пара от времени контакта, температуры и вида топлива

Рис. 14. Зависимость между объемом CO, CO₂, H₂ и процентом неразложившихся водяных паров

Рис. 15. Зависимость между отношением CO:CO₂ и количеством неразложившейся влаги

Рис. 16. Равновесие метана и водорода в зависимости от температуры

турой и временем контакта, почему следует иметь достаточно большую высоту и температуру активной зоны;

2) для полного разложения поступающего водяного пара необходимо температура +1100 — +1300° Ц и время контакта с углеродом 3—5 секунд.

Реакции образования метана

В генераторном газе одним из составляющих его компонентов является метан — CH₄. Метан может быть получен как при сухой перегонке дерева, так и при распаде тяжелых углеводородов, а также и при взаимодействии между продуктами газификации.

Образование метана за счет углерода топлива может идти по экзотермической реакции:

\[C + 2H₂ = CH₄ + 21720 \text{ ккал}. \]

Тепловой эффект реакции определяется из условия, что теплотворная способность 1 кг-моль углерода и двух молей водорода на
21 720 кал больше теплотворной способности метана, поэтому реакция протекает с выделением этого количества тепла.

Согласно принциппу Ж.-Шателье, понижение температуры и повышение давления при газификации должны содействовать образованию метана. Действительно, наличие в генераторном газе большого количества метана обычно связано с низкими температурами в генераторе. Исследования Майера и Альярда дали возможность построить кривую равновесия между Н₂ и СН₄ в зависимости от температуры (рис. 16, стр. 45).

Данные равновесия сведены в табл. 14.

<table>
<thead>
<tr>
<th>Температура в °C</th>
<th>Объемный состав газов в %</th>
<th>Температура в °C</th>
<th>Объемный состав газов в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH₄</td>
<td>Н₂</td>
<td>CH₄</td>
</tr>
<tr>
<td>250</td>
<td>98,79</td>
<td>1,21</td>
<td>650</td>
</tr>
<tr>
<td>300</td>
<td>96,90</td>
<td>3,10</td>
<td>700</td>
</tr>
<tr>
<td>350</td>
<td>93,12</td>
<td>6,88</td>
<td>750</td>
</tr>
<tr>
<td>400</td>
<td>86,16</td>
<td>13,84</td>
<td>800</td>
</tr>
<tr>
<td>450</td>
<td>76,80</td>
<td>23,20</td>
<td>850</td>
</tr>
<tr>
<td>500</td>
<td>62,53</td>
<td>37,47</td>
<td>1000</td>
</tr>
<tr>
<td>550</td>
<td>46,59</td>
<td>53,41</td>
<td>1100</td>
</tr>
<tr>
<td>600</td>
<td>31,78</td>
<td>68,22</td>
<td>1150</td>
</tr>
</tbody>
</table>

Исследования Классена указывают на высокий выход метана при сухой перегонке дерева, однако объяснить только этим присутствие метана в генераторном газе нельзя, — хотя процесс разложение метана при высоких температурах в активной зоне протекает медленно, но, проходя через зону горения, метан в большой своей части сгорает, образуя воду и углекислоту. Реакция горения метана до сих пор подробно не изучена; но Бопе она выражается следующими уравнениями:

\[
\text{CH}_4 + \text{O}_2 = \text{CH}_2\text{O} + \text{H}_2\text{O}
\]

\[
< \text{CH}_2\text{O} + \text{O}_2 = \text{CO}_2 + \text{H}_2\text{O}
\]

\[
2\text{CH}_2\text{O} + \text{O}_2 = 2\text{CO} + 2\text{H}_2\text{O}
\]

\[
\text{CO} + \text{H}_2\text{O} = \text{HCOOH}
\]

\[
\text{HCOOH} = \text{CO}_2 + \text{H}_2
\]

\[
\text{H}_3\text{O} = 2\text{H}_2\text{O}
\]

В нижних частях восстановительной зоны растет концентрация окиси углерода и водорода и, кроме того, находится некоторое количество уже разложившейся углекислоты. Между этими компонентами генераторного газа могут происходить реакции:

CO + 3H₂ = CH₄ + H₂O + 50 410 кал,
2CO + 2H₂ = CH₄ + CO₂ + 61 160 кал,
CO₂ + 4H₂ = CH₄ + 2H₂O + 39 660 кал,

по которым уменьшается содержание CO, CO₂ и H₂ за счет образования метана.

Метан образуется по экзотермическим реакциям, которые происходят в слоях топлива с низкими температурами порядка 400°—600° Ц.

Следует заметить, что эти реакции протекают быстрее в присутствии катализаторов, которыми могут быть металлические стенки газогенератора и минеральные примеси.

Находящиеся в генераторном газе тяжелые углеводороды Cₐ Hₘ исчисляются обычно десятными долями процента, поэтому образование их не рассматривается, а в всех расчетах они для простоты приравниваются к этилену С₂Н₄. При образовании 1 к-моль тяжелых углеводородов поглощается ≈ 2000 кал тепла.

Таким образом, генераторный газ получается в результате целого ряда реакций, причем образование основных компонентов генераторного газа CO и H₂ происходит при высокой температуре в активной зоне. Для сохранения тепла в газогенераторе изолируют топливник, уменьшая потери на лучеиспускание, подогревают поступающий в генератор воздух, а также топливо, используя для этого темло генератора газ.

Для увеличения высоты восстановительной зоны в некоторых газогенераторах асывают уголь вокруг топливника. Этот уголь нагревается проходящими газами, образует дополнительную восстановительную зону и способствует реакции восстановления углекислоты, а частично образованию метана. Кроме того, слой угля в дополнительной восстановительной зоне играет роль первого грубого очистителя газа.

При проектировании газогенераторов следует иметь в виду, что пребывание газа в зоне низких температур около 400—700° Ц и особенно в присутствии железа недопустимо, так как это создает условия для протекания реакции 2CO + CO₂ + C с выделением углерода, который забивает газопроводы; одновременно в газе уменьшается количество окиси углерода. Во избежание этого газ по выходе из восстановительной зоны необходимо возможно быстрее охладить до температуры ниже + 400° Ц. Такое быстрое охлаждение газа называется «закалкой».

В современных древесных газогенераторах закалка осуществляется интенсивным отводом тепла от газов для подогрева топлива и воздуха, а в некоторых угольных газогенераторах пропусканием газа через трубу, охлаждаемые водой.
Глава IV

ОБЩИЕ СХЕМЫ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК, НАЗНАЧЕНИЕ И КЛАССИФIKАЦИЯ ИХ ЭЛЕМЕНТОВ

ЭЛЕМЕНТЫ ГАЗОГЕНЕРАТОРНОЙ УСТАНОВКИ И ИХ НАЗНАЧЕНИЕ

Современная газогенераторная установка должна состоять из следующих элементов: газогенератора, газоохладителя, газоочистителя, смесителя газа с воздухом, вентилятора для розжига газогенератора и системы трубопроводов.

Газогенератор

Газогенератором называется устройство, в котором происходит процесс газификации твердого топлива, дающий в результате горячий газ.

Газогенератор (рис. 17) представляет собой шахтную печь с рядом вспомогательных устройств. Основными частями газогенератора являются бункер, топливник, газосборная камера и зольник.

Бункер 1 вмещает определенное количество топлива, которое насыпается через загрузочный люк; этот люк обычно располагается в верхней части газогенератора. Люк плотно закрывается откидной крышкой 2 с асбестовым уплотнением. Такая герметичность нужна для того, чтобы в газогенератор не попадал дополнительный воздух, который может нарушить и ухудшить процесс газификации топлива.

В топливнике 8 или камере горения происходит горение газифицируемого топлива и получается горячий газ. Так как горение топлива сопровождается высокой температурой, топливник изготовлен из жароупорных материалов.

Рис. 17. Схема газогенератора

1 Смеситель газа с воздухом должен быть приключен к элементам газового двигателя. В связи с тем, что в этой книге нет раздела о газовых двигателях, смеситель рассматривается как часть газогенераторной установки.

лова. Верхней частью топливник соединяется с бункером.

Для подвода в топливник необходимого для горения воздуха устраивается воздуходувная камера. В схеме газогенератора, показанного на рис. 17, эта сеть состоит из воздуходувных камеры 4, соединенной с нею воздушного пояса 5 и воздушных фурм 6; пояс охватывает весь топливник. Через фурмы воздух проходит из воздушного пояса непосредственно в зону горения. Воздухозаборная камера служит также и для переналаживания розжига газогенератора. Она снабжается обратным клапаном 7, который автоматически закрывает доступ воздуха в газогенератор и препятствует выходу газа при остановках двигателя.

Газосборная камера 8, окружающая бункер, предназначена для сбора непрерывно отсасываемого газа из топливника. Через газоотводящий патрубок 9 газ затем выходит из газогенератора.

Зольник 10 служит для сбора золь и мелких частиц топлива. Для очистки зольника устраивается люк с крышкой 11.

Люк 12, расположенный в стенке генератора против топливника, используется для засыпки дополнительного восстановительного слоя угля.

Охлаждение газа и газоохладитель

Процесс газификации топлива происходит при высоких температурах. Поэтому газ, выходящий из генератора, имеет высокую температуру, которая в зависимости от конструкции газогенератора колеблется от +200° до +800° Ц.

Перед подачей в двигатель газ должен быть охлажден до возможно более низкой температуры, приближающейся к температуре воздуха, входящего в смеситель. При несоблюдении этого условия уменьшается степень наполнения цилиндров, а следовательно, и

Рис. 18. Схема газоохладителя

мощность двигателя, в цилиндрах может попасть влажный газ и, наконец, в газопроводах при температуре газа 700—400° Ц. возможно протекание химической реакция 2CO = CO2 + C. В этом случае из окиси углерода (2CO) выделяется углекислота (CO2) и углерод в виде сажи.

Для того чтобы потери мощности двигателя были минимальными и чтобы в газе содержалось возможно меньше количество влаги, его температура перед поступлением в смеситель не должна превышать температуру окружающего воздуха более чем на 15°—30° Ц. Более значительное охлаждение газа требует громоздких приборов, неудобных для транспортных машин.

4 Газогенераторные установки
Некоторое охлаждение газа достигается в самом газогенераторе устройством газоохладительных камер с большой поверхностью охлаждения, используемом на газ для подогрева бункера и т. д. Однако этими мерами не удается охладить выходящий из генератора газ ниже +200° - +300° Ц и поэтому для дальнейшего охлаждения применяют специальные охладительные приборы.

Прибор для охлаждения газа или газоохладитель должен понизить температуру проходящего через него газа настолько, чтобы она была близка к температуре окружающего воздуха.

Для этой цели газоохладитель должен обладать значительной поверхностью, быстро отдающей тепло. Чтобы получить такую поверхность, обычно пользуются металлическими трубками различной формы и сечения, образующими батарею из нескольких секций (рис. 18, стр. 49).

Очистка газа и газоочиститель

Выходящий из генератора газ содержит примеси в виде частиц золы и угля, влаги и смолястых погонов. Эти примеси понижают мощность двигателя, засоряют цилиндры и покрывают смолястым налетом такие детали, как цилиндр, поршень и клапаны.

От таких примесей, как зола и угольная мелочь, газ можно освободить тщательной фильтрацией.

Влажность газа может быть уменьшена конденсацией водяных паров, выделяющихся из топлива в бункере. Для этого пары отбирают в особые паросборные рубашки газогенератора, охлаждают и полученный конденсат отводят в сборные резервуары.

Дальнейшее удаление влаги из генераторного газа осуществляется конденсацией ее паров в специальных охлаждающих приборах и задержкой влаги фильтрами. Однако конденсация паров влаги в паросборных камерах и газоохладительных приборах не освобождает полностью газ от влаги.

Очистка газа от смол должна достигаться в самом газогенераторе применением лучшего способа газификации топлива, при котором поддерживаются необходимый для сгорания и разложения смол температурный режим. На разложение и сгорание смол влияют форма топлива, способ подачи в него воздуха и скорость газов в топливнике.

Очистка от смол может быть улучшена с помощью очистительных приборов, в которых смолы задерживаются на поверхности фильтрующего материала.

Так как полная очистка газа невозможна из-за несовершенства очистительных приборов, приходится мириться с тем, что в нем остается некоторое количество примесей, не оказывающее заметного влияния на работу двигателя. Установлено, что 1 м³ очищенного газа, полученного в современных газогенераторных установках, в среднем содержит 0,05 г золы и угля, от 20 до 200 г влаги и 0,5 г смолы.

Такое содержание примесей следует признать максимально допустимым и необходимо стремиться к их снижению путем улучшения процесса газификации и конструкций очистителей.

Прибор, в котором производится очистка газа, носит название газоочистителя.

Конструкции газоочистителей весьма многочисленны и разнообразны.

Один из газоочистителей представлен на рис. 19. Он представляет собой металлический цилиндр, внутри которого на решетках 1 насипан фильтрующий материал. Газоподводящий патрубок 2 расположен в нижней части прибора; газ отводится через патрубок 3, находящийся в верхней части. Люки 4 и 5 служат для загрузки, выгрузки и промывки фильтрующего материала. Люк 6 предназначен для удаления отфильтрованных примесей и конденсата.

Для улучшения качества очистки обычно устанавливают несколько очистителей. Их располагают в различных вариантах и в комбинации с охладителем.

Образование газовоздушной смеси и смеситель

Перед тем как попасть во всасывающий коллектор и цилиндры двигателя, охлажденный и очищенный газ должен быть смешан в нужной пропорции с воздухом, необходимым для горения. Смешение газа с воздухом и образование газовоздушной рабочей смеси происходит в приборе, называемом смесителем.

Процесс образования газовоздушной смеси значительно проще процесса образования рабочей смеси для двигателя, работающего на жидком топливе. Объясняется это тем, что в состав газовоздушной смеси входят генераторный газ и воздух примерно в одинаковом количестве (1:1) и что при всасывании они подчиняются одним и тем же законам.

Поэтому смесители весьма просты по конструкции и этим отличаются от современных сложных карбюраторов.

Важнейшее требование, предъявляемое к смесителям, заключается в следующем. Они должны:

a) давать газовоздушную смесь хорошего качества,
b) быть компактными,
v) допускать удобную и легкую регулировку состава смеси,
g) работать в комбинации с карбюратором, когда это необходимо,
д) давать возможность запускать двигатель непосредственно на газе,
e) не увеличивать сопротивления движению газа и воздуха.
Состав генераторного газа в процессе газификации топлива не постоянен и зависит от режима работы двигателя, температурных условий, топлива и т. д. Поэтому качество газовоздушной смеси регулируется в смесителях, как правило, изменением количества подаваемого воздуха, которое достигается ручной регулировкой открытия воздушного дросселя. Это изменение связано не только с числом оборотов двигателя, но и с процессом газообразования, что затрудняет применение автоматической регулировки.

![Схема смесителя](image1)

Смеситель (рис. 20) схематически состоит из газоподводящего патрубка 1, воздушного патрубка 2 и камеры смешения 3. Воздух и газ одновременно засасываются в смеситель, встречаются в камере смешения и образуют газовоздушную смесь, которая по патрубку 4 направляется во всасывающий коллектор двигателя.

Для регулировки количества поступающего в смеситель воздуха в воздушном патрубке поставлен дроссель 5. Для регулировки количества рабочей смеси, поступающей в цилиндр, служит дроссель 6, установленный в выходном патрубке.

![Схема центробежного вентилятора](image2)

Вентилятор

Кроме перечисленных элементов, в состав газогенераторной установки обычно входит центробежный вентилятор (рис. 21), предназначенный для розжига газогенератора. В корпусе вентилятора находится крыльчатка, приводимая во вращение от руки или электродвигателя. Корпус вентилятора имеет два отверстия: одно сообщается с атмосферой, а другое — с газопроводом установки. Вращая крыльчатку, можно создать искусственную тягу в газогенераторе, чтобы облегчить и ускорить розжиг.

Рис. 22. Общая схема газогенераторной установки

Газогенераторные установки автомобильного-тракторного типа чрезвычайно разнообразны. Ниже приводится классификация элементов установок, позволяющая объединить их в типовые группы.

КЛАССИФИКАЦИЯ ЭЛЕМЕНТОВ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК

Классификация газогенераторов

Газогенераторы можно классифицировать по следующим, наиболее важным признакам: по роду газифицируемого топлива, по процессу газификации, по способу подвода воздуха.

По роду газифицируемого топлива газогенераторы делится на угольные, работающие на различных сортах угля (дубовый, каменный, антрацит), и на древесные, работающие на древесных чурках, щепе и шишек-поленьях. Кроме того, существуют газогенераторы для работы и на других видах топлива: торфе, соломенных брикетах, лузге и т. д., но все они носят опытный характер и окончательного конструктивного оформления еще не получили.

По процессу газификации топлива различают газогенераторы: а) прямого процесса, б) обратного процесса и в) горизонтального процесса.
Поспособу подвода воздуха в топливник газогенераторы бывают: а) с подачей воздуха под колосниковую решетку, б) с периферийно-шелеевой подачей воздуха, в) с периферийно-фурменной подачей воздуха и г) с центрально-фурменной подачей воздуха (с боковым, верхним и нижним вводом воздушной фурмы).

По указанным в II главе причинам угольные газогенераторы могут работать по прямому, обратному и горизонтальному процессам газификации, а древесные — только по обратному.

Подача воздуха в топливник древесных и угольных газогенераторов может быть различной, за исключением подачи под колосниковую решетку, которая применяется лишь для газогенераторов прямого процесса.

Схемы конструкции древесноугольных газогенераторов

Газогенератор прямого процесса газификации с подачей воздуха под колосниковую решетку

Угольный газогенератор прямого процесса газификации (рис. 23) состоит из бункера 1, топливника 2 и зольника 3. Бункер снабжен загрузочным люком с крышкой 4.

В нижней части бункер соединяется с кожухом 5 топливника. Топливник имеет огнеупорную обмуровку, опирающуюся на поддерживающее кольцо 6. Это же кольцо служит опорой для колосниковой решетки 7, замыкающей снизу топливник.

В зольнике сделан лоток для удаления золы и угольной мелочи, закрывающийся крышкой 8.

Несколько выше топливника находится колцевая газообменная камера 9 с отверстиями для отбора газа и отводящих патрубком 10.

Необходимый для газификации углей воздух поступает через патрубок 11 и затем через колосниковую решетку непосредственно в топливник 2. Полученный в результате газификации газ, поднимаясь, попадает в газообменную камеру 9 и отсасывается через отводящий патрубок 10.

Газогенератор обратного процесса газификации с периферийно-шелеевой подачей воздуха

Газогенератор (рис. 24) состоит из бункера 1, кожуха топливника 2, топливника 3 и зольника 4. Бункер в верхней части снабжен загрузочным люком с крышкой 5, а в нижней — переходным конусом 6. Нижний край переходного конуса вместе с верхним краем топливника образуют воздушную шель 7.

В корпусе топливника имеется опорное кольцо 8 для обмуровки. Внизу топливника находится колосниковая решетка 9.

Зольник 4 является газообменной камерой и имеет отводящий патрубок 10.

Люк 11 служит для очистки зольника. Воздух, необходимый для газификации углей, засасывается через патрубок 12 и через щель 7 поступает в топливник.

Газ из топливника отсасывается через отверстия колосниковой решетки в зольниковую (газообменную) камеру.

Газогенератор обратного процесса газификации с периферийно-фурменной подачей воздуха

Газогенератор (рис. 25, стр. 56) состоит из бункера 1, кожуха топливника 2, топливника 3 и зольника 4. Бункер в верхней части снабжен загрузочным люком с крышкой 5, а в нижней — переходным конусом 6. Нижний край переходного конуса вместе с верхним краем топливника образуют воздушную шель 7.

В топливнике имеется отверстие, вставленное в нижний взаимодействующей с ним стальной воздуховод 8, расположенный по периферии, Этими фурмами топливник сооб-
щается с воздушной камерой 9, образованной стенками корпуса и кожуха топливника. Кольцо 10 служит опорой для топливника. Кожух топливника заканчивается зольником 4, который одновременно является газосборной камерой. В зольнике помещается колосниковая решетка 11, люк для очистки, закрываемый крышкой 12, и газоотводящий патрубок 13.

Воздух засасывается в топливник через воздушные фурмы после погружения в воздушную камеру 9, соединенной с атмосферой отверстием 14.
Газ отсасывается из топливника через зольник и отводящий патрубок 13.

Газогенератор обратного процесса газификации с центрально-фурменной верхней подачей воздуха

Газогенератор (рис. 26) состоит из бункера 1 с загрузочным люком 2, топливника 3, кожуха топливника 4, образующего газосборную камеру, и зольника 5, отделенного от топливника колосников-
вой решеткой 6. Воздух, необходимый для газификации, поступает через воздушную фуруму 7 к центру зоны горения. Отверстие 8 служит для розжига, люк 9 — для очистки зольника, патрубок 10 соединяется с газоотводящим трубопроводом.

Газогенератор горизонтального процесса газификации с центрально-фурменной боковой подачей воздуха

Газогенератор (рис. 27) состоит из бункера 1 и топливника 2. Бункер снабжен в верху загрузочным люком с крышкой 3. В нижней части бункера переходит в металлический топливник 2 с дном 4.

В центр топливника введена воздушная фурма 5 с двойными стенками. Двумя трубками 6 фурма сообщается с системой охлаждения двигателя. Холодная вода из радиатора по нижней трубке поступает в пространство между двойными стенками фурмы и, охлаждая ее, возвращается по верхней трубке в систему охлаждения.
К топливнику приварен газоотводящий патрубок 7, перед которым поставлена защитная решетка 8, препятствующая уносу частиц угля вместе с газом при отсыревании. Люк 9 служит для чистки топливника.
Газификация угля в газогенераторе характерна большой скоростью поступления воздуха через фурму, доходящей до 80 м/сек. Боковой подвод воздуха в центральную часть топливника и отсос газа через патрубок 7, расположенный против отверстий фурмы, создают поперечный процесс газификации топлива, при котором воздух и газ проходят весьма малый путь.
Высокая температура (около 2000 °C), развиваясь у выходного отверстия фурмы, постепенно снижается по направлению к стенкам топливника.

Схемы конструкций древесных газогенераторов

Газогенератор обратного процесса газификации с периферийно-щелевой подачей воздуха

Газогенератор (рис. 28, стр. 57) состоит из бункера 1, кожуха топливника 2, топливника 3, газосборной камеры 4 и зольника 5. Бункер имеет вверху загрузочный люк с крышкой 6, а внизу фланец 7 для соединения с кожухом топливника. В топливнике фрезеруются щели 8 для подачи воздуха в зону горения.

Топливник окружает газосборную камеру 4, снабженную газоотводящим патрубком 9.
Кожух топливника соединяется отверстиями 10 с атмосферой и снабжён смотровым люком 11, служащим также и для розжига.
Пространство между кожухом топливника и стенками газосборной камеры используется для подогрева воздуха. Газогенератор снизу заканчивается зольником 5 с колосниковой решеткой 12 и люком 13 для чистки. Воздух, необходимый для газификации топлива, поступает через отверстия 10 в камеру подогрева, откуда через щели 8 засасывается в топливник.
Полученный в топливнике газ отсасывается в газосборную камеру 4 и из нее в отводящий патрубок 9.

Газогенератор обратного процесса газификации с периферийно-

Газогенератор (рис. 29) состоит из трех кожухов — внутреннего 1, среднего 2 и наружного 3, образующих бункер 4, газосборную камеру 5 и воздушную камеру 6, из топливника 7 и зольника 8.
Внутренний кожух в верхней части имеет загрузочный люк с крышкой 9. Нижняя часть кожуха 1 переходит в топливник 7. Топливник имеет несколько воздушных фурм. Они окружены кольцевым воздушным поясом 10, который имеет короткие трубы 11 для сообщения с воздушной камерой 6.
Пространство между кожухами 1 и 2 образует газосборную камеру 5, из которой газ отсасывается через патрубок 12.
Кожух 3 образует с кожухом 2 воздушную камеру, сообщающуюся отверстиями 13 с атмосферой.

Люки 14, расположенные против входных отверстий воздушного пояса, служат для розжига и осмотра. Люки 15 предназначены для засыпки дополнительного восстановительного слоя угля. Зольник имеет колосниковую решетку 16 и люк 17 для чистки.
Нужный для газификации воздух поступает через отверстия 13 в воздушную камеру 6, где он подогревается, и оттуда засасывается в топливник через воздушный пояс 10 и фурмы.

Из топливника газ отсасывается и газосборную камеру 5 и патрубок 12. Проходя через газосборную камеру, газ подсушивает топливо в бункере и охлаждается.

Газогенератор обратного процесса газификации с централизо-

Газогенератор (рис. 30) состоит из бункера 1, паросборной камеры 2, топливника 3, наружного кожуха 4, газосборной камеры 5 и зольника 6.

* Паросборная камера не является обязательной для данного типа газогенератора.
Бункерный кожух имеет отверстия 7 для отвода части продуктов сухой перегонки топлива в паросборную камеру. Загрузочный люк с крышкой 8 расположен в верхней части наружного кожуха. Спуск конденсата из паросборной камеры производится через трубку 9.

Бункерный кожух заканчивается внизу топливником 3. Пространство, образованное стенками топливника и наружным кожухом, служит газосборной камерой 5, которая имеет газоотводящий патрубок 10.

Нижняя часть газосборной камеры используется для дополнительного восстановительного слоя угля, который засыпается через люк 11.

Для чистки зольника 6 имеется люк 12.

В центре топливника введена снизу воздушная фурума 13. Входное отверстие фурымы служит одновременно для розжига-газогенератора и снабжено коробкой 14 с воздухоподводящим каналом, имеющим обратный клапан 15.

Газ из топливника отсасывается через восстановительный слой угля в газосборную камеру, откуда поступает в отводящий патрубок 10.

Приведенный краткий обзор типовых конструкций газогенераторов позволяет сделать вывод о значительной простоте и компактности угольных газогенераторов по сравнению с древесными.

Классификация газоохладителей

Охладители газа по конструкции можно разделить на два основных типа: батарейно-трубчатые и радиаторные.

Охлаждение газа в охладителях основано на том, что он проходит около металлической поверхности, омыляемой воздухом. Для усиления циркуляции воздушного потока, омывающего радиаторный газоохладитель, используют вентилятор, имеющийся в системе охлаждения двигателя.

Если газоохладитель одновременно является газоочистителем, то его называют газоохладителем-очистителем.

Схемы конструкций охладителей газа

Батарейно-трубчатый охладитель

Батарейно-трубчатый охладитель (рис. 31) состоит из секций, сведенных в батарею. Каждая секция имеет коллекторные коробки 1, соединенные между собой трубками 2.

Краны 3 служат для спуска конденсата, образующегося при охлаждении газа. Коллекторные коробки имеют крышки 4 для осмотра и очистки.

Первая (нижня) секция связана газопроводом с газогенератором, а вторая (верхняя) — с очистителем. Генераторный газ последовательно проходит через все секции.

Батарейно-трубчатые газоохладители могут различаться формой и длиной трубок, а также числом секций. Трубки обычно бывают прямоугольного или круглого сечения; число секций доходит до 5. Иногда трубки снабжаются металлическими ребрами для увеличения общей поверхности охлаждения.

Рис. 31. Схема батарейно-трубчатого газоохладителя

Батарейно-трубчатые охладители имеют значительные размеры, неудобны для монтажа и осмотра, требуют большого количества крепежного материала. Все это вместе с сравнительно слабой циркуляцией воздуха между трубками (в особенностях у тракторов) и послужило причинами появления охладителей радиаторного типа.

Радиаторный охладитель

Радиаторный охладитель (рис. 32) по внешнему виду напоминает обычный радиатор системы охлаждения двигателя. Он состоит из верхнего 1 и нижнего 2 резервуаров, соединенных двух рядами вертикальных трубок 3.

Нижний резервуар разделен перегородкой на два отделения, из которых одно соединяется с газопроводом, идущим к сжигательной, а другое с очистителем. Оба резервуара имеют пробки 4 для очистки. В нижнем резервуаре эти пробки служат также для спуска конденсата.

Газ, поступающий в первое отделение нижнего резервуара, проходит по одним трубкам в верхний резервуар, откуда по другим
спускается во второе отделение нижнего резервуара и из него направляется в газопровод смесителя.

Радиаторный охладитель монтируется перед водяным радиатором двигателя, поэтому воздушный вентилятор охлаждает и газоохладитель. Воздушный поток, проходящий между трубками, и вентилятор создают хорошие условия для охлаждения газа. Форма трубок, их количество и устройство резервуаров радиаторного охладителя могут варьироваться в зависимости от его емкости и требуемой интенсивности охлаждения.

Классификация газоочистителей

По способу фильтрации газа газоочистители разделяются на 1) жидкостные, 2) сухие и 3) комбинированные. В свою очередь сухие делятся на а) поверхностные, б) материалные и сетчатые и в) динамические (инерционно-ударные и центробежные).

Схемы конструкций газоочистителей

Жидкостные очистители

В жидкостных очистителях газ очищается водой, керосином или маслом. Примером такого очистителя может служить очиститель газогенераторной установки "Виско-автогаз" (Германия) (рис. 53). Этот очиститель изготовлен в виде прямоугольного бака, разделенного перегородками на два отделения. Одна из этих перегородок имеет в верхней части отверстия, а другая не доходит до дна бака, благодаря чему оба отделения бака сообщаются.

В первое отделение наливается вода до уровня контрольного крана. В воду опущены края короткоюобразной коробки, дно которой прикреплено к сетке, соединенной со стенками бака. Коробка имеет три вертикальных пластины, которые дают направление газу. На сетку через люк насыщается пробковая стружка. Патрубок служит для подвода газа, пробка — для спуска воды.

Второе отделение через отверстие 7 заполняют отработанным маслом с керосином до уровня контрольного крана 8. Над масляной поверхностью расположена сетка 9, на которую через люк 10 насыпаются кольца Рашига. Газ отводится через патрубок 11 с предохранительной сеткой; для спуска масла имеется отверстие 12.

Поступая в бак, газ попадает в первое отделение, где направляется отражательными пластинами вниз. Выходя из-под краев коробки и поднимаясь через слой пробковой стружки, газ очищается от капель воды. Из первого отделения газ переходит во второе по каналу 13, спускается и проходит через глубину 20—25 мм в масле, после чего снова поднимается, проходя через кольца Рашига, очищается от масляных капель и выходит из очистителя по отводящему патрубку.

Очистители этого типа не дают достаточной очистки, создают большое сопротивление проходу газа (около 200—300 мм водяного столба), неудобны для эксплуатации в зимнее время и требуют вспомогательного фильтрующего слоя для задержания капель жидкости. Поэтому такие очистители не получили распространения.

Сухие очистители

В настоящее время наибольшее распространение получили сухие очистители, дающие хорошее качество очистки и удобные в отношении ухода.

Поверхностные очистители

В поверхностных очистителях газ очищается, проходя через слой материала с большой поверхностью (кольца Рашига, металлические стружки, кокс, металлический волос), через металлические щетки, пластины и др.

Простейший поверхностный очиститель изображен на рис. 34. Он состоит из двух цилиндров, наполненных металлической стружкой. Цилиндры с обеих сторон входят в коробки, из которых одна соединяется с подводящим газопроводом, а другая с отводящим. Коробки имеют съемные крышки для очистки цилиндров и пробки для спуска конденсата.

Проходя через металлические стружки, газ оставляет на их поверхности содержащиеся в нем различные примеси.

Примеси осаждаются значительно интенсивнее, если поверхность фильтрующего материала увлажнена. Поэтому во многих поверхностных очистителях используется конденсат. В этом случае очиститель ставят вертикально, чтобы конденсат стекал вниз, увлажняя фильтрующий материал. Капли воды, стекая на дно прибора, увличают с собой примеси. Материал иногда увлажняют до укладки его в очиститель.
Поверхностные очистители работают удовлетворительно, но требуют периодической промывки фильтрующего материала или полной его смены.

Матерчатые и сетчатые очистители
Фильтрующим материалом в матерчатых очистителях обычно служит фианель.
Очиститель (рис. 35) представляет собой прямоугольный короб 1, в котором на длинных стержнях смонтированы матерчатые фильтры 2 с металлическими каркасами. Короб имеет подводящий патрубок 3, вертикальную отражательную перегородку 4, съемную крышку 5, к которой приварены стержни 6, и отводящий канал 7 с выходным патрубком 8.
Газ, поступивший в очиститель, проходит сквозь оба фильтра, поднимается под крышку и спускается к отводящему патрубку.
Очистители подобного устройства дают хороший очистку, но быстро загрязняются и, если через них проходит неохлажденный газ, сгорают. При наличии влаги в газе фильтры увлажняются и прекращают доступ газа в смеситель. Для предохранения от быстрого загрязнения эти фильтры обычно устанавливают после очистителей другого типа, в которых газ предварительно очищается от наиболее крупных примесей. В лучших конструкциях имеются контуры фильтры в виде небольшой мелкой сетки, наложенной на вход газоотводящей трубы. Загрязнение этой сетки вызывает прекращение подачи газа и останову двигателя и этим указывает на необходимость очистки основных фильтров.
В некоторых конструкциях фильтрующим материалом служит мелкая сетка.
В последнее время наблюдается тенденция изготовлять поверхностные и матерчатые очистители большого объема, который используются для накопления газа. При переменной нагрузке и при кратковременном нарушении газообразования в генераторе этот запас газа дает работу двигателя более гибкой и облегчает его пуск.
Такие очистители получили наименование очистителей-газогольдеров.

Динамические очистители
Работа динамических очистителей основана на том, что в них скорость газа понижается, а его направление резко изменяется и становится зигзагообразным или спиральным. При этом примеси, содержащиеся в газе и обладающие большим удельным весом, продолжают двигаться по инерции с прежней скоростью и в том же направлении, ударяются о различные препятствия и отбрасываются на дно прибора.
В зависимости от внутреннего устройства динамических очистителей и характера движения в них газа они разделяются на инерционно-ударные и центробежные.

Инерционно-ударные очистители. Инерционно-ударный очиститель (рис. 36) состоит из цилиндров 1, внутри которых устанавливаются отражательные пластинки 2. В пластинках имеется ряд отверстий, расположенных в шахматном порядке. По ходу газа, в последовательно соединенных цилиндрах число пластинок и число отверстий в них постепенно увеличивается, а диаметр отверстий и расстояние между пластинками уменьшаются. Пластиники монтируются на опорных стержнях и вместе с ними они могут быть вынуты для очистки через люки с крышками 3.
Проходя через очиститель, газ многократно ударяется о пластин...
тёлах для очистки газа используется центробежная сила, под действием которой механические примеси отбрасываются к стенкам. Центробежная сила создается различными крыльчатками, приводимыми в действие движением газа или механическим приводом. Для той же цели устанавливают завихряющие приборы.

Конструкция центробежного очистителя с крышчаткой, приводимой в действие движением газа, показана на рис. 37. Этот очиститель имеет цилиндрический корпус 1 с вводным патрубком 2 и отводным диам. Крыльчатка 3 накрыта колпаком 4 с щелевыми отверстиями 5, через которые поступает газ. Крыльчатка имеет два ряда лопастей 6. Патрубок 7 служит для отвода газа.

Поступая в очиститель, газ ударяется о лопасти крыльчатки и приводит ее во вращение. Одновременно газ также приобретает вращательное движение.

Возникшая при этом центробежная сила отбрасывает примеси, находящиеся в газе, к стенкам колпака, от которого они через кольцевую щель 8 попадают на дно корпуса очистителя. Очистители рассмотренного типа могут служить только для грубой очистки газа. В последнее время конструкция центробежных очистителей изменена. В них газ вихревобразно движется по спирали. Такие очистители получили широкую известность под названием циклонных или циклонов (рис. 38).

Газ поступает в циклон по патрубку 1, расположенному по касательной к поверхности прибора 2, отчего газ приобретает вращательное движение. На отводящем патрубке 3 имеется завихритель 4, состоящий из ряда изогнутых лопаток. Механические примеси оседают в коническом пылесборнике 5, снабженном люком 6 для чистки.

Комбинированные очистители

В комбинированных очистителях газ очищается, проходя через фильтры нескольких видов, например через жидкостный и сухой, поверхностный и матерчатый, находящиеся в одном приборе. Схема одного из таких очистителей представлена на рис. 39.

Газ поступает в нижнюю часть очистителя по патрубку 1; поднимаясь вверх, газ проходит через слой кокса 2, затем окончательно очищается матерчатым фильтром 3 и отводится по патрубку 4.
Классификация смесителей

Современные смесители разделяются на следующие типовые группы:
1) смесители с параллельным движением потоков газа и воздуха: а) параллельно-поточные, б) эжекционные;
2) смесители с пересекающимися потоками газа и воздуха: а) перпендикулярно-поточные, б) наклонно-поточные, в) эжекционные;
3) смесители турбулентные.

Если смеситель соединен с карбюратором в один прибор, позволяющий работать как на газовоздушной смеси, так и на смеси воздуха с жидким топливом, или на одном жидком топливе, он называется смесителем-карбюратором.

Смесители с параллельными потоками газа и воздуха

Параллельно-поточные

Изображенный на рис. 40 (стр. 67) смеситель состоит из газоподводящего патрубка 1 с газовым дросселем 2, камеры смешения 3 и патрубка 4 для присоединения ко всасывающему коллектору двигателя.

Воздух, необходимый для образования газовоздушной смеси, подводится в камеру смешения через отверстия 5. Их проходное сечение можно регулировать вручную кольцевой шайбой 6, которая также имеет отверстия. Для регулировки эти отверстия при помощи тяги смешают по отношению к воздушным отверстиям корпуса смесителя. Прижим 7 служит для удержания шайбы 6 в определенном положении.

В камеру смешения параллельно поступают поток газа по патрубку 1 и разделенный на мелкие струи поток воздуха через отверстия 5.

Эжекционные

В эжекционных смесителях (рис. 41) газовый патрубок 1 глубоко вводится в корпус 2 смесителя: конец патрубка делается суженным. Воздух подводится через ряд отверстий 3 в подвижной шайбе 4 и корпусе смесителя 2. Под действием разрежения, создаваемого работающим двигателем, и подсасывания газовым потоком воздух проходит в камеру смешения 5. Количество поступающего воздуха регулируется шайбой 4, смешаемой с помощью рычага 6.

Так как сужение газоподводящего патрубка повышает сопротивление движению газа, то в некоторых конструкциях эжекционных смесителей через патрубок 1 в камеру смешения подводится воздух, а газ засасывается через отверстия 3. Эжекция в этом случае создается потоком воздуха.

Смесители с пересекающимися потоками газа и воздуха

Перпендикулярно-поточные

Цилиндрический корпус 1 смесителя (рис. 42) образует камеру смешения 2, в которую газ подводится по патрубку 3, в воздух — через ряд отверстий 4 в корпусе и регулировочной шайбе 5. Количество воздуха, поступающего в камеру смешения, регулируется смешением отверстий шайбы по отношению к отверстиям корпуса смесителя. Это смешение производится при помощи ручной тяги, присоединяемой к выступу 6. Дроссель 7 служит для регулировки количества газовоздушной смеси, поступающей в цилинды двигателя.

Газовоздушная смесь образуется путем пересечения под прямым углом газового потока рядом струй воздуха. При этом создается некоторое торможение потока газа.

Наклонно-поточные

Стремление избавиться от тормозящего действия воздуха и еще более упростить конструкцию смесителя привело к созданию наклонно-поточных смесителей с пересечением потоков газа и воздуха под острым углом.

Схема такого типа смесителя показана на рис. 43 (стр. 70). Патрубок 1 подводит газ в камеру смешения 2, к которой присоединен наклонный воздушный патрубок 3 с дросселем 4 для регулировки количества поступающего воздуха. Дроссель 5 служит для регулировки количества газовоздушной смеси, пропускаемой в цилинды.

Эжекционные

В настоящее время наиболее распространенными смесителями эжекционного типа (рис. 44, стр. 70).

Газ поступает в смеситель по патрубку 1, а воздух по патрубку 2, который расположен по касательной к корпусу смесителя. Дроссель 3 служит для регулировки количества воздуха, дроссель 4 является дросселем смеси. Воздух, входящий в камеру смешения 5, приобретает вращательное движение, что улучшает качество образования газовоздушной смеси. Движение газа с большой скоростью создает явление эжекции.
Турбулентные смесители

В турбулентных смесителях смешиваемые газ или воздух совершают вихревое движение, проходя по спиральному ходу и поступая в камеру смешения через ряд каналов, расположенных касательно к поверхности камеры. При встрече газового и воздушных потоков,

из которых один находится в вихреобразном состоянии, происходит их энергичное перемешивание и достигается хорошее качество смеси. Однако смесители этого типа имеют повышенное против обычного сопротивление и поэтому почти не применяются.

Конструкция турбулентного смесителя показана на рис. 45.

Корпус имеет газоподводящий патрубок 1, который переходит в кольцевую камеру 2, окружающую вставной стакан 3. Стакан расположен эксцентрично по отношению к кольцевой камере. Этот стакан служит для поступления воздуха и имеет каналы 4, которые идут по касательной к поверхности стакана. Благодаря этому газ поступает в камеру смешения по спирали, чем обеспечивается его вихревое движение. Дроссель 5 предназначен для регулировки количества входящего в смеситель газа, дроссель 6 — для регулировки количества газовоздушной смеси, пропускаемой в цилиндр двигателя.

Смесители-карбюраторы

Параллельно со смесителями на двигателе, как правило, устанавливаются еще и карбюраторы. Они используются для работы машин на жидким топливе при маневрировании и для присадки жидкого топлива к генераторному газу в случае необходимости обогащения рабочей смеси. Однако наличие отдельно установленных смесителя и карбюратора несколько усложняет систему питания двигателя. Поэтому в некоторых газовых двигателях устанавливается смеситель-карбюратор, изготовленный в виде одного прибора. Основой такого прибора служит либо карбюратор, если двигатель рассчитывается преимущественно на питание жидким топливом, либо смеситель, если карбюратор предназначен только для пуска двигателя и для присадки бензина при трудных условиях работы машины (трогание с места, подъемы).

Конструкция прибора, в котором основой является карбюратор, изображена на рис. 46.

Прибор представляет собой пульверизационный карбюратор с поплавковой камерой 1, главным жиклером 2, пусковым каналом 3, каналом 4 для автоматической регулировки качества смеси и диффузором 5. Патрубок 6, обычно служащий для подвода воздуха, использован в качестве смесителя для образования газовоздушной смеси по принципу пересекающихся потоков. Газ поступает в смеситель через трубопровод 7, а воздух — через каналы 8, расположенные перпендикулярно к газопроводу.

Количество воздуха, поступающего для образования газовоздуш-
ной смеси, регулируется кольцевой шайбой 9, имеющей отверстия для прохода воздуха. Шайба смещается при помощи рычажка 10 и вилки 11.

Дроссель 12 служит для перевода питания двигателя с обычной рабочей смеси на газовоздушную и обратно. Дроссель 13 предназначен для регулировки количества смеси, направляющейся в цилинды двигателя.

Дроссель перевода 12 соединен тягой 14 с фигурным рычажком 15, конец которого расположен над регулировочной иглой 16. Бензин из поплавковой камеры может попасть в жиклер только при том условии, если игла 16 будет поднята и откроет доступ бензину в канал 17 и, следовательно, в жиклер. Такое положение игры соответствует положению, когда дроссель перевода закрыт. В этом случае прибор работает как обычный карбюратор. Когда дроссель открыт, фигурный рычажок 15 нажимает на иглу и разобщает поплавковую камеру с жиклером и с пусковым каналом. В этом случае прибор работает как смеситель. При промежуточных положениях дросселя перевода возможно работать одновременно на газовоздушной и обычной рабочей смеси в той или иной пропорции и плавно переходящем с работы на одной смеси к работе на другой.

Приборы, подобные рассмотренному, не дают хорошего качества газовоздушной смеси, так как процесс ее образования затруднен небольшим размером диффузорной части и торможением в ней смеси, неизбежно создающим повышенное сопротивление для движения газовоздушной смеси внутри прибора.

Другим типом смесителей-карбюраторов является прибор, в котором смеситель сочетается с пусковым карбюратором.

Этот смеситель (рис. 47) имеет поплавковую камеру 1 с поплавком 2 и каналом 3, который через калиброванное отверстие и канал 4 связан с всасывающим патрубком 5 смесителя. Смешение газа с воздухом происходит по схеме перпендикулярно-побочным смесителям, причем воздух входит в камеру смешения через ряд трубочек 6, а газ — через патрубок 7. Количество поступающего воздуха регулируется смещением отверстий кольцевой шайбы 8 по отношению к воздушным отверстиям камеры смешения. Количество газовоздушной смеси регулируется дросселем 9.

Двигатель пускается на жидк топлива при прикрытом дросселе смеси 9. При открытом дросселе поступление бензина прекращается из-за недостаточного разрежения, и двигатель работает на газовоздушной смеси. При частичном открытии дросселя смеси возможно присадка бензина к газовоздушной смеси.

Из рассмотренных смесителей параллельно-побочные и с пересекающимися потоками во всасывающего действия являются наиболее простыми; вместе с тем они обеспечивают получение газовоздушной смеси хорошего качества.
Глава V

Конструкции автомобильных газогенераторных установок

Конструкции автомобильных газогенераторных установок

Древесные установки

Газогенераторные установки конструкции С. И. Декалевского

Газогенераторная установка «Пионер» Д-8 для автомобиля ЗИС-5 (модель 1934 г.)

Газогенераторная установка Д-8, работающая по принципу обратного процесса газификации топлива с периферийно-щелевой подачей воздуха (рис. 48), состоит из газогенератора, охладителей-очистителей и смесителя.

Газогенератор имеет цилиндрическую форму и состоит из следующих основных частей: бункера 1, корпуса 2 топливника, топливника 3, опорного конуса 4, газосборной камеры 5 и зольника 6. Бункер газогенератора имеет загрузочный люк, закрываемый крышкой 7, которая при открытии люка отводится в сторону на стержни при помощи ручки 8 замка. Бункер сваривается из 2-мм листовой стали. К нижней части бункера приварено кольцо 9 для соединения с корпусом топливника.

Корпус 2 топливника в верхней части имеет фланец для соединения с бункером, а в нижней части фланец 10 для соединения с зольником 6.

Корпус топливника на уровне воздушной щели 11 имеет смотровой люк 12 с крышкой и, кроме того, два отверстия 13 с вваренными патрубками. Патрубки расположены диаметрально противоположно и предназначены для подвода воздуха к топливнику.

В корпусе топливника имеется отверстие для патрубка 14 газосборной камеры.

Топливник 3 отлит из чугуна и имеет коническую форму. К верхней части топливника прикрепляется конус 15 из 3-мм листовой стали. После отливки топливника в нем фрезеруются воздушные щели 11 высотой 3 мм и общей длиной 260 мм. Верхняя и нижняя части топливника остаются при этом соединенными при помощи ребер, которые отлиты вместе с топливником. Верхний конец
конуса входит своим бортом в паз, образованный корпусом топлива и нижней частью бункера. Место соединения конуса с бункером уплотняется асBESTовым шнуrom.

При отливке топливника в его кольцевой выступ вваривается железное кольцо, к которому впоследствии приваривается дисковая диафрагма 16, составляющая верхнюю часть газосборной камеры. Нижняя часть газосборной камеры имеет отогнутый край, который заходит между фланцами корпуса топливника и зольника.

Тяжелый топливник подвешивается опорным конусом 4, нижний конец которого ставится на кольцо колосниковой решетки 17, приваренное к стенке зольника. В опорном конусе проушины 188 отверстий, диаметром 7 мм каждое, служащих для пропуска газа в газосборную камеру и для грубой его фильтрации. Конус изготовлен из 5-мм железа.

Последней частью газогенератора является зольник 6; он сварен из 3-мм листовой стали и соединяется с корпусом топливника. В зольник подвешена сферической формы качающаяся колосниковая решетка 17, выполненная из круглого 10-мм железа.

Для очистки и розжига в зольнике имеется люк 18, плотно закрывающийся крышкой с асBESTовой прокладкой. Общая высота газогенератора 1600 мм, диаметр 640 мм, емкость 117 кг древесных чурок.

Воздух входит в газогенератор через отверстия 13, проходит через пространство, образованное корпусом топливника и стенкой газосборной камеры, подогревается и направляется через щель в топливник.

Газ, полученный в результате газификации топлина, поступает из топливника в опорный конус и проходит в газосборную камеру, откуда отсасывается через газоотводящий патрубок и направляется в охладитель-очиститель.

Охладитель-очиститель состоит из четырех цилиндров, причем три из них соединены в батарею 19, а четвертый 20 поставлен отдельно.

Длина каждого цилиндра батареи охладителей-очистителей 1200 мм, диаметр 220 мм. Длина цилиндра последнего очистителя 1400 мм, диаметр 220 мм. Цилинды соединены между собой трубами 21. Концы цилиндров закрыты крышками 22 с асBESTовой шнуровой прокладкой, плотно прижимаемыми к отборотом прокладым.

Крышки с двух сторон надеваются на полые стержни 23, проходящие через всю длину цилиндров, и пригтывают при помощи гаек, навивчиваемых на резьбу концов труб.

Для очистки газа в каждом цилиндре имеются фильтрующие проволочные щетки круглой формы, а для спуска конденсата — спусные пробки.

Из охладителя-очистителя газ направляется в смеситель 24.

Смеситель имеет тройник, в один конец которого вставлен бронзовый стаканообразный золотник с тягой, в другой — конец газопровода, идущего от охладителя-очистителя, и в третий — начало газопровода, соединяющего смеситель со всасывающим коллектором дыма.

В золотнике и в связанном с ним конце тройника выверлены шесть отверстий диаметром 11 мм, через которые засасывается в смеситель воздух. Проходное сечение отверстий можно регулировать вращением золотника. Этот же золотник служит и для полного прекращения подачи воздуха в смеситель.

Помимо регулируемых воздушных отверстий имеется еще 12 отверстий постоянного диаметра (3 мм), расположенных в газопроводе газообразной смеси. Дроссель газообразной смеси находится в патрубке, приваренном ко всасывающему коллектору двигателя, Карбюратор МАЗ-5 оставлен на своем месте.

Воздушные отверстия смесителя регулируются поворотом штанги, соединенной с золотником.

Газогенераторная установка «Пионер» Д-8а для автомобиля ЗИС-5 (модель 1935 г.)

Установка Д-8а 1935 г. является развитием конструкции установки Д-8 1934 г.

Основное изменение, внесенное в конструкцию газогенератора, заключается в том, что топливник сделан более надежным из двух частей (рис. 49) — чашки и горловины. Чашка 7 отличается из жарупорного кремнистого чугуна и соединяется на заклепках с переходным конусом бункера 2 и с горловиной 3, сваренной из 7-мм листовой стали. Для предохранения от действия температурных напряжений горловина охвачена приваренным кольцем 4.

Из верхней части соединения чашки и горловины очаг крепится к диафрагме 5 газосборной камеры.

Охладители-очистители выполнены по схеме установки Д-8 1934 г., но цилинды имеют одинаковую длину 1200 мм и диаметр 200 мм.

В установке Д-8 каждый цилиндр имел две крышки, в установке
Д-8а 1935 г. только одну: на противоположных концах цилиндров сделаны глухие днища.

Кроме того, в первом по ходу газа цилиндре смонтированы на трубчатом стержне не проволочные щеточные фильтры, а стальные диски со срезанными сегментами.

Смеситель (рис. 50), отличный из алюминия, имеет следующее устройство.

Газ поступает в смеситель по патрубку 1, который заканчивается коническим соплом 2 в расширенной части коленообразного корпуса смесителя. Величину колцевого зазора 3, образованного стенкой корпуса и соплом, можно регулировать установкой ряда прокладок 4 и тем самым изменять сечение для прохода воздуха.

Рис. 50. Схема смесителя газогенераторной установки Д-8а

Воздух засасывается в смеситель через патрубок, снабженный воздушным дросселем 5, и поступает в смесительную камеру, откуда газовоздушная смесь по трубе 6 проходит в патрубок 7 с дросселем газовоздушной смеси 8. Фланец 9 смеситель прикрепляется к вращающемуся коллектору двигателя. Колено 10 служит для соединения смесителя с пусковым карбюратором «Газ-Зенит».

Вспомогательный дроссель 11, установленный на пути газовоздушной смеси к основному дросселю смеси 8, соединен тягами с дросселем смеси 12 в карбюраторе и служит для перевода двигателя в режимы: на тягу и обратно. Пружинами 13 дроссели 12 и 11 удерживаются в нужном положении.

Газогенераторная установка «Пионер» Д-10 для автомобиля ЗИС-5 (модель 1936 г.)

В этой установке по сравнению с установкой Д-8а изменений весьма мало, все они носят принципиального характера и связаны с устранением мелких конструктивных недостатков прежних установок; например, батареи охладителей-очистителей составлена из трех цилиндров, а четвертый заменен охладителем из ряда плюсовых труб.

Основными недостатками, свойственными в той или иной степени всем установкам типа «Пионер», являются:
1) недостаточная стойкость топливника, 2) неполная герметичность загрузочного люка, 3) низкая температура газа, выходящего из газогенератора, 4) неудовлетворительная работа очистителей, 5) значительное количество смол в газе.

Перечисленные недостатки установок «Пионер» ставят их по качеству работы ниже конструкций современных газогенераторных установок, которые достигли к настоящему времени более высоких показателей (ЗИС-13, ЗИС-21, НАТИ Г-21, НАТИ Г-14, Г-23 и ряд других). Однако установки «Пионер» сыграли большую роль в развитии газогенераторного дела в лесной промышленности и создания ходовых установок в новой области. Именно на этих установках учлись эксплуатировать нужную лесной промышленности газогенераторную машину на механизированных лесопунктах.

Газогенераторная установка ЛТА Лесотехнической академии им. С. М. Кирова для автомобиля ЗИС-5 (Экспериментальная)

Установка ЛТА для автомобиля ЗИС-5 сконструирована по типу однокамерной установки для тракторов СТЗ-ХТЗ с обратным процессом газификации и центрально-впускной нижней подачей воздуха.

Газогенератор (рис. 51, стр. 80) предназначен для работы на древесной воздушно-сухой щепе размерами 20×20×50 мм. Основными частями его являются: наружный кожух 1, внутренний кожух (бункер) 2, топливник 3 и зольник 4.

Наружный кожух 1, изготовленный из 2-мм листовой стали, состоит из верхней и нижней частей, скрепляемых фланцами 5. В верхней части наружного кожуха имеется загрузочный люк, закрываемыйся крышкой 6 при помощи планки 7 и башмака 8. В нижней части наружный кожух заканчивается двойным дном.

Внутренний кожух 2, изготовленный из 2-мм листовой стали, в верхней части доходит до загрузочного люка, образуя с внешним кожухом паросборное кольцо пространство; в нижней части бункер переходит в конический топливник.

Топливник 3 сделан из 10-миллиметровой листовой стали, в центре его подведена воздушная фурма 9, смонтированная на дне наружного кожуха и закрепленная при помощи гайки 10. Фурма снабжена отверстием для розжига, закрываемое при протечте газогенератора крышка 11, и отверстием 12, через который она сообщается с воздушной камерой 13, а вверху восемь ния отверстия 14 диаметром 8 мм, расположенных в трёх рядах. Фурма изготовлена из чугуна.

Пространство между колосниковой решеткой 15 и дном наружного кожуха служит зольником 4. Колосниковая решетка сделана из чугуна и имеет встряхивающий рычаг 17. Решетка составлена из двух половин, опирающихся на 7 лап, приваренных к стенке наружного среднего кожуха. Люк 18 служит для очистки зольника.
Для засыпки дополнительного восстановительного слоя угля в пространство между наружным кожухом и топливником сделаны два круглых люка 19.

Необходимый для газификации топлива воздух поступает по трубе 20 в воздушную камеру 13 и проходит через отверстия 12 в фурму 9. Из фурмы воздух выходит через отверстия 14.

Газ из топливника направляется через газосборную камеру в кольцевую коробку 21 по газоотводящему патрубку в два последую-
отделяет паросборную камеру от газосборной, и газоотводящий патрубок 12. В нижней части наружный кожух заканчивается зольником 7.

Емкость внутреннего кожуха 2 (бункера) — 106 кг топлива. Он имеет ряд отверстий для прохода паров влаги и продуктов сухой перегонки в паросборную камеру.

Внизу бункер заканчивается топливником 5 с оgneупорной обмуровкой.

Люк 13 служит для заполнения углем добавочной восстановительной зоны. На пути газа в газосборную камеру установлена газоочистительная решетка 14.

В центр топливника входит воздушная фурма 6 диаметром 73 мм, имеющая на конце 15 отверстий, расположенных в два ряда. Фурма укреплена в дне газогенератора и через воздуходувную камеру 15 сообщается с атмосферой. Воздуходувная камера снабжена обратным автоматическим клапаном 16 и сделана откидной.

Колосниковая решетка перемещается валиком с шестерней ручной 17. Люк 18 предназначен для очистки зольника.

Газ проходит из топливника через дополнительный восстановительный слой угля и газоочистительную решетку в газосборную камеру, откуда затем отсасывается через отводящий патрубок в циклонные очистители 19 и 20. Газ входит в очиститель через касательно поставленный патрубок и получает спиральное движение, причем крупные механические примеси, имеющиеся в генераторном газе, отбрасываются к стенкам циклона и опускаются вниз, выпадая из потока газа. Перед тем как попасть в отводящий патрубок, газ меняет направление и проходит между неподвижно установленными отражательными пластинами. Вихревое движение газа, создающееся при его прохождении между пластинами, способствует лучшей очистке, так как при этом интенсивно выпадают взвешенные примеси. В отводящей трубе и в нижней части циклона для устранения завихрения газа поставлены успокоительные перегородки.

Для чистки очистителя внизу имеется люк с крышкой, прижимаемой при помощи скоб и накидного болта.

Первый и второй циклоны соединены последовательно. Конструкция их одинакова.

Из второго циклона 20 газ переходит в охладитель 21 радиаторного типа, состоящий из трех резервуаров 22, 23, 24 и четырех секций, из 5 остальных трубок каждой. Этими секциями соединяются верхний и средний резервуары; средний и нижний резервуары соединены двумя короткими патрубками 25. Нижний резервуар, имеющий большие размеры, предназначен для сбора конденсата и примесей, выделяющихся из газа.

Через резервуары 24 и 23 газ поступает в первую секцию, поднимается по трубам и входит в первое отделение резервуара 22, а оттуда опускается в среднее отделение резервуара 23. Отсюда газ поднимается во второе отделение верхнего резервуара 22 и, опускаясь из него, проходит через средний резервуар 23 в резервуар 24, откуда уже отсасывается в смеситель. Для очистки охладителя в его верхнем резервуаре сделаны четыре пробы 26 и в среднем — одна.

Смеситель 27 относится к типу перпендикулярно-потовых. Его камера смешения 1 (рис. 54) соединяется с газоходовладым 2 и с воздушным 3 патрубками. Воздушный патрубок соединен с воздухоочистителем 4 и имеет воздушный дроссель 5. В камеру смешения воздух проходит через отверстия 6. Дроссель газоходовладной смеси 7 установлен в отводящем патрубке, идущем к вдевающему коллектору.

Рис. 54. Схема смесителя установки "Гумбольдт-Дейциц"

В газопровод, соединяющий охладитель со смесителем (рис. 53), включен центробежный вентилятор 28 с ручным и электрическим приводом. Трубкой 29 корпус вентилятора сообщается с атмосферой; трубка может перекрываться заслонкой 30.

Газогенераторная установка НАТИ Г-14 для автомобиля ГАЗ-42 (серийная)

Установка НАТИ Г-14 состоит из следующих частей (рис. 55, стр. 84): 1) газогенератора, 2) горизонтального охладителя-очистителя, 3) вертикального очистителя для тонкой очистки газа, 4) вентилятора, 5) смесителя.

Газогенератор работает на древесных чурках по принципу обратного процесса газификации с периферийно-фурменной подачей воздуха. Основными его частями являются: 1) наружный кожух 2, топливник 3 и зольник 4.

Бункер 1 имеет в верхней части загрузочный люк с крышкой 5. Необходимая герметичность закрытия люка достигается с помощью затвора 6.

Фланцем 7 бункер соединяется через болты с фланцем наружного кожуха.

Бункер 1 внутри ложит медью; он заканчивается приваренным
снизу топливником 3, изготовленным из углеродистой стали и покрытым внутри алюминием (алатированном).

В топливнике имеется десять воздушных фурм 8, диаметром 8 мм, окруженных кольцевой воздушной камерой 9. Эта камера сообщается с наружным воздухом полой втулкой (футеркой) 10, выве-

dенной к отверстию воздухоприемной камеры 11 наружного кожуха.

Воздухоприемная камера снабжена обратным клапаном 12, который под давлением газа при остановке двигателя автоматически закрывает воздухоподводящее отверстие. Диаметр топливника по фурамному поясу — 200 мм, диаметр наиболее узкой его части — 120 мм.

Наружный кожух 2 вверху имеет газоотводящий патрубок 13, а внизу переходит в зольник 4.

Люк 14 служит для очистки зольника, а люк 15 — для загрузки дополнительного восстановительного слоя угля в пространство между топливником и наружным кожухом.

Высота газогенератора 1600 мм, диаметр — 450 мм. Объем бункера — 0,15 м³. В газогенератор загружается 12 кг угля для первоначального розжига и 40 кг древесных чурок.

Кроме того, установка имеет запасный ящик, в который помещается 45 кг топлива.

Воздух поступает в топливник через воздухоприемную камеру 11, втулку 10 и воздушные фурмы 8. Газ из топливника проходит через дополнительный восстановительный слой угля и газосборную камеру в газосборное кольцо и выходит в газоотводящий патрубок. Проходя между внутренним и наружным кожухами, газ значительно охлаждается и вместе с тем подогревается топливом в бункере.

Из газогенератора газ поступает в горизонтальный охладитель-очиститель инерционно-ударного типа (рис. 57), состоящий из двух секций 1.

Каждая секция представляет собой прямоугольный короб из 1,5-миллиметровой листовой стали, длиною 1420 мм и сечением 256 × 136 мм. Внутри секций имеются фильтрующие железные пластинки 2, смотрированные на четырех длинных стержнях и удерживаемые на них распорными втулками.

Каждая секция состоит из различных количества пластин, кото-
Газогенераторная установка ЗИС-13 для автомобиля ЗИС (серийная)

Газогенераторная установка ЗИС-13 для автомобиля ЗИС сделана по типу установки «Имберт» заводом им. Сталина. Установка предназначена для работы на древесных чурках нормального размера. Газогенератор работает по принципу обратного процесса газификации и имеет периферийно-фурменную подачу воздуха.

Газогенераторная установка состоит из следующих частей: (рис. 60): а) газогенератор, б) горизонтального очистителя-охладителя, в) вертикального очистителя, г) электровентилятор, д) горизонтального очистителя-охладителя, е) смеситель, ж) газогенератор.

Рис. 58. Схема вертикального тонкого очистителя установки НАТИ Г-14

Смеситель (рис. 59) эжекционного типа. К всасывающему коллектору присоединяется карбюратор типа «Солекс».

Для розжига газогенератора в установке НАТИ Г-14 имеется электровентилятор. Крыльчатка вентилятора приводится во вращение электрическим мотором постоянного тока напряжением 6 вольт, мощностью 110—120 ватт, 3500—4000 об/мин.

Вентилятор включается в газопровод между смесителем и вертикальным очистителем и устанавливается на правой подножке.

Газогенератор монтируется с левой стороны шасси за кабиной, батарея охладителя-очистителя — под кузовом, вертикальный очиститель — с правой стороны шасси за кабиной.
Наружный кожух 1 изготовлен из 2·5-миллиметровой листовой стали, он соединен фланцем 12 с бункером 2. В верхней части кожух имеет патрубок 13 для соединения с газоотводящей трубой. Этот патрубок берет начало от газосборного полукольца 14, расположенного под соединительным фланцем. В это полукольцо газ равномерно отбирается через два отверстия, соединяющие полукольцо с газосборной камерой. Газосборное полукольцо имеет два люка для очистки его от мелких частиц угля.

В нижней части кожух имеют два люка 15 для загрузки дополнительного восстановительного слоя угля и один люк 16 для очистки газогенератора от золы. Все люки закрываются круглыми крышками, имеющими асбестовые прокладки, скобы и пружинные винты. Опоры 17 из 5-миллиметровой листовой стали, приваренные к наружному кожуху, служат для крепления газогенератора к раме.

Пространство между стенками наружного кожуха и бункера служит газосборной камерой.

При движении горячего газа по этой камере происходит подогрев топлива в бункере и отдачи тепла окружающему воздуху, отчего газ интенсивно охлаждается.

Выходящий из газогенератора газ поступает в горизонтальный инерционно-ударный очиститель, который одновременно служит охладителем. Очиститель-охладитель (рис. 62 а, б) выполнен в виде батареи из четырех цилиндров 1, изготовленных из 1·5-миллиметровой листовой стали. Диаметр каждого цилиндра равен 200 мм, длина — 1440 мм.

Каждые два цилиндра образуют секции. Цилиндры каждой секции вварены в опорный лист из 2·5-миллиметровой листовой стали. Секции расположены одна над другой, причем газ поступает сначала в верхнюю секцию, а затем в нижнюю. Между собой цилиндры соединены короткими жесткими патрубками 2, а секция — при помощи гибкого шланга.
Для улучшения качества очистки и охлаждения газа в батарее поддерживается постоянный уровень конденсата благодаря тому, что вертикальные соединительные патрубки цилиндров очистителя выступают внутри цилиндров на 28 мм, а горизонтальные смещены по отношению к центру цилиндров на 25 мм. Излишек конденсата стекает из цилиндров в вертикальный очиститель. Выступающие патрубки удерживают также угольную пыль в цилидрах, препятствуя уносу ее газами.

Внутри каждого цилиндра имеются металлические диски 3 с отверстиями, насаженные на три стержня 4. Между дисками установлены распорные трубы. Число дисков и отверстий в них, диаметр отверстий и расстояние между дисками в отдельных цилиндрах различно, как это видно из табл. 15.

Таблица 15

<table>
<thead>
<tr>
<th>№ цилиндров батарей</th>
<th>Число дисков</th>
<th>Число отверстий в дисках</th>
<th>Диаметр отверстий в дисках в мм</th>
<th>Расстояние между дисками в мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>53</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>64</td>
<td>120</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>64</td>
<td>120</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>111</td>
<td>202</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Вертикальный очиститель предназначен для тонкой очистки газа.
Очиститель (рис. 63) представляет собой вертикальный цилиндр высотой 1440 мм, диаметром 384 мм. Газ подводится в очиститель снизу через трубу 1 диаметром 60 мм. Труба имеет 8 отверстий, обращенных вниз. Внутри цилиндра на опорных кольцах помещены две сетки 2, на которые насыпаются кольца Раша, кольца сделаны из листового железа толщиной 0,4 мм и имеют вид трубочек диаметром 15 мм и высотой 15 мм.
Люк 3 служит для загрузки колец, а люк 4 для выгрузки, люк 5 для удаления отфильтрованных примесей и полного спуска конденсата. Для стока конденсата в стенке очистителя имеется отвер-
помощи стопорного болта. Обтекая конец воздушного патрубка с клапаном, газ пересекает воздушный поток и, перемешиваясь с воздухом, образует газовоздушную смесь.

Количество газовоздушной смеси, идущей из смесителя в цилиндр двигателя через патрубок 6, регулируют дросселем смеси 7. Электрический вентилятор для розжига газогенератора (рис. 65) — обычного центробежного типа. Крыльчатка вентилятора насажена на удлиненной оси якоря электромотора и помещена в корпусе. Корпус состоит из двух половин и соединен с одной стороны через воздушную трубу с атмосферой, а с другой — с воздушным патрубком смесителя. При работе вентилятора газ отсасывается из установки и отводится через трубу в атмосферу. Когда вентилятор не работает, через ту же трубу и корпус вентилятора в смеситель засасывается двигателем чистый воздух.

Электроротор вентилятора мощностью в 200 ватт при 4000 об/мин. имеет напряжение в 12 вольт и питается от постоянной сети электрооборудования автомобиля.

Газогенераторная установка монтируется на шасси ЗИС-8 следующим образом: газогенератор установлен слева шасси за кабиной; батарея горизонтального очистителя-охладителя расположена сзади кабины в два ряда (по два цилиндра). Второй очиститель установлен вертикально справа шасси за кабиной; вентилятор помещен под брызговиком правой подножки.

Газогенераторная установка ЗИС для автомобиля ЗИС-21 (серийная)

Газогенераторный автомобиль ЗИС-21 с установкой ЗИС представляет собой усовершенствованную модель автомобиля ЗИС-13. Новая конструкция газогенераторной установки монтируется на стандартном шасси автомобиля ЗИС-5.

Установка предназначена для работы на древесных чурках нормального размера с применением обратного процесса газификации и переработки древесного поддона воск.

Газогенераторная установка состоит из следующих частей (рис. 66): а) газогенератора, б) горизонтального очистителя-охладителя.

Рис. 66. Схема газогенераторной установки ЗИС для автомобиля ЗИС-21
дителя, в) вертикального очистителя для тонкой очистки газа, г) отстойника, д) смесителя и е) электровентилятора.

Газогенератор (рис. 67) состоит из бункера с топливником и наружного кожуха. Бункер 1, выполненный из стальных трубчатых стержней, имеет в верхней части двухстороннюю трубчатую коробку 2 для охлаждения от коррозии. Жидкости сбрасываются через нижнюю штуцерную втулку, а в верхней части топливника 3, в котором смешиваются топливо с топливом, по размерам и конструкции он почти одинаков с топливником установки ЗИС-13.

Топливник газогенератора автомобиля ЗИС-21 отличается от топливника газогенератора автомобиля ЗИС-13 лишь креплением воздушных фурм 4, которое сделано на резьбе. Диаметр фурм 9,2 мм. Фурмы изготовлены из хромоникелевой стали. Фурменный пояс немного увеличен по диаметру.

Наружный кожух 5 в верхней части соединяется с фланцем 6 с бункером и фланцем 7, на котором монтируется крышка 8 загрузочного люка. Для удобства загрузки диаметр этого люка увеличен до 454 мм.

Патрубок 9, непосредственно приваренный к наружному кожуху, служит для отбора газа из газосборной камеры 10.

Равномерность отбора газа достигается благодаря козырьку - отражателю 11.

В нижней части наружного кожуха имеется два люка 12 для загрузки дополнительного восстановительного слоя углей 1 и люк 13 для очистки газогенератора от золы. Конструкция люков и загрузочных люков к ним аналогичны имеющимся на автомобилях ЗИС-13.

Газогенератор крепится в своей раме с помощью пояса 14 с тремя опорами. Газ, выходящий из газогенератора (рис. 66) по газоперегону, поступает в батарею горизонтального очистителя - охладителя, состоящую из трех цилиндров. Диаметр каждого цилиндра равен 204 мм, а длина - 1905 мм.

Между цилиндрами соединены гибкими резиновыми шлангами. Каждый цилиндр имеет внутренние две группы 1 и 2 (рис. 68) металлических дисков с отверстиями. Для предотвращения коррозии диски оцинкованы. Каждая группа дисков насаживается на три стержни. Для предупреждения сдвига дисков между ними ставят распорные втулки, надеваемые на стержни 3. На концах стержней имеются стяжные гайки.

Рис. 68. Схема очистителя-охладителя установки ЗИС для автомобиля ЗИС-21

Диаметр отверстий в дисках и расстояние между дисками постепенно уменьшаются по ходу газа (табл. 16).

<table>
<thead>
<tr>
<th>№ секции дисков</th>
<th>Количество дисков</th>
<th>Расстояние между дисками в мм</th>
<th>Количество отверстий в каждом диске</th>
<th>Диаметр отверстия в мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25</td>
<td>30</td>
<td>53</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>18</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>18</td>
<td>120</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td>18</td>
<td>150</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>10</td>
<td>201</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>10</td>
<td>201</td>
<td>8</td>
</tr>
</tbody>
</table>

Чистка цилиндров производится через люки со съемными крышками 4.

После грубой очистки газ направляется в очиститель, предназначенный для тонкой очистки газа. Это очиститель (рис. 69, стр. 96) выполнен в виде вертикального цилиндра диаметром 384 мм и высотой 1810 мм. Он соединен с батареей очистителя-охладителя стальным газопроводом. Газ поступает в очиститель по патрубку 11 и проходит два слоя оцинкованных колец Рашпига, насаженных на опорные сетки 2. Бункер очистителя засыпается около 23 000 колец.

Люки 3 и 4 служат для съема и выпуска колец, а нижний люк 5 — для удаления отфильтрованных примесей и полного спуска конденсата. Газоотводящий патрубок 8, приваренный к нижней части очистителя, имеет продольную щель для направления газа вниз. Это дает некоторую очистку газа от конденсата вследствие изменения направления движения газа.

Для крепления вертикального очистителя имеет опорный пояс 6 с двумя лапами 7. Газоотводящий патрубок 8 снабжен тремя продольными узкими прорезями, которые препятствуют уносу колец Рашпига. Трубочка 9 диаметром 8 мм служит для спуска конденсата.
По патрубку \(\Phi \) и составному газопроводу газ из очистителя поступает в отстойник, конструкция которого показана на рис. 70. Отстойник снабжен газопроводящим патрубком 1, отводящим патрубком 2, двумя успокоительными перегородками 3 и краном 4 для спуска конденсата. Корпус отстойника выполнен в виде прямоугольного короба 5.

Из отстойника газ засасывается в смеситель (рис. 71, стр. 98).

Количество воздуха, поступающего в смеситель, регулируется дросселем 1, а количество газовоздушной смеси — дросселем 2.

Смеситель соединяется с отстойником с помощью фланца 3. Сечение каналов этого смесителя увеличено по сравнению с смесителем ЗИС-13, благодаря чему достигается лучшее наполнение цилиндров.

Для розжига газогенератора служит электровентилятор (рис. 72, стр. 98), который устроен аналогично электровентилятору автомобиля ЗИС-13. Отличается он только формой лопаток крыльчатки 1 вентилятора, которые на автомобиле ЗИС-21 закрепляются между двумя дисками 2 и 3. Крыльчатка делает до 4000 об/мин. Мощность электромотора вентилятора — 200 ватт. Мотор питается электросетью от аккумуляторов.

Для уменьшения сопротивления проходу газа диаметр газопроводов увеличен.

Газогенератор монтируется (рис. 73, стр. 98) на трех лапах-кронштейнах с правой стороны в углублении кабины водителя. Каждый кронштейн крепится к раме автомобиля восьмью сквозными болтами. Батареи охладителя-очистителя располагаются под кузовом поперек рамы. Цилиндры батарен крепятся к раме автомобиля специальными лапами. Лапы имеют резиновые амортизаторы. Второй очиститель поставлен вертикально, свеса шасси, около кабины водителя и смонтирован на двух кронштейнах при помощи охранных лап.

Отстойник смонтирован под смесителем.

Смеситель непосредственно снабжен со всасывающим коллектором двигателя.

Вентилятор помещен на левой подножке автомобиля, рычаги управления смесителем и карбюратором находятся в кабине водителя.

1 В первых выпусках автомобилей ЗИС-21 устанавливается вентилятор типа вентиляторов автомобиля ЗИС-13.

2 В первых выпусках автомобилей ЗИС-21 вентилятор устанавливается на специальном кронштейне, укрепленном на раме автомобиля под брызговиком правой подножки.
Правая манетка 1 на штурвале (рис. 74) связана с педалью и действует на дроссель газовоздушной смеси смесителя. Левая манетка 2 связана с воздушным дросселем смесителя.
На арматурном щитке приборов управления (рис. 75) находятся три кнопки. Кнопка 1 связана с рычажком опережения магнето, кнопка 2 — с дросселем бензиновой смеси карбюратора, кнопка 3 — с воздушным дросселем карбюратора.

Газогенераторная установка НИИГТ Г-1 для автобуса ЗИС (экспериментальная)

Установка НИИГТ Г-1 (Научно-исследовательского института городского транспорта) представляет собой один из вариантов установки ЗИС-13 для автобуса ЗИС-8. Она состоит из газогенератора, газоохладителя-очистителя, очистителя тонкой очистки, смесителя и электровентилятора (рис. 76, стр. 100).

Газогенератор 1 работает по принципу обратного процесса газификации с периферийно-фурменной подачей воздуха. Конструкция газогенератора аналогична конструкции газогенератора автомобиля ЗИС-13. Вес чурок, загруженных в газогенератор, — 115—120 кг. Размер чурок — 60 × 60 × 80 мм.

Из газогенератора газ поступает в охладитель-очиститель 2, изготовленный из 1-миллиметровой нержавеющей стали. В корпусе охладителя смонтированы несколько отражательных пластин 3 и эмблем 4, соединенных с отводящим патрубком 5. Проходя через отражательные пластины и эмблем, газ очищается от крупных примесей, чему способствует также стекание конденсата по эмблеме. Значительная поверхность очистителя используется и для охлаждения газа.

После охлаждения и грубой очистки газ перекидывается в очиститель тонкой очистки 6.

В корпусе этого очистителя между сетками 7 насыпны кольца Рашпила. Перегородка 8 служит для направления движения газа, а люки 9 и 10 предназначены для ухода за очистителем и насыпания кольца.
Пройдя вторичную тонкую очистку, газ направляется в смеситель типа смесителя газогенераторной установки автомобиля ЗИС-13. Для розжига газогенератора в установку введен электрический вентилятор 11.

Газогенераторная установка А. Пельцера для автомобиля М-1 (экспериментальная)

Газогенераторная установка А. Пельцера работает на древесных чурках по принципу обратного процесса газификации с периферийно-фурменной подачей воздуха.

В установку входят (рис. 77, стр. 102): газогенератор, отстойник, газоохладитель-очиститель, тонкий очиститель, смеситель и вентилятор.

Газогенератор имеет прямоугольную форму. Он состоит из наружного кожуха 1, бункера 2, кожуха топливника 3, образующего внизу зольник 4, и топливника 5.

Бункер 2 емкостью в 70 кг снабжён вверху двумя загрузочными люками 6, а внизу переходит в топливник 5.

Воздух подаётся в топливник через три конические фурымы 7 диаметром 14,5 мм. Две из этих фурм соединены между собой общей воздушным каналом 8, а третья имеет отдельный воздушоподводящий патрубок 9. Такая установка фурм позволяет выключать первые две фурымы при розжиге газогенератора для ускорения розжига. Ускорение розжига достигается большой скоростью воздуха, проходящего через одну фуруму.

Значительное сечение фурменного пояса 10 дает возможность газифицировать древесные чурки размером от 100 × 100 × 120 мм.

Стенки наружного кожуха и бункера образуют газоохладительную камеру 11, которая обеспечивает полный подогрев бункера и охлаждение газа. Газоохладительная камера соединена с газоотводящим патрубком 12. Люк 13 служит для выпуска добавочного восстановительного слоя угля, а люк 14 для очистки зольника.

Из газогенератора газ поступает в отстойник 15, где благодаря уменьшению скорости движения газа оседают более тяжёлые частицы угля.

После отстойника газ поступает в охладитель-очиститель 16 по трубе 17. Корпус охладителя-очистителя имеет нижнюю и верхнюю коробку, соединенные между собой девятью последовательно расположенными трубками 18.

Газ входит в охладитель очиститель через подводящий патрубок, проходит через нижнюю коробку 19 и девять трубок в верхнюю коробку и затем отводится по патрубку 20. Конденсат, стекающий вниз по трубам, улучшает очистку газа, так как он вызывает поднимающийся газ и уносит с собой взвешенные примеси. Для спуска конденсата имеется кран 21.

После грубой очистки и охлаждения газ направляется в тонкий очиститель 22, выполненный в виде барабана с двумя сетками 23 и 24. В пространстве между сетками насыпается около 20 кг колец Рашига. Газ подводится в тонкий очиститель через патрубок 20, а отходит через патрубок 25.
Кран 26 служит для спуска конденсата. Смеситель 27 с пересекающимися потоками газа и воздуха соединен с очистителем тонкой очистки переходной коробкой 28, имеющей перекидной клапан 29. Электровентилятор 30 также соединен с этой же коробкой при помощи трубопроводов 31. Трубопровод 31 сообщается с атмосферой через патрубок 32, снабженный заслонкой. Смеситель соединяется с вентилятором через трубопровод 33.
Во время розжига газогенератора перекидной клапан должен соединить вентилятор через переходную коробку с агрегатами газогенераторной установки. Одновременно в патрубке 32 открывается заслонка, сообщающая вентилятор с атмосферой.
После розжига перекидной клапан ставится в положение, при котором открывается доступ газа в смеситель через трубопровод 33. Заслонка в патрубке 32 при этом закрывается.
Газогенератор на автомобиле располагается сзади кузова в специальном кожухе, выполненным в виде багажника.

Древесноугольные установки

Газогенераторная установка У-6 конструкции гроф. Наумова для автомобиля ГАЗ-АА (экспериментальная)

Древесноугольная установка У-6 (рис. 78, стр. 104) состоит из газогенератора, охладителя, очистителя, смесителя и ручного вентилятора.
Газогенератор работает без присадки воды по принципу прямого процесса газификации топлива с подачей воздуха под колосниковые решетку. Главными элементами генератора являются (рис. 79, стр. 105): основной бункер 1, дополнительный бункер 2, топливник 3 и зольник 4.
Основной бункер сделан из 2-миллиметровой листовой стали. Верхняя часть бункера имеет круглую крышку 5, герметично закрывающуюся при помощи скобы и барабаша. К этой же части прикреплено сбоку цельносварной стальной дополнительный бункер 2 объемом в 0,1 м³, имеющий прямоугольное сечение. Загрузочный люк дополнительного бункера закрывается прямоугольной крышки.
В нижней части основного бункера имеется газосборный пойс 6. Он образован двумя конусами с отверстиями для прохода газа. Из пойса газ отводится через патрубок 7.
Основной бункер соединен фланцем 8 с кожухом 9 топливника. Топливник внутри имеет шамотную огнеупорную обмуровку 10; она состоит из трех сплошных колец, лежащих одно на другом.
Внизу топливник заканчивается опорным кольцом, на котором лежит чугунная колосниковая решетка. Одновременно это кольцо поддерживает обмуровку.
Топливник заключен в цилиндрический корпус 11, соединенный в верхней части с фланцем основного бункера. Корпус имеет ряд отверстий 12 для дозасыпания воздуха в топливник. В нижней части кожух переходит в зольник 4, снабженный люком 13 для очистки.
Необходимый для газификации воздух поступает через воздушную камеру, образуемую стенкой корпуса и стенкой топливника. В камере воздух подогревается и затем поступает под колосниковую решетку. Полученный в газогенераторе газ отсасывается через патрубок 7 и направляется в охладитель.

Охладитель батарейно-трубчатой конструкции (рис. 80, стр. 106) составлен из шести тонкостенных газовых труб 1, вваренных в коллекторные трубы 2. Батарея располагается поперек рамы горизонтально, с небольшим наклоном назад и омывается потоком воздуха, проходящим под кузовом. Пробки 3 служат для очистки трубок батареи.

Из охладителя газ поступает по газопроводу 4 в комбинированный очиститель. Газ входит в очиститель по патрубку 1 (рис. 82,
Первой фильтрации газ направляется в матерчатый фильтр 4 из фланели, расположенный в верхней части очистителя, здесь газ проходит вторичную фильтрацию и отсасывается затем через газопровод 5 в смеситель. Очиститель имеет вверху люк 6 для промывки и установки фильтров, а внизу люк 7 для очистки. Смеситель (рис. 81) по конструкции относится к типу параллельно-послойных. Корпус смесителя сделан из бронзы. Фланец 1 смесителя присоединен к фланцу патрубка всасывающего коллектора двигателя; фланец 2 служит для соединения с газопроводом от очистителя. Кольцо 3 с восьмью круглыми отверстиями, диаметром 9 мм каждое, прикрывает воздушные отверстия в корпусе смесителя. Пружина 4 удерживает кольцо 3 в определенном положении; с помощью кольца 3 регулируют количество входящего в смеситель воздуха. Для этого при помощи ручной тяги смеситель отверстия кольца по отношению к отверстиям корпуса смесителя. Дроссель 5 позволяет прекратить доступ газа в смеситель. Количество газовоздушной смеси, направляемой в цилиндры двигателя, регулируется дросселем смеси, который расположен в патрубке, приваренном ко всасывающему коллектору.

Для розжига газогенератора в установке имеется ручной вентилятор центробежного типа. Одним отверстием он связан через патрубок с газопроводом, идущим от генератора, а другим — через трубопровод с атмосферой. В патрубке, связывающем вентилятор с газопроводом, установлена заслонка включения.

Газогенератор устанавливается с правой стороны рамы сзади кабины; батарея охлаждителя помещается на месте снятого запасного колеса и крепится к раме; охладитель соединен с газогенератором при помощи газопровода, расположенного вдоль правого люжерона рамы, а со очистителем — газопроводом, идущим вдоль левого люжерона; очиститель монтируется с левой стороны рамы за кабиной на общей с газогенератором раме; вентилятор для розжига газогенератора присоединяется к газопроводу, соединяющему газогенератор с охладителем, недалеко от последнего.

Газогенераторная установка "Панар" для грузового автомобиля "Панар и Левассор" (Франция)

Газогенераторная установка одной из старейших автомобильных французских фирм "Панар и Левассор" работает на древесном угле по принципу обратного процесса газификации с периферийно-централизованной подачей воздуха. Установка состоит (рис. 83, стр. 108) из: а) газогенератора, б) охладителя, в) очистителя, г) смесителя и д) вентилятора.

Основными частями газогенератора являются: бункер 1, кожух топливника 2, обмурованный топливник 3 с корпусом 4 и зольник 5.

Бункер, вмещающий 36 кг угля, вверху имеет загрузочный люк с крышкой 6, а внизу соединен с кожухом 2 топливника тремя болтами 7. Это соединение имеет уплотнительную прокладку 8 из асBESTового шнура, укладываемую в каналку между стенкой 1 и отражателем 9 бункера.

Через патрубок 10 кожуха топливника сообщается с вентилятором 11 и, кроме того, регулировочным краном 12 с атмосферой. В нижней части кожуха имеется зольник 5 с люком 13 для очистки. Над колосниковой решеткой 14 устроен люк 15. Зольниковая коробка имеет фланец для присоединения труб охладителя.
Топливник поддерживается опорным кольцом 16, приваренным к корпусу. Колосниковую решетку можно поворачивать при помощи рычага 17 с рукояткой.

Необходимый для горения воздух поступает через вентилятор и патрубок в пространство между стенкой кожуха и корпусом топливника 4, откуда после подогрева направляется в щель, образованную отражателем и верхней кромкой топливника.

Газ отсасывается через колосниковую решетку в зольниковую коробку, откуда поступает в охладитель.

Регулировочный кран 12 с рядом отверстий сообщает зону горения с атмосферой и дает возможность поддерживать горение при длительных стоянках.

Газ, прошедший вторичную фильтрацию, поступает через ряд отверстий в газоотводящую трубу 26 и перед выходом встречает еще один предохранительный фильтр 28. Этот фильтр сделан из двойной латунной сетки, которая быстро засоряется, если основные фильтры плохо очищают газ. Засорение этой контрольной сети служит для водителя автомобиля сигналом, что фильтры работают плохо.

Наклонный диск 29 служит для сбора отфильтрованных примесей из матерчатого фильтра; диск очищается через пробку 23.

Рис. 83. Схема газогенераторной установки "Панар" для автомобиля "Панар и Левассор"

Охладитель батарейно-трубчатого типа состоит из пяти труб 18, которые по концам имеют фланцы для соединения с зольниковой коробкой газогенератора и с коробкой 19 очистителя.

Охлажденный газ поступает в очиститель, в котором происходит двойная фильтрация.

Корпус очистителя 20 цилиндрической формы. В нижней части он имеет коробку 19 для соединения с трубками охладителя и сбора отфильтрованных примесей. Для очистки коробки служит люк 21.

Внизу же укреплена решетка 22, на которую насыпается слой фильтрующего материала — кокса до высоты, определяемой положением пробки 23. Очиститель крепится кольцом 24.

Пройдя через слой кокса, газ поступает в верхнюю часть очистителя, в которой имеется матерчатый фильтр 25, смонтированный на газоотводящей трубе 26. Фильтр состоит из шести секций 27. Каждая секция представляет собой металлическую сетку, на которую натянуты два матерчатых мешка.

Рис. 84. Схема смесителя установки "Панар"

Из очистителя газ по шлангу направляется в смеситель.

Смеситель параллельно-попоточного типа; он устроен следующим образом (рис. 84).

Газ из очистителя поступает через патрубок 1, а воздух — через патрубок 2 с дополнительным каналом 3. Количество поступающего в смеситель воздуха можно регулировать золотниковым воздушным дросселем 4, установленным в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположенным в дополнительном канале 8 на оси дросселя 7, установленного в основном воздушном канале 5, и клапаном 6, расположен...
С наружной стороны подводящего патрубка находится золотниковый дроссель 10, открывющий доступ бензиновоздушной смеси и дающий возможность присадки бензина при работе на газе. Пусковой карбюратор присоединяется к фланцу 11, патрубок 12 служит для подвода воздуха в карбюратор через фильтрующий колпачок 13.

Газогенератор монтируется в углублении за кабиной, с левой стороны шасси, причем от кузова и кабины он изолирован защитным экраном. Рядом с газогенератором под кузовом устанавливается центробежный вентилятор с ручным и электрическим приводом.

Сзади кабины с правой стороны шасси расположен очиститель, тоже изолированный от кузова и кабины. Охладитель, соединяющий газогенератор с очистителем, поставлен под рамой автомобиля в поперечном направлении.

Газогенераторная установка конструкции В. И. Карпова для автомобиля Я-5 (экспериментальная модель 1933 г.)

Газогенераторная установка Я-5 работает по принципу обратного процесса газификации и имеет периферийно-фурменную подачу воздуха (рис. 85). Установка состоит из двух однотипных газогенераторов, очистителя, охладителя и смесителя.

Газогенератор состоит из бункера 1, кожуха топливника 2, газосборной камеры-зольника 3 и топливника 4.

Бункер 1 в верхней части имеет загрузочный люк, герметически закрываемый чугунной крышкой 5 при помощи откидной планки 6 с барабаном 7. В нижней части бункера имеется фланец 8 для соединения с кожухом топливника. Бункер имеет наружный кожух 9 с теплоизолационным слоем асбеста 10.

Толщина стенки бункера 2 мм, наружного кожуха 1 мм.

Кожух топливника имеет отверстие для засасывания воздуха в камеру подогрева 11, патрубок 12 для соединения с газовым коллектором 13, опорное кольцо 14 и двойной круглый люк 15 в дне зольника, служащий для розжига газогенератора и очистки зольника и топливника.

Люк 15 имеет две крышки — большую 16 и малую 17. Большая крышка является опорой для чугунной колосниковой решетки 18. Малая крышка прижимается к своему гнезду накидной скобой 19 с барабаном.

Топливник 4 конической формы имеет сплошную глину асбестовую обмуровку. В кожухе топливника вварены 10 стальных воздушных фурм 20 диаметром 22 мм.

Корпус топливника имеет фланец, который зажимается между фланцами бункера и кожуха топливника.

Внутри бункера вдоль его стенки установлена труба 21 диаметром 38 мм, соединяющая нижнюю часть бункера с атмосферой. С помощью этой трубы поддерживается горение при розжиге и остановках; для этого крышку трубы снимают, отчего создается естественная тяга в атмосферу.

При газификации топлива воздух, засасываемый через отвер-
Газ, образующийся в топливе, оттаскивается в газосборную камеру 3, откуда по газовому коллектору 13 направляется в очиститель 23.

Очиститель 23 имеет цилиндрическую форму. Для очистки газа пропускается через металлическую стружку. Очиститель имеет крышки для очистки и для загрузки стружки.

Пройдя очиститель, газ направляется по гибкому газопроводу 24, изолированному асベストом, в охладитель 25 радиаторного типа. Охладитель имеет две секции, каждая из 9 медных 20-миллиметровых трубок, связанных вверху и внизу с плитами 26.

Сверху секции имеют общий резервуар 27, а снизу каждая из секций снабжена своим резервуаром 28. Ниже резервуары имеют люки для чистки и патрубки для соединения с очистителем и смесителем.

Газ, идущий из очистителя, поступает в первую секцию охладителя и через ее верхний резервуар проходит во вторую секцию, откуда по гибкому шлангу поступает в смеситель.

Смеситель (рис. 86) представлен донеподвижного типа представляет одно целое с поплавковой камерой 1. Поплавковая камера соединена с баком водяного топлива и, кроме того, каналом 2 со всасывающим патрубком 3. Дроссель 4, установленный в этом патрубке, служит для регулирования поступления газовоздушной смеси (а при пуске двигателя — бензиновоздушной смеси).

Газ идет в смеситель и по патрубку 5 и в камеру смесения 6 через струями, засасываемыми воздуха. Воздух засасывается через 12 отверстий 7 диаметром 5 мм, выверленных в корпусе камеры смесения, и через 16 трубок 8 диаметром 12 мм, вставленных в два ряда по периферии камеры.

Количество воздуха, входящего в смеситель, регулируют с помощью рукоятки 9, имеющей отверстия и прикрывающего воздушные отверстия камеры смесения.

Из поплавковой камеры бензин поступает при закрытом дросселе благодаря высокой степени разрежения за дросселем. При постепенном открытии дросселя и регулировке подачи воздуха с помощью кольца двигатель плавно переводится с бензина на газ.

Газогенераторная установка смонтирована на автомобиле Я-5 с двигателем "Геркулес УХ-90", имеющим степень сжатия 8,2. Газогенераторы установлены с обеих сторон шасси за кабиной на раме, связанной с лонжеронами основной рамы автомобиля. Соединительный коллектор расположен под кузовом. Рядом с коллектором на раме газогенераторов расположен охладитель, от которого идет газопровод к охладителю, установленному перед радиатором на передних концах лонжеронов. Смеситель монтируется на месте карбюратора у всасывающего коллектора двигателя.

Необходимо отметить универсальность газогенераторной установки, имеющуюся в установке для автомобиля Я-5, ее можно смонтировать на автомобиле ГАЗ-АА.

Кроме того, газогенератор можно перевести на древесное топливо (мелкую щепу). Для этого удаляют малый крышку зольникового люка и колосниковую решетку, а на их место устанавливают центральную воздушную фурму с рядом воздушных отверстий по ее периферии (рис. 87, стр. 114).

Газогенераторная установка ЛТА Лесотехнической академии им. С. М. Кирова для автомобиля ЗИС-5 (экспериментальная)

Древесноугольная установка ЛТА для автомобиля ЗИС-5 снабжена по типу установки ЛТА для тракторов СТЗ-ХТЗ; она работает по принципу горизонтального процесса газификации и имеет центрово-фурменную боковую подачу воздуха.

Ввиду того, что входящие в установку очистители циклонного типа, газоохладитель радиаторного типа, электромагнитная решетка и смеситель аналогичны по конструкции с уже разработанными агрегатами древесной установки ЛТА для автомобиля ЗИС-5 (стр. 79), ниже дается только краткое описание устройства газогенератора (рис. 88, стр. 114).

Газогенератор состоит из бункера 1, топливики 2 и зольника 3. Бункер объемом в 0,27 м³ имеет вверху загрузочный люк с крышкой 4, а внизу фланец 5 для соединения с топливником.

В верхней части бункера, кроме наружного корпуса, имеется внутренний цилиндр 6. Пространство между этим цилиндром и наружным кожухом образует кольцевой водяной резервуар вместимостью 30 литров. Отверстие 7 служит для подачи воды по трубке 8 в водяную камеру воздушной фурмы.

Топливник 2, изготовленный из 10-миллиметрового железа, имеет плоское дно, в котором для чистки газогенератора сделан люк с крышкой 9, закрывающейся при помощи планок.

В топливник введена сбоку горизонтальная воздушная фурма 10, закрепленная в штуцере 11. Внутренний диаметр фурмы 36 мм, она изготовлена из железа и окружена второй стенкой, образующей пространство для охлаждающей воды.

Газогенераторные установки
На противоположной стенке топливника приварен газоотводящий патрубок 12, перед которым установлена защитная решетка 13 с 5-мм отверстиями, предохраняющая газосборную камеру 14 от попадания в нее крупных частиц угля.
При газификации топлива производится присадка воды из водяной камеры воздушной фурмы; это повышает теплотворную способность газа за счет дополнительного образования CO и H₂.

Рис. 87. Универсальный газогенератор системы В. П. Каплова для древесного угля и древесной сирины

Рис. 88. Схема газогенератора установки ЛТА для автомобиля ЗИС-5

Испытание установки показало, что устройство водяного резервуара в газогенераторе нецелесообразно ввиду выкипания воды из-за отсутствия охлаждения.

Газогенераторная установка НАТИ Г-23 для автомобиля ЗИС и НАТИ Г-21 для автомобиля ГАЗ-АЛ (экспериментальные)

Древесноугольная установка НАТИ Г-23 (рис. 89), спроектированная по типу установок Гоэн-Пулен, состоит из газогенератора, охладителя, очистителя, смесителя и вентилятора.
Газогенератор предназначен для газификации мелкого угля размером 10—25 мм. Он работает по принципу горизонтального процесса газификации с центрально-фурменной боковой подачей воздуха.
Газогенератор имеет цилиндрическую форму. Его полная высота — 1840 мм, диаметр — 500 мм, вес загруженного угля — 51 кг.
О сновными частями газогенератора являются: бункер 1, изготовленный из 1,5-миллиметровой листовой стали, с загрузочным люком 2, топливник 3 из 6-миллиметровой листовой стали, откидной зольниковой люк 4, воздушная фурма 5, стальная решетка 6 для предохранения от уноса газом угольной мелочи, газоотводящий патрубок 7 и заслонка 8.
Заслонка 8 вставляется в специально сделанную для нее щель в центре горловины 9, соединяющей бункер с топливником. Заслонка поддерживает уголь в бункере во время чистки топливника. При работе газогенератора заслонка вынимается, а щель в горловине закрывается крышкой с уплотняющей прокладкой.

Рис. 90. Воздушная фурма газогенератора установки НАТИ Г-23:
1 — форштюк; 2 — питательная труба; 3 — воздушная трубка; 4 — дополнительная труба; 5 — вставка; 6 — асбестовая прокладка.

Воздушная фурма 5 расположена на высоте 190 мм от дна топливника. Диаметр проходного отверстия для воздуха равен 25 мм. Фурма изготовлена из красной меди и имеет форму цилиндра с двойными стенками. В пространстве между стенками циркулирует вода, охлаждаяющая фурму. Вода поступает в фурму из системы охлаждения двигателя через трубку 10, идущую от водяного насоса; из фурмы вода отводится через трубку 11, идущую к верхнему патрубку головки блока цилиндров. Перед поступлением в фурму воздух проходит через вертикальную трубу 12 с колпаком 13. Конструкция фурмы показана на рис. 90.
Защитная решетка 6 (рис. 89) подвешивается в топливнике на крючках и может быть вынута через зольниковый люк. Она имеет вогнутую форму, поставлена наклонно и снабжена рядом отверстий диаметром 8 мм.
Загрузочный и зольниковый люки закрываются крышками с асbestosовой прокладкой.

При газификации топлива в описываемом газогенераторе горение концентрируется около воздушной фурмы, а газ движется в поперечном направлении к отводящему патрубку. Из этого патрубка газ проходит в охладитель 14 цилиндрической формы, длиной 1800 мм и диаметром 210 мм. Благодаря падению скорости движения газа в охладителе одновременно с охлаждением происходит и первичная грубая очистка газа. Для удаления накапливающихся в охладителе примесей цилиндр снабжен двумя крышками 15. Охладитель соединен с газоотводящим патрубком газогенератора при помощи газопровода 16 с компенсатором 17, обеспечивающим необходимую гибкость.
Из охладителя газ поступает в очиститель 18. Очиститель имеет форму цилиндра, его высота — 1617 мм, диаметр 454 мм. Внутри очистителя на решетке 19 насажен фильтрующий материал — кокс, который служит для первоначальной очистки (по типу поверхностных очистителей); матерчатый фильтр 20, имеющийся в цилиндре, выполняет вторичную тонкую очистку.
Матерчатый фильтр изготовлен из пяти отделимых металлических каркасов, прикрепленных к общей крышке 21; на каждый каркас натянут двойной матерчатый чехол. Крышка вместе с фильтрами может быть вынута через верхний люк 22 очистителя. Для сбора примесей под матерчатым фильтром установлена коробка 23 с на克莱ным дном и люком 24 для очистки. Для загрузки кокса и чехлы нижней части прибора имеются два боковых люка 25.
Газ, при входе в очиститель меняет скорость и направление, благодаря чему частично освобождается от примесей. При дальнейшем движении газа вверх он проходит двойную очистку в комбинированном очистителе, после чего отводится через патрубок 26. Для контроля за работой очистителя отводящий патрубок снабжен сечатым фильтром 27, засорение которого указывает на плохую очистку газа.
Из очистителя газ поступает в стандартный смеситель газогенераторного автомобиля ЗИС.
Для розжига газогенератора в установку введен электровентилятор 28, питаемый током из общей сети электрооборудования автомобиля.
Газогенератор расположен с левой стороны шасси за кабиной водителя, очиститель с правой стороны за кабиной, охладитель прикреплен на кронштейнах к раме в поперечном направлении за газогенератором и очистителем. Смеситель установлен на фланце всасывающего коллектора. Электровентилятор включен в воздушопровод, идущий в смеситель.
Между газогенератором и очистителем установлен ящик, вмещающий 90 кг топлива.
Научным авто-тракторным институтом (НАТИ) построена и испытана такого же типа установка НАТИ Г-21 для автомобиля ГАЗ-АА, отличающаяся от НАТИ Г-23 только меньшими размерами. Схема газогенераторной установки НАТИ Г-21 приведена на рис. 91 (стр. 118).
Газогенераторная установка "Пионер" Д-9 для трактора "Сталинец-60" (серииная)

Установка "Пионер" Д-9 (рис. 92) для трактора "Сталинец-60" по конструкции аналогична установке Д-8 для автомобиля ЗИС-5. В обеих установках газогенераторы однотипны.

В установке для трактора батарея очистителя-охладителя состоит из пяти цилиндров; первые два цилиндра соединены не-

Рис. 92. Схема газогенераторной установки Д-9 для трактора "Сталинец-60"

посредственно с газогенератором и служат для грубой очистки газа. В них установлены стальные диски со срезанными сегментами, надетые на соединительную трубу. Конец трубы нарезан; на него надевается крышка, которая притягивается гайкой к бортах цилиндра; крышка имеет асбестовое уплотнение.

Пройдя через первые два цилиндра батареи очистителя-охладителя, газ поступает в циклонный очиститель. Этот очиститель (рис. 93) состоит из металлического корпуса 1, к которому газ подводится по касательно поставленному патрубку 2. Отводящий патрубок 3 помещен в нижней части прибора и
и угольной установки ЛТА для тракторов СТЗ-ХТЗ-30 (стр. 135). Ниже приводится описание только устройства газогенератора.

Основными деталями газогенератора являются бункер 1, наружный кожух 2, топливник 3, воздушная форсуна 4, зольник 5 и колосниковая решетка 6.

Наружный кожух имеет цилиндрическую форму; в верхней его части находится герметически закрывающийся загрузочный люк 7,
а в нижней — фланец 8 для соединения с топливником и его корпусом. Наружный кожух и стенки бункера образуют паросборную камеру 9, предназначенную для отбора паров влаги и частей продуктов сухой перегонки; топливник 3 конической формы является продолжением бункера. Пространство между топливником и его корпусом 10 является газосборной камерой. Корпус топливника окружен кожухом 11. Пространство между кожухом и корпусом топливника служит воздушной камерой, через которую проходит в целях подогрева воздух, поступающий через отверстие 12.

Из воздушной камеры воздух проходит в пространство между первым и вторым дном газогенератора, откуда через центральную воздушную фурму поступает в топливник.

Воздушная фурма имеет периферийные отверстия диаметром 8 мм, расположенные в три ряда, по шесть в каждом.

Колосниковая решетка 6 опирается на угольники, приваренные к стенкам корпуса топливника. Для встряхивания колосниковой решетки служит рычаг 13. В корпусе топливника имеются два люка. Люк 14 служит для засыпки дополнительного восстановительного слоя угля в пространство между топливником и корпусом. Люк 15 предназначен для чистки зольника.

Газ, полученный в результате газификации топлива, поступает в газосборную камеру, откуда через патрубок 16 отсыывается по газопроводу 17 к первой, а затем во второй циклонный очиститель.

После очистителей газ проходит через охладитель и направляется в эжекторный смеситель типа НАТИ, смонтированный на насосе, расположенном на коллекторе вместе с карбюратором "Энсайт RW".

Элементы, входящие в данную установку, монтируются на трактор из жесткоугольная установка ЛТА на трактор СТЗ-ХТЗ-30 (стр. 135).

Газогенераторная установка ЛС-1-3 треста Лесосудомашстрой для трактора "Сталинец-60" (серийная)

Газогенераторная установка ЛС-1-3 (рис. 96) состоит из газогенератора 1, двух циклонных очистителей 2, очистителя-отстойника 3, радиатора-фильтра 4 и смесителя.

Газогенератор (рис. 97) работает на древесных чурках размером 80 × 60 × 60 мм по принципу обратного процесса газификации и имеет периферийно-фуровую подачу воздуха. Газогенератор сделан из листовой стали толщиной 1,5 мм. Вверху газогенератора находится загрузочный люк с крышкой 1, имеющей прижимную планку 2 и затвор 3. Верхняя часть газогенератора состоит из кожухов 4 и 5, образующих между собою паросборную камеру. В эту камеру отводятся пары влаги и части продуктов сухой перегонки через отверстия 6 в кожухе 5 и кольцевую щель 7. Отверстия расположены в два ряда и прикрыты вдавленными внутрь козырьками. Паросборная камера соединена с трубкой 8, которая служит для слива конденсата, образующегося в камере. При отвинчивании болтов соединительного шва 9 вся верхняя часть газогенератора может быть снята.
Продолжением кожуха 5 служит кожух 10, который вместе с первым представляет бункер газогенератора. Бункер заканчивается вырезом приваренными к нему топливником 11, изготовленным из угледостойки стали. Кожух 10 окружен наружным кожухом 12, переходящим в корпус топливника. Кожух 12 и кожух 10 соединены с верхней частью болтовым швом 9. В нижней части корпуса топливника находится зольник 13 с люком 14 для очистки. Зольник отделен колосниковой решеткой 15, центральная часть которой при помощи рукоятки 16 может поворачиваться в горизонтальной плоскости на опорном стержне 17. Через люк 18 в пространстве между топливником и его корпусом засыпается уголь, который образует дополнительную восстановительную зону.

Необходимый для газификации воздух поступает через воздушоприемную камеру 19, снабженную обратным клапаном, в кольцевой пояс 20, откуда через 12 фурм 21 диаметром 9 мм проходит в топливник. Газ отсыывается из топливника вниз, затем поднимается в газосборное полукольцо, откуда через отсыпающий патрубок 22 направляется в очистители. По пути из топливника в газосборное полукольцо газ значительно охлаждается, так как он соприкасается со стенками бункера и расходует тепло на подогрев топлива, а также извлекает тепло через наружный кожух в атмосферу.

При выходе из генератора газ подвергается грубой очистке в двух, последовательно соединенных между собой, очистителях-циклонах 1 и 2 (рис. 98) одинаковой конструкции. Каждый из циклонов имеет касательно расположенный к его корпусу газоподводящий патрубок 3, пылеотбойное устройство 4, состоящее из двух рядов изогнутых пластинок, отводящий патрубок 5 и люк 6 для удаления собираемых примесей.

Из циклонов газ переходит в инерционный очиститель-отстойник (рис. 99), состоящий из двух горизонтально расположенных секций. Каждая секция представляет собой цилиндр 1 диаметром в 210 мм и длиною в 1200 мм, внутри которого находится корытообразно изогнутый лист 2, снабженный козырьками 3. Эти козырьки задерживают примеси, содержащиеся в газе. Люк 4 служит для удаления скопившихся в очистителе примесей.

Из инерционного очистителя газ поступает в радиатор-фильтр (рис. 100), где подвергается тонкой очистке. Этот очиститель относится к типу поверхностных; он изготовлен в виде батареи, состоящей из четырех секций 1. Диаметр каждой секции равен 210 мм,
а длина — 1200 мм. Первая, вторая и четвертая секции представляют собой вертикальные цилиндры, в каждом из которых помещаются по два дымчатых ведерка 2 с кольцами Рашига. Высота слоя кольц Рашига в одном ведерке равна 250 мм. Третья секция, также цилиндрической формы, не имеет ведерок с кольцами Рашига. В этом цилиндре есть только одна неполная вертикальная перегородка 3. Все секции соединены между собой последовательно и имеют люки 4, служащие для загрузки и взвешивания ведерок и для промывки. Трубки 5 предназначены для слива конденсата.

Циклонные очистители соединены с газогенератором и инерционным очистителем металлическими газопроводами при помощи эластичных амортизаторов-компенсаторов. Инерционный очиститель соединен с поверхностью тонким очистителем при помощи трубопровода и шлангов.

Благодаря значительной поверхности всех очистительных приборов газ охлаждается параллельно с его очисткой, поэтому специальных охладителей в установке нет.

Из тонкого очистителя газ засасывается в перпендикулярно-

потовочный смеситель экжекционного действия типа НАТИ. Этот смеситель (рис. 101) состоит из корпуса 7, воздушного 2 и газового 3 патрубков. К флажку 4 при помощи переходного угольника 5 крепится карбюратор 6 трактора ЧТЗ. В верхней части смесителя последовательно установлены две заслонки. Заслонка 7 является общим дросселем смеси, регулирующим количество смеси, поступающей в цилинды как при работе на бензине, так и на газе. Заслонка соединена тягой 8 с регулятором оборотов двигателя.

Дроссели 9 и 10, соединенные общей тягой 11, приводятся в действие тягой 12 с ручным управлением. Дроссель 9 открывает доступ бензиновоздушной смеси из карбюратора, а дроссель 10 — доступ газовоздушной смеси на смесителя. При работе на газ дроссель 10 должен быть открыт, а дроссель 9 — закрыт.

Воздушный патрубок 2 присоединяется к двигателю 13, связанный тягой 14 с рычагом ручной регулировки воздуха. Поступление воздуха в карбюратор при работе на бензин регулируется заслонкой 15.

Верхним флажом смеситель крепится к всасывающему коллектору.

В установке ЛС-1-3 выпуска 1939 г. (рис. 96) внесены следующие основные конструктивные изменения:

- в газогенераторе устранен кольцевой отбор газа, поставлен газообразный патрубок по типу газогенератора автомобиля ЗИС-21, а для равномерного отсоса газа между наружным кожухом и бункером введен отражательный козырек;
- в радиаторе-фильтре первые две секции соединены параллельно, а остальные последовательно. Кроме того, кольца Рашига заменены на оцинкованную коробку, а присоединяются через специальные резьбы;
- перед радиатором-фильтром для защиты его от ударов при наезде на препятствия установлена мощный буфер (бампер) в виде поперечной балки на кронштейнах.

Монтаж установки ЛС-1-3 осуществлен следующим образом (см. рис. 131): газогенератор установлен левой стороны от места водителя над гусеницами, циклонные очистители расположены в перед газогенератора, инерционный очиститель — под сиденьем водителя, радиатор-фильтр — перед радиатором трактора.

Газогенераторная установка НАТИ-ХТЗ-2Г (НАТИ Г-19) для трактора ХТЗ-ТГ (серийная)

Газогенераторная установка НАТИ Г-19 спроектирована для работы на древесных чурках. Она работает по принципу обратного процесса газификации и имеет перфорированную фурменную подачу воздуха.

Составными элементами установки являются (рис. 102, стр. 129):

- газогенератор, два циклонных очистителя, охладитель, тонкий очиститель, отстойник и смеситель.

Газогенератор состоит из наружного кожуха 1, бункера 2, топливника 3 и зольника 4. Бункер и наружный кожух соединены ввер-
Конструкции авто-тракторных газогенераторных установок

130

Конструкции тракторных газогенераторных установок

131

ху при помощи фланцев. Бункер, вмещающий 60 кг топлива, имеет загрузочный люк с крышкой 5, прижимаемой к люку рессорной плаякой 6. В нижней части бункера переходит в цельнолитой топливник 3 с рядом воздушных фурм, окруженных колышевым воздушным поясом 7, который сообщается с атмосферой через воздушоприемник 8. Камера имеет отверстый клапан 9. Под топливником расположена подвижная колосниковая решетка 10, которая может приводиться во вращение рукояткой 11. Люк 12 служит для очистки зольника.

Бункер и наружный кожух образуют между собой газообразующую камеру 13. Генераторный газ из топливника проходит в эту камеру, откуда поступает в отводящий патрубок 14. Проходя через газообразующую камеру, газ подогревается топливом в бункере, а через наружный кожух отдает тепло в атмосферу и, таким образом, значительно охлаждается.

Из генератора газ входит в два, последовательно соединенные очистители 15 и 16 циклонного типа.

Пройдя грубую очистку, газ поступает в охладитель 17 радиаторного типа. Охладитель состоит из нижнего резервуара 18, разделенного перегородкой на два отделения, сердцевины 19 и верхнего резервуара 20. Крышки 21 служат для чистки охладителя, а пробки 22 для спуска конденсата.

После охладителя газ направляется для тонкой очистки в тре- тий очиститель поверхностного типа. Этот очиститель представляет собой бак, который разделен на две секции, соединенные между собой трубкой. Каждая секция заполнена кольцами Рашита, паянными на поддерживающие сетки. Люки 23 и 24 служат для на- сыпания и удаления колец.

Газ входит в очиститель по патрубку 25, проходит через слой колец в первом отделении и, спустившись по трубе во второе отделение, проходит через второй слой колец и проходит через патрубок 26.

После тонкой очистки газ поступает в водоотделитель-отстойник и затем идет в эжекторный смеситель типа НАТИ.

Газогенератор монтируется за кабиной с левой стороны (рис. 103), охладитель расположен впереди радиатора трактора, два циклонных очистителя — сзади кабины, тонкий очиститель — на месте топливного бака.

Газогенераторная установка НАТИ Г-25 для трактора ГТ3-63.

Рис. 103. Газогенераторная установка НАТИ-ХТЗ-2Г для трактора ХТЗ-Т2Г

служит для очистки зольника и колосниковой решетки. Воздух поступает в топливник через два входных канала 10 с предохранительными обратными клапанами 11, через колышевой воздушный пояс 12 и восемь стальных фурм 13 диаметром 10 мм, расположенных по периферии топливника. Газ отводится из топливника в газообразное пространство, образованное наружным кожухом и бункером, и через отсасывающий патрубок 14 поступает в очистительные приборы. По пути из топливника к отсасывающему патрубку газ подогревается весь бункер и одновременно значительно охлаждается сам.

Из газогенератора газ последовательно переходит в первый и второй очистители-циклоны 15 и 16. После первой очистки в циклонах газ поступает в четырехsekционную батарею инерционно-ударного очистителя 17. Каждая секция этого очистителя сделана в виде цилиндра, внутри которого смонтированы на трех стержнях.
диски с отверстиями. Эти диски расположены так, что газ, проходя через очистители, многократно изменяет направление, ударяется о диски и фильтруется.

После грубой очистки газ направляется для тонкой очистки. Изменяясь для этой цели очиститель поверхностного типа 18 устроен в виде батареи из четырех секций, из которых первые две соединены параллельно, а остальные — последовательно. В каждую секцию на съемную сетку насыпаются кольца Рашинга, служащие материалом для фильтрации газа. Высота слоя — 600 мм. Засыпка проиществуется через люки 19, которые используются также и для промывки колец. Люки 20 служат для выгрузки колец. Для сброса конденсата имеются трубы 21.

Специальных охладительных приборов установка не имеет; газ охлаждается, проходя через очистители, имеющие значительную поверхность.

Из последнего очистителя газ поступает в отстойник 22, выполненный в виде цилиндрического резервуара с патрубками для подвода и отвода газа. В отстойнике накапливается конденсат из водяных паров, уносимых газом. Очищенный газ после отстойника заасываеться в смещитель параллельно-струйного типа.

Расположение газогенераторной установки на тракторе показано на рис. 105: газогенератор смонтирован с левой стороны трактора вблизи сидения водителя, циклоны расположены впереди газогенератора, одна секция инерционно-ударного очистителя помещена под сиденьем водителя, три остальных секции очистителя расположены горизонтально перед водителем, фильтр-охладитель смонтирован перед радиатором трактора.
Древесноугольные установки

Газогенераторная установка ЛТА Лесотехнической академии им. С. М. Кирова для тракторов СТЗ-ХТЗ-30 (экспериментальная)

Древесноугольная установка ЛТА для тракторов СТЗ-ХТЗ-30 сконструирована по типу установки "Гоен-Пулен" (Франция). Газогенератор работает по принципу горизонтального процесса и имеет центрируально-фурменную боковую подачу воздуха. Применяемый в качестве топлива древесный уголь должен быть с влажностью до 15% и размером в греческий окрех.

Газогенераторная установка (рис. 106) состоит из следующих частей: газогенератора, очистителя-циклона, охладителя, тонкого очистителя и смесителя.

Рис. 106. Схема газогенераторной установки ЛТА для тракторов ХТЗ и СТЗ

Газогенератор цилиндрической формы имеет бункер 1, изготовленный из 1,5-миллиметрового железа, и топливник 2 — из 8-миллиметрового железа. Эти две части газогенератора соединены между собой переходным конусом. Бункер снабжен в верхней части загрузочным люком с герметическими закрывающейся крышкой 3. В днище топливника устроен зольниковый люк 4.

Воздух, необходимый для горения, подается в топливник через боковую воздушную фурму 5, которая ввинчена в штуцер, приваренный к наружной стенке топливника.

Воздушная фурма имеет двойные стенки, между которыми циркулирует охлаждающая вода. Вода подается из системы охлаждения двигателя, в которую она вновь возвращается, пройдя между стенками фурмы.

Против воздушной фурмы с небольшим смещением вниз в стенке топливника устроен газоотводящий патрубок 6, перед патрубком концентрично наружной стенке установлена решетка 7 с отверстиями в 5,5 мм. Она предохраняет патрубок от попадания в него угля. Из генератора газ отводится по газопроводу 8 в очиститель-циклон 9.

После грубой очистки газ из циклона поступает в охладитель радиаторного типа.

Основными его частями являются нижний и верхний резервуары и сердечника.

Нижний резервуар разделяют перегородкой на две секции, из которых одна 10 соединена с циклоном, а другая 11 — с газопроводом тонкого очистителя. Каждая секция резервуара имеет пробку для спуска конденсата.

Верхний резервуар 12 имеет два люка для очистки всего радиатора.

Сердечник 13 состоит из 16 трубок прямоугольного сечения и соединяет нижний и верхний резервуары.

Из охладителя газ проходит во второй очиститель, предназначенный для тонкой очистки газа. Этот очиститель имеет цилиндрическую форму и снабжен в нижней части патрубком, к которому присоединяется газопровод, идущий от охладителя.

Над входным патрубком 14 укреплена решетка 15, на которую насыпается кокс или битый фарфор, служащий первым фильтром 16 в очистителе. В верхней части расположен вертикальный матерчатый фильтр 17, который соединен с патрубком газопровода 18, идущего к смесителю 19.

Над решеткой первого фильтра очистителя имеется загрузочный люк 20. В верхней и нижней частях очистителя для чистки и осмотра устроены герметические закрывающиеся крышки 21.

Очищенный и охлажденный газ из второго очистителя поступает в эжекторный смеситель типа НАТИ.

Смеситель смонтирован на всасывающем коллекторе двигателя вместе с карбюратором "Энсайн RW", который оставлен для пуска двигателя.

Газогенератор смонтирован слева за сиденьем тракториста, циклонный очиститель расположен у рулевой колонки, а второй очиститель — около воздухоочистителя; охладитель установлен перед радиатором.
Глава VI

МОНТАЖНЫЕ СХЕМЫ АВТО-ТРАКТОРНЫХ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК

Монтаж газогенераторных установок требует соблюдения следующих основных правил:
1) элементы газогенераторной установки не должны выходить за габариты машины;
2) элементы установки не должны мешать водителю машины при управлении и нарушать видимость;
3) расположение элементов газогенераторной установки должно обеспечивать прочность крепления их на машине;
4) элементы газогенераторной установки должны размещаться на машине с соблюдением правил противопожарной техники;
5) размещение элементов газогенераторной установки должно допускать удобную очистку, осмотр, разборку, сборку и ремонт;
6) машина с газогенераторной установкой должна по возможности сохранять нормальную грузоподъемность.

Указанные правила распространяются на монтаж газогенераторных установок как на автомобиле, так и на тракторе, за исключением первого и последнего пунктов, которые при монтаже на тракторе не обязательны. Так как автомобили и тракторы имеют свои особенности, схемы расположения установок на них неоднаковы и будут рассмотрены раздельно.

СХЕМЫ РАСПОЛОЖЕНИЯ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК НА АВТОМОБИЛЕ

При размещении элементов газогенераторной установки на автомобиле прежде всего следует учитывать необходимость сохранения полезной площади кузова. Однако в некоторых случаях эксплуатация автомобиля в лесной промышленности (поездки вывозки, перевозки длинника) последнее обстоятельство не имеет решающего значения.

В размещении отдельных элементов газогенераторной установки наилучшую трудность представляет монтаж газогенератора как самой громоздкой и тяжелой части. Его располагают за кабиной водителя с левой (рис. 107), а в редких случаях с правой стороны (рис. 108).

За газогенератором, помещенным с левой стороны, водителю удобно наблюдать. Кроме того, при езде по дорогам с нормаль-
При монтаже газогенератора загрузочный люк обычно располагают на уровне козырька кабины, а топливно-зольниковую часть опускают до общего клиренса автомобиля, что выгодно как для охлаждения газогенератора, так и в отношении пожарной безопасности. Для удобства загрузки, очистки, осмотра и розжига все люки, имеющиеся в газогенераторе, должны быть расположены так, чтобы при эксплуатации имелся к ним свободный доступ.

Все люки должны закрываться герметически. Для свободной циркуляции воздуха вокруг газогенератора, а также в целях по-

Рис. 109. Расположение газогенератора между кабиной и кузовом (автомобиль ЗиС-13)

Рис. 110. Расположение газогенератора в специальном углублении кабины (автомобиль "Папар и Левассор" с установкой "Папар")

Рис. 111. Расположение газогенератора за решетчатой дверью в углублении кабины (автомобиль "Фаун-Дейтц" с установкой "Гумбольдт-Дейтц")

Рис. 112. Расположение батареи газохладитель-очистителей на месте запасного колеса (автомобиль ЗиС-5 с установкой Д-8)
жарной безопасности, между кузовом и газогенератором оставляется зазор в 7—12 см. Поверхность кузова, обращенную к газогенератору, рекомендуется изолировать, для этого его покрывают асбестом и обивают листовым железом или же устанавливают теплозащитный экран.

Газоочистители следует располагать так, чтобы можно было удобно их осматривать, чистить и спускать конденсат. Кроме того, при размещении очистителей, по которым проходит горячий газ, необходимо учитывать их опасность в пожарном отношении.

В зависимости от типа газоочистителей они устанавливаются:
а) под кузовом на месте запасного колеса (рис. 112, стр. 139),
б) между кузовом и кабиной (см. рис. 109),
в) на подножке автомобиля (рис. 113),
г) под кузовом сбоку (рис. 114),
д) в специальном углублении кабины (рис. 115).

Расположение охладителей должно обеспечить максимальное обдувание их инерционным воздушным потоком. Радиаторные охладители лучше всего располагать перед основным радиатором машины, что позволяет использовать встречный поток воздуха и работу воздушного вентилятора. В этом случае можно интенсивно охлаждать газ при минимальных размерах охладителя. При таком расположении охладитель доступен для осмотра и чистки и в случае хорошей отделки не портит внешний вид автомобиля (рис. 116, стр. 142).

Охладители батарейно-трубчатого типа чаще всего располагают в месте, предназначенном для запасного колеса (рис. 117, стр. 142), а иногда сбоку кабины (рис. 118, стр. 143) или под рамой.
В установках с ручным или электрическим вентилятором последний монтируется с таким расчетом, чтобы обеспечить отсасывающее действие во всей системе газогенераторной установки. Это облегчает быстрый розжиг газогенератора и заполнение газом всех элементов установки, а также дает возможность поддерживать горение топлива в газогенераторе при остановках. Для этого вентилятор соединяется всасывающим отверстием со смесителем, а выводным – с вертикально поставленной трубой, доходящей до козырька кабины (автомобили ЗИС-13). Вентилятор монтируется под брызговиком правой подножки. Вывод газа в атмосферу через такую трубу улучшает условия работы водителя. Кроме того, заасыщение воздуха через эту трубу позволяет использовать для газовоздушной смеси более чистый воздух.

Смеситель устанавливается или непосредственно на всасывающем коллекторе двигателя или на месте карбюратора.

На всасывающем коллекторе смеситель крепится при помощи короткого патрубка, приваренного сверху (рис. 119) к коллектору. В этом случае карбюратор устанавливается внизу, под коллектором.

При установке на месте карбюратора смеситель соединяется своим фланцем с фланцем для карбюратора. Карбюратор же крепится на специальном патрубке смесителя или на фланце, сделанном на всасывающем коллекторе двигателя (рис. 120, стр. 144).

Управление смесителем и карбюратором осуществляется с помощью системы тяг, выведенных в кабину водителя. Количество этих тяг должно быть минимальным, а присоединение их удобным для водителя. Тяги следует размещать так же, как и на машинах, работающих на бензине, чтобы сохранить привычное для водителя расположение.
Если с двигателя снят карбюратор (рис. 121), то можно ограничиться двумя тягами. В этом случае одна из тяг 1 соединена с воздушным дросселем, а другая 2 — с дросселем газо воздушной смеси. Если на двигателе ставится карбюратор, то число тяг обычно доводится до четырех (рис. 122). Из них тяга 1 связывается с воздушным дросселем карбюратора, тяга 2 — с дросселем смеси карбюратора; тяга 3 — с воздушным дросселем смесителя и тяга 4 — с дросселем газо воздушной смеси смесителя. Дроссель смеси карбюратора часто связывается с дросселем перевода смесителя таким образом, что открывание первого обеспечивает закрывание второго и наоборот. Этим достигается плавный перевод двигателя с бензина на газ и обратно. Если в смесителе отсутствует дроссель перевода, то переключение тяг на дроссель газо воздушной смеси смесителя и на дроссель смеси карбюратора. Дроссель газо воздушной смеси соединяется с педалью акселератора.

Имеющаяся на штурвале манетка определения зажигания и манетка дросселя смеси сохраняются. К манетке дросселя смеси вместо тяги дросселя смеси карбюратора присоединяется тяга дросселя газо воздушной смеси. Манетку управления воздушным дросселем карбюратора и манетку дросселя перевода иногда выносят на дополнительный щиток с правой стороны арматурного щитка (рис. 123) или монтируют непосредственно на этом щитке (см. рис. 75).

На автомобиле ЗИС-13 манетка определения зажигания и манетка подсоса воздуха в карбюраторе оставлены на месте, как и у бензиновой машины. К манетке дросселя смеси карбюратора присоединена тяга дросселя газо воздушной смеси смесителя; тяга воздушного дросселя смесителя и дросселя смеси карбюратора соединены с манетками, смонтированными на рулевом кронштейне (рис. 124, стр. 146). Дроссель смеси карбюратора все время отрегулирован пружиной и остается закрытым.

Управление всеми тягами и дросселями несложно. Перевод же двигателя с бензина на газ и обратно требует от водителя некоторых навыков и опыта.
Все элементы газогенераторной установки соединяют при помощи газопроводов диаметром от 40 до 100 мм, снабженных фланцами или соединительными муфтами. Практика эксплуатации автомобилей на лесосырьевозе показывает, что при жестком соединении газопроводов в них появляются трещины от неизбежных перекосов — машин и трасс. Поэтому жесткие соединения стали заменять гибкими — резино-асベストовыми шлангами, резиновыми металлическими трубами или трубами с компенсаторами (рис. 89). Шланги из прорезиненной ткани устанавливаются только в тех случаях, когда по соединяемым газопроводам идет холодный газ. На трубах шланги крепятся стяжками хомутами. Гибкие трубы из проволоки с асBESTовыми уплотнениями являются хорошим соединением, но требуют внимательного наблюдения за состоянием асбеста, который от траски разрушается, отчего возникают подсосы.

Для сокращения пути, проходящего газом из газогенератора в смеситель, уменьшения сопротивления движению газа и для компактности расположения элементов всей газогенераторной установки газопроводы необходимо делать возможно более короткими. Количество изгибов также должно быть уменьшено до минимума, и они должны быть правильными. Изгибы вниз в виде колен не допускаются, так как в них неизбежно будет накапливаться, а зимой замерзать конденсат, что приводит к прекращению подачи газа. Если такие колена все же имеют, их необходимо снабдить пробками или кранами для сливки конденсата, или специальными резервуарами-отстойниками с краном.

Во всех фланцевых соединениях установки для герметичности обязательно должны быть поставлены плотные прокладки. После монтажа установки соединения обязательно проверяют, чтобы убедиться в отсутствии подсосов.

СХЕМЫ РАСПОЛОЖЕНИЯ ГАЗОГЕНЕРАТОРНЫХ УСТАНОВОК НА ТРАКТОРЕ

Размещение газогенераторной установки на тракторе подчиняется общим требованиям, изложенными в начале главы, но отдельные элементы располагаются иначе, чем на автомобиле. Отсутствие свободных площадок на тракторе затрудняет размещение всех элементов газогенераторной установки в пределах габаритов трактора. Обычно за габариты трактора немного выходит очиститель-охладитель, располагаемый сзади радиатора трактора.

Газогенераторы монтируют с левой стороны сиденьем водителя на двух поперечных балках о изогнутыми концами для охлаждения газогенератора. Балки пропускают под сиденьем тракториста и за крепляют болтами на двух продольных швеллерах, смонтированных на крыше заднего моста. Концы этих швеллеров выступают за сиденье тракториста. Дно зольника газогенератора располагается над левым крылом гусеницы примерно на 15—20 см.

При таком расположении газогенератора вся его поверхность соприкасается с воздухом, что совершенно необходимо, как для тракторы тихоходные. От сиденья тракториста газогенератор отделяется теплоизоляционным экраном.

Батарейно-трубчатые охладители-очистители монтируют сзади сиденья тракториста или впереди радиатора (рис. 125). Реже батареи монтируют под сиденьем, которое в этом случае поднимается на высоту 40—50 см.

При монтаже впереди радиатора цилиндры батареи устанавливаются на двух швеллерах 1, привернутых болтами к концам рамы, и крепятся в верхней части скобами 2 к раме радиатора.
Когда батарейный охладитель заменяют радиаторным, его также монтируют перед основным радиатором (рис. 126).

Циклонные очистители устанавливают обычно непосредственно около газогенератора — спереди или справа от него. Иногда циклон помещают на правой стороне трактора рядом с маховиком (рис. 127).

Смеситель крепят к фланцу всасывающего коллектора, причем стандартный карбюратор сохраняется (рис. 128). Для питания карбюратора устанавливается небольшой бачок, а основной бак и прибор подачи топлива снимаются. Топливо поступает самотеком.

Управление карбюратором и смесителем осуществляет темно тяг (рис. 129), аналогичной рассмотренной в управлении этим же приборами в автомобиле. Имеющаяся на тракторе тяга от регулятора к дросселю смеси карбюратора соединяется в дросселе газовоздушной смеси смесителя.

Вторая тяга, управляющая воздушным дросселем смесителя, выводится на площадку управления к самостоятельному рычажку.

Третья тяга, идущая к дросселю перевода смесителя, соединенному с дросселем карбюратора, также выводится на площадку управления к отдельному рычажку.

Дроссель карбюратора связан с дросселем перевода смесителя: при открытии дросселя перевода закрывается дроссель карбюратора и наоборот. Воздушный дроссель смесителя регулируется самостоятельно. Воздух, поступающий в карбюратор, тягами не регулируется.

При монтаже газогенераторной установки на тракторе необходимо
Рис. 130. Монтажная схема газогенераторной установки ЗИС на автомобиле ЗИС-13.
1—газогенератор; 2—топливный отстойник; 3—трубопроводы; 4—аспирация; 5—вентилятор

Рис. 131. Монтажная схема газогенераторной установки ЛС-1-3 на тракторе "Сталинец-60".

Установить теплоизоляционные щиты, без которых условия работы тракториста ухудшаются.

Для иллюстрации расположения отдельных элементов автомобильно-тракторных газогенераторных установок на машинах приводятся монтажные схемы установок на автомобилях ЗИС-13 (рис. 130), ЗИС-21 (рис. 132) и установки ЛС-1-3 на тракторе "Сталинец-60" (рис. 131).
Глава VII
ТЕПЛОВОЙ РАСЧЕТ ГАЗОГЕНЕРАТОРА

МЕТОД РАСЧЕТА

Тепловой расчет газогенератора производится для определения расходов топлива и воздуха и установления теплового режима газификации.

Методы расчета стационарных газогенераторов прямого процесса газификации достаточно детально разработаны проф. Грум-Гражданиным и Драбковским. Однако они не применимы для расчета газогенераторов обратного процесса газификации, так как в газогенераторах прямого процесса газификации продукты сухой перегонки, получающиеся из топлива, не попадают в зону высоких температур и механически смешиваются с генераторным газом. Состав генераторного газа, образующегося в результате прямого процесса газификации, можно определить сложением количества продуктов газификации с количеством продуктов, полученных при сухой перегонке топлива.

В газогенераторах обратного процесса газификации продукты сухой перегонки проходят через активную зону, где часть из них, вступая в реакцию с кислородом воздуха, сгорает, а часть разлагается, образуя новые производные.

В современной литературе отсутствуют точные данные о горении и разложении продуктов сухой перегонки при обратном процессе газификации и поэтому при расчетах газогенераторов обратного процесса задаются характерным составом топлива и составом газа, полученного в генераторе соответствующей конструкции. Тогда, сравнивая количество соответствующих элементов топлива и генераторного газа, подсчитываем величины, характеризующие обратный процесс газификации.

Такой метод расчета называется методом баланса.

Тепловой расчет методом баланса состоит из определения материального и теплового балансов газогенератора.

В материальном балансе определяется расход топлива и воздуха, участвующих в образовании генераторного газа заданного состава, а также подсчитывается выход и влагосодержание газа, получающееся из 1 кг рабочего топлива.

Тепловой баланс составляется на основе подсчета выделившегося и поглощенного в химических реакциях тепла. Этот баланс дает возможность определить температуру образующегося генераторного газа и коэффициент полезного действия газогенератора.

Материалный баланс

Обычно баланс определяется или на 100 кг-моль генераторного газа или на 100 кг топлива. Оба метода совершенно равноценны, но рекомендуется применять первый, как дающий некоторые упрощения в арифметических подсчетах.

МАТЕРИАЛЬНЫЙ БАЛАНС

Наиболее характерный состав сухого газа, полученного в различных транспортных газогенераторных установках, помещен в табл. 17.

<table>
<thead>
<tr>
<th>Газогенератор</th>
<th>Топливо</th>
<th>Объемный состав газа в %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CO</td>
<td>H₂</td>
</tr>
<tr>
<td>„Бернадо“</td>
<td>19,5</td>
<td>16,3</td>
</tr>
<tr>
<td>„Саган“</td>
<td>16,0</td>
<td>16,0</td>
</tr>
<tr>
<td>„Кроман“</td>
<td>15,4</td>
<td>12,2</td>
</tr>
<tr>
<td>ЛГ 9</td>
<td>21,0</td>
<td>16,0</td>
</tr>
<tr>
<td>ЗИС-13</td>
<td>19,4</td>
<td>17,2</td>
</tr>
<tr>
<td>ЛТА</td>
<td>15,8</td>
<td>15,3</td>
</tr>
<tr>
<td>ЦНИИТЭ</td>
<td>30,0</td>
<td>7,0</td>
</tr>
<tr>
<td>„Папар“</td>
<td>28,6</td>
<td>2,1</td>
</tr>
<tr>
<td>ЛТА</td>
<td>26,4</td>
<td>11,2</td>
</tr>
</tbody>
</table>

Как видно из таблицы, в состав генераторного газа входит кислород, который иначе с воздухом попадает в газ через неплотности в соединениях газогенераторной установки. При нормальном процессе газификации в получающемся газе кислород содержится в небольших незначительных количествах, измеряемых десятymi долями процента. Кислород, попавший в больших количествах через неплотности в соединениях газогенераторной установки, из состава газа исключается. В том случае, если содержание кислорода в газе не больше 0,5%, исключать его не следует.

Процентное содержание воздуха, попавшего в газ через неплотности, определяется по формуле:

\[L = \frac{100}{21} O₂, \]

где \(O₂ \) — процентное содержание кислорода в газе.

Для определения нормального состава генераторного газа, т. е.

1. О к и л о г р а м м а — м о л е к у л а вещест в а называется молем. 1 моль вещества для всех совершенных газов при одинаковых давлениях и температурах занимает один и тот же объем, равный 22,4 м³ при 0 °С и 760 мм рт. ст.
2. Сухим называется газ, не содержащий влаги. Он получается в газоанализаторах, где при определении составных компонентов газа находящаяся в нем влага конденсируется и в состав газа не входит.
такого газа, в котором воздух отсутствует, процентное содержание компонентов газа перемножается на поправочный коэффициент:

\[K = \frac{100}{100 - L} \]

После введенной поправки состав сухого генераторного газа в процентах по объему будет таков:

<table>
<thead>
<tr>
<th>Компонент</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углекислота</td>
<td>CO₂%</td>
</tr>
<tr>
<td>Окись углерода</td>
<td>CO%</td>
</tr>
<tr>
<td>Метан</td>
<td>CH₄%</td>
</tr>
<tr>
<td>Тяжелых углеводородов</td>
<td>C₆H₁₂O₆%</td>
</tr>
<tr>
<td>Водорода</td>
<td>H₂%</td>
</tr>
<tr>
<td>Азот</td>
<td>N₂%</td>
</tr>
</tbody>
</table>

Всего: 100%

Содержание основных элементов в компонентах 100 кг-моль генераторного газа определяется по формулам:

для углерода \(\Sigma C = (CO₂ + CO + CH₄ + 2C₆H₁₂O₆) \) кг-моль;

для водорода \(\Sigma H₂ = (H₂ + 2CH₄ + 2C₆H₁₂O₆) \) кг-моль;

для кислорода \(\Sigma O₂ = (CO₂ + 0,5 CO + O₂) \) кг-моль;

для азота \(\Sigma N₂ = N₂ \) кг-моль.

В этих формулах компоненты генераторного газа выражены в объемных процентах.

Для составления материального баланса выбирают какое-либо твердое топливо, в 1 кг которого в весовых процентах содержится:

<table>
<thead>
<tr>
<th>Компонент</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углерода</td>
<td>Cₚ%</td>
</tr>
<tr>
<td>Водорода</td>
<td>H₂%</td>
</tr>
<tr>
<td>Кислорода</td>
<td>O₂%</td>
</tr>
<tr>
<td>Азот</td>
<td>N₂%</td>
</tr>
<tr>
<td>Вода</td>
<td>H₂O%</td>
</tr>
<tr>
<td>Зола</td>
<td>A%</td>
</tr>
</tbody>
</table>

Всего: 100%

По правилу Дююнга, считается, что весь кислород топлива связан с водородом, образуя воду, несящую название воды Дююнга.

Применив это правило для газогенераторов обратного процесса газификации, можно найти расчетный состав топлива в процентах по весу:

<table>
<thead>
<tr>
<th>Топливо</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углерода C</td>
<td>Cₚ%</td>
</tr>
<tr>
<td>Водорода H₂</td>
<td>H₂%</td>
</tr>
<tr>
<td>Азот N₂</td>
<td>N₂%</td>
</tr>
<tr>
<td>Вода H₂O</td>
<td>H₂O%</td>
</tr>
<tr>
<td>Зола A</td>
<td>A%</td>
</tr>
</tbody>
</table>

Всего: 100%

Баланс углерода

Практически установлено, что углерод топлива неполностью участвует в процессе газификации, так как часть его превращается в золу, а часть уносится в виде угольной мелочки, сажи и смолы. По данным Гладворганса, потери углерода в автогазогенераторах составляют 1,6—1,7% по данным Инж. Вознесенского (Архангельский лесотехнический институт) — 1,25—1,4% по данным Лесотехнической академии им. Киррова — 1,5—1,6%.

Пропорции вычислены от веса рабочего топлива, поэтому потери углерода в процентах от веса углерода топлива должна быть соответственно пересчитана.

Если через \(Cₚ \) обозначить потерю углерода, то количество углерода, перешедшего в газ, будет равно \((Cₚ - Cₚ^m) \) кг/100 на 1 кг рабочего топлива.

Учитывая, что объем 1 кг-моль газа при нормальных условиях (т. е. при температуре 0° Ц и давлении 760 мм рт. ст.) равен 22,4 м³ и что атомный вес углерода равен 12, получим следующее содержание углерода в 1 м³ газа:

\[\frac{12}{100 \times 22,4} \] (CO₂ + CO + CH₄ + 2C₆H₁₂O₆) кг/м³.

Определив по этой формуле содержание углерода в 1 м³ газа и зная количество углерода в одном килограмме топлива, выход генераторного газа из одного килограмма топлива можно получить, пользуясь выражением:

\[V_r = \frac{22,4 (Cₚ - Cₚ^m) \times 100}{12 \times 100 (CO₂ + CO + CH₄ + 2C₆H₁₂O₆)} \] м³/кг,

или

\[V_r = \frac{Cₚ - Cₚ^m}{0,536 (CO₂ + CO + CH₄ + 2C₆H₁₂O₆)} \] м³/кг.

При нормальных условиях 100 кг-моль газа занимают объем 22,4 × 100 м³ и содержат 12 (CO₂ + CO + CH₄ + 2C₆H₁₂O₆) кг углерода, поэтому для получения 100 кг-моль газа необходимо ввести в газогенератор:

\[G_n = \frac{12 (CO₂ + CO + CH₄ + 2C₆H₁₂O₆) \times 100}{Cₚ - Cₚ^m} \] кг рабочего топлива.

Баланс азота

При образовании 100 кг-моль газа в газогенератор вместе с топливом вводится:

\[G_n N₂ = \frac{28 \times 100}{28 \times 100} \] кг-моль азота.
В 100 кг-моль газа содержится ΣN₂ кг-моль азота; следовательно, на каждые 100 кг-моль газа из воздуха поступает:

\[N_2^g = \frac{\sum N_2^f \cdot G_1 \cdot N_2^m}{28 \cdot 100} \quad \text{кг-моль азота.} \]

Зная количество азота, поступающего с воздухом, можно определить количество воздуха, расходуемого на газификацию. Так как в воздухе по объему содержится 79% азота, то количество воздуха, необходимого для получения 100 кг-моль газа, будет равно:

\[L_{100} = \frac{100}{79} N_2^g \quad \text{кг-моль.} \]

Количество воздуха, идущего на газификацию 1 кг топлива, определяется по формуле:

\[L_{1} = \frac{100}{79} \cdot \frac{N_2^g}{G_m} \quad \text{кг-моль.} \]

Принимая молекулярный вес воздуха равным 28,95, получим, что количество воздуха для газификации 1 кг топлива, выраженное в килограммах, будет:

\[L_{1} = 28,95 \times \frac{100}{79} \cdot \frac{N_2^g}{G_m} \quad \text{кг.} \]

или

\[L_{1} = 36,65 \frac{N_2^g}{G_m} \quad \text{кг.} \]

В кубических метрах при 0° Ц и 760 мм рт. ст.

\[V_1 = 22,4 \frac{100}{79} \cdot \frac{N_2^g}{G_m} \quad \text{м³ воздуха на 1 кг топлива.} \]

или

\[V_1 = 28,35 \frac{N_2^g}{G_m} \quad \text{м³.} \]

Баланс кислорода

Находящийся в компонентах генераторного газа кислород складывается из кислорода воздуха \(O_2^g \), кислорода разложившейся влаги топлива и воды Дююнга \(O_2^{нв} \).

В газе содержится кислорода:

\[\Sigma O_2^g = (CO_2 + 0,5 CO + O_2) \quad \text{кг-моль} \]

на 100 кг-моль газа.

Уравнение баланса выражается формулой:

\[\Sigma O_2^g = O_2^g + O_2^{нв} \]

Количество кислорода, поступившего с воздухом:

\[O_2^g = \frac{21}{79} N_2^g \quad \text{кг-моль;} \]

следовательно, кислород, полученный за счет разложения влаги топлива и воды Дююнга, определяется из уравнения:

\[O_2^{нв} = (CO_2 + 0,5 CO + O_2) - \frac{21}{79} N_2^g \quad \text{кг-моль на 100 кг-моль газа.} \]

Баланс водорода

Как было уже указано, содержание водорода в 100 кг-моль газа равно:

\[\Sigma H_2^g = (H_2 + 2 CH_4 + 2 C_n H_m) \quad \text{кг-моль.} \]

Водород частично получается из свободного водорода топлива \(H_2^m \), а также из разложившейся влаги топлива, воздуха и воды Дююнга.

Поэтому уравнение баланса выражается формулой:

\[\Sigma H_2^g = H_2^{топ} + H_2^{нв}. \]

В топливе, расходуемом на получение 100 кг-моль газа, свободного водорода содержится:

\[H_2^{топ} = H_2^m \cdot G_m \quad \frac{2 \cdot 100}{2 \cdot 100} \quad \text{кг-моль.} \]

Количество водорода, образовавшегося за счет влажности воздуха, топлива и воды Дююнга, определяется из формулы:

\[H_2^{нв} = (H_2 + 2 CH_4 + 2 C_n H_m) \cdot H_2^m \cdot G_m \quad \frac{2 \cdot 100}{2 \cdot 100} \quad \text{кг-моль.} \]

Образование \(H_2^{нв} \) кг-моль водорода требует численно одинакового количества кг-моль воды, т. е.

\[H_2O = H_2^{нв} \quad \text{кг-моль.} \]

Для определения влагосодержания генераторного газа следует из общего количества воды, входящей в газогенератор и состоящей из воды Дююнга, влаги топлива и воздуха, вычесть количество влаги, разлагающейся в газогенераторе, т. е. \(H_2O \) кг-моль.

На каждые 100 кг-моль газа в газогенератор вводится воды:

a) с влагой топлива и водой Дююнга:

\[W^m = \frac{(H_2O)^m \cdot G_m}{18 \cdot 100} \quad \text{кг-моль;} \]

b) с воздухом:

\[W^w = 22,4 L_{100} \quad \text{кг.} \]
где:

d — количество воды в кг, находящейся в 1 м³ насыщенного воздуха;

a — степень насыщения для данных атмосферных условий.

Таким образом, общее количество влаги, поступающей в газогенератор, будет равно:

\[W = \frac{G_n (H_2O)_n}{100} + W^2 \text{ кг.} \]

В связи с тем, что количество влаги, вносимой в генератор с воздухом, очень мало, значением \(W^2 \) обычно в расчете пренебрегают.

Так как на образование водорода уходит \(H_2O \) кг-моль, то влаги в газе в виде пара будет содержаться:

\[W^\text{пар} = W - 18(H_2O) \text{ кг.} \]

При 0° Ц и 760 мм рт. ст. 100 кг-моль газа занимают объем в \(100 \times 22,4 \) м³, а \(W^\text{пар} \) кг пара или \(W^\text{пар} \) м³-моль пара будет соответственно занимать объем в \(22,4 \cdot \left(\frac{W^\text{пар}}{18} \right) \) м³.

Следовательно, весь объем влажного газа, полученного из \(G_n \) кг топлива, будет равен:

\[V'_r = 22,4 \cdot \left(\frac{100 + \frac{W^\text{пар}}{18}}{18} \right) \text{ м³,} \]

а влагосодержание 1 м³ генераторного газа при этих условиях определяется по формуле:

\[W^\text{пар} = 22,4 \cdot \left(\frac{100 + \frac{W^\text{пар}}{18}}{18} \right) \Delta \text{ кг/м³}. \]

Таким образом, материальный баланс, составленный из балансов углерода, азота, кислорода и водорода, дает возможность определить расход топлива и воздуха, участвующих в газификации, а также выход и влагосодержание газа.

Для проверки правильности проведенных в материальном балансе вычислений составляется сводная таблица на 100 кг-моль генераторного газа (табл. 18).

При правильно проведенных расчетах материального баланса должно соблюдаться равенство статей расхода и прихода:

\[C_{пр} = C_{расх}; \quad H_{пр} = H_{расх}; \quad O_{пр} = O_{расх}; \]

\[N_{пр} = N_{расх}; \quad A_{пр} = A_{расх}; \]
\[G_m \left(C^\circ + H_2^\circ + O_2 + N_2 + A_\circ + H_2O \right) + \frac{36,65 \cdot 100 \cdot N_2^\circ}{100} + 100 W^\circ = 2 \left(6 \Sigma C^r + \Sigma H_2^r + 16 \Sigma O_2^r + 14 \Sigma N_2^r \right) + W^\text{апп} + \frac{G_m (C_m^\circ + A_\circ)}{100} \]

Допустимая невязка в приводимом равенстве не должна превышать 1%.

ТЕПЛОВОЙ БАЛАНС

При составлении теплового баланса необходимо знать, какое количество тепла поглощается или выделяется в процессе той или иной химической реакции.

В главе «Газификация топлива» при рассмотрении образования составляющих генераторного газа определены тепловые эффекты некоторых реакций. Ниже приводится подсчет количества тепла, выделяющегося при протекании двух реакций, происходящих при горении окиси углерода и при образовании CO как первичного продукта при горении углерода.

Метод подсчета основан на том, что тепловые эффекты правой и левой стороны химического равенства должны быть одинаковы.

1. Реакция горения окиси углерода:
 \[CO + 0,5 O_2 = CO_2 \]
 Теплотворная способность 1 моля окиси углерода, по данным табл. 12, равна 68 320 кал. Теплота горения углекислоты равна нулю, поэтому рассматриваемая реакция с учетом теплового эффекта примет вид:
 \[CO + 0,5 O_2 = CO_2 + 68 320 \text{ кал} \]

2. Реакция образования окиси углерода (неполное горение углерода):
 \[C + 0,5 O_2 = CO \]
 Теплотворная способность 1 кг-моль углерода равна 97 200 кал, а теплотворная способность 1 моля окиси углерода равна 68 320 кал, следовательно, эта реакция протекает с выделением 97 200 — 68 320 = 28 880 кал тепла по уравнению:
 \[C + 0,5 O_2 = CO + 28 880 \text{ кал} \]

Располагая данными о теплите реакций, протекающих в газогенераторе, можно подсчитать количество тепла, выделяющегося или поглощенного при образовании отдельных составляющих генераторного газа, определенных в материальном балансе.

Образование водорода

Опыты Хаслам и Руссел показывают, что при температуре +1000 — +1100° Ц в углеродистой среде при участии в газификации К% введенных водяных паров, т% из них разлагаются по реакции C + 2H_2O = CO + 2H_2 и п% — по реакции C + H_2O = CO + H_2 (см. рис. 14). Это положение следует учитывать при подсчете образующихся количеств углекислоты, окиси углерода и водорода.

В материальном балансе было установлено, что в 100 кг-моль генераторного газа содержится 7H_2, 8 м-моль водорода.

Из них H_2 тов, органический образуется из свободного водорода топлива и H_2 тов в процессе разложения воды.

Образование водорода из воды протекает по двум реакциям:

1) по реакции C + H_2O = CO + H_2 — 28 690 кал образуется п% водорода.

Участвуют в реакции:
 - углерода C \[\frac{n}{100} \cdot H_2 \text{ кг-моль}; \]
 - воды H_2O \[\frac{n}{100} \cdot H_2 \text{ кг-моль}; \]

Образуется:
 - окись углерода CO \[\frac{n}{100} \cdot H_2 \text{ кг-моль}; \]
 - водорода H_2 \[\frac{n}{100} \cdot H_2 \text{ кг-моль} \]

Поглощается тепла:
 \[28 690 \times \frac{n}{100} \cdot H_2 \text{ кал} \]

2) по реакции C + 2H_2O = CO + 2H_2 — 17 940 кал образуется п% водорода.

Участвуют в реакции:
 - углерода C \[\frac{m}{100} \cdot H_2 \text{ кг-моль}; \]
 - воды H_2O \[\frac{m}{100} \cdot H_2 \text{ кг-моль}; \]

Образуется:
 - углекислоты CO_2 \[\frac{m}{100} \cdot H_2 \text{ кг-моль}; \]
 - водорода H_2 \[\frac{m}{100} \cdot H_2 \text{ кг-моль} \]

Поглощается тепла:
 \[0,5 \cdot 17 940 \times \frac{m}{100} \cdot H_2 \text{ кал} \]
Всего при образовании водорода поглощается тепла:

\[Q_{\text{г}} = 28.690 \times \frac{n}{100} \cdot \frac{H_2}{H_2O} \cdot 0.5 \times 17940 \times \frac{m}{100} \cdot \frac{H_2^m}{H_2O} \text{ ккал.} \]

Образование окиси углерода

Оксис углерода образуется путем восстановления ее из углекислого газа. По закону Гесса, количество тепла, выделяющегося при восстановлении окиси углерода, зависит только от начального и конечного состояния участвующих в этих процессах элементов.

При этом производится, что окис углерода образуется по реакции:

\[\text{C} + \frac{1}{2} \text{O}_2 = \text{CO} + 28880 \text{ ккал.} \]

Частично же в количестве \(\frac{n}{100} \cdot \frac{H_2}{H_2O} \) кг-моль окис углерода образуется по реакции:

\[\text{C} + \frac{1}{2} \text{H}_2 = \frac{n}{100} \cdot \frac{H_2}{H_2O} \]

Образование углекислоты

Углекислота в основном образуется по реакции:

\[\text{C} + \frac{1}{2} \text{O}_2 = \text{CO}_2 + \frac{97200}{100} \text{ ккал.} \]

При этом тепла выделяется:

\[Q_{\text{CO}_2} = 97200 \left(\text{CO}_2 - \frac{n}{100} \cdot \frac{H_2}{H_2O} \right) \text{ ккал.} \]

Образование метана

Как указывалось в теории газификации, метан образуется по ряду реакций, но для упрощения расчета обычно берут только одну:

\[\text{C} + \text{H}_2 = \text{CH}_4 + 21000 \text{ ккал.} \]

Необходимый для образования метана водород получается по вышерассмотренным реакциям.

При образовании CH₄ кг-моль метана выделяется тепла:

\[Q_{\text{CH}_4} = 21720 \cdot \text{CH}_4 \text{ ккал.} \]

При составлении теплового баланса, кроме теплового эффекта химических реакций, следует учитывать еще ряд других источников выделения и поглощения тепла. Расход тепла на образование тяжелых углеводородов можно принять равным:

\[Q_{\text{см}} = 2000 \cdot C_nH_m. \]

Поправка Менделеева на воду Дюлонга

Д. И. Менделеев установил, что при конечном топливе, содержащем кислород, на каждую кислородную молекулу воды Дюлонга выделяется 18,4 кал тепла.

Ранее указывалось, что при 1 кг рабочего топлива содержится на весу 18/16 О₂ % воды Дюлонга, что в пересчете на 1 кг рабочего топлива составляет 18 \(\cdot \frac{18}{16} \cdot 100 \) кг воды, где О₂ — процентное содержание кислорода в рабочем топливе.

Общее количество воды Дюлонга в \(G_m \) кг рабочего топлива будет:

\[\frac{18}{16} \cdot \frac{O_2}{100} \cdot \frac{G_m}{18} = 0,01125 \cdot O_2 \cdot G_m \text{ кг,} \]

или

\[\frac{18}{16} \cdot \frac{O_2}{100} \cdot \frac{G_m}{18} = 0,000625 \cdot O_2 \cdot G_m \text{ молей.} \]

Количество тепла, выделяющегося при образовании воды Дюлонга, определяется из выражения:

\[Q_D = \frac{18}{16} \cdot \frac{O_2}{100} \cdot \frac{G_m}{18} \cdot 18400 \text{ ккал,} \]

или

\[Q_D = 11,5 \cdot G_m \cdot O_2 \text{ ккал.} \]

Тепло, внесенное с воздухом, входящим в газогенератор

В общем балансе газогенератора тепло, внесенное с воздухом, составляет малую ощутимую величину и поэтому этим теплом обычно пренебрегают, за исключением случаев, когда производится специальный предварительный подогрев воздуха.

Тепло воздуха подсчитывается по формуле:

\[Q_v = C_p \cdot L_{100} \cdot t_a \text{ кал,} \]

где:

\[C_p \] — молекулярная теплоемкость воздуха при постоянном давлении, которая может быть определена по формуле:

\[C_p = 6,98 + 0,000265 \cdot t_a, \]

\[L_{100} \] — количество кг-моль воздуха, поступающего в газогенератор для получения 100 кг-моль генераторного газа.

* По данным проф. Шиха, „Техническая термодинамика“.
Формула для определения L_{100} приведена при рассмотрении материального баланса;
t_0—температура воздуха, поступающего в газогенератор в °C.

Тепло, внесенное в газогенератор с паром
Если в газогенератор подается пар, как это практикуется в некоторых угольных конструкциях, то тепло, внесенное с паром, подсчитывается по формуле:

$$Q_{\text{пар}} = C_p^a \cdot G_a \cdot t_v \text{ калл.}$$

где:

C_p^a—средняя молекулярная теплоемкость пара; она может быть определена по формуле $C_p^a = 8,24 + 0,000824 \cdot t_v$;
G_a—количество кг-моль пара;
t_v—температура входящего в газогенератор пара в °C.

Тепло, внесенное с топливом
Тепло, внесенное с топливом, представляет очень малую величину, но может быть подсчитано по формуле:

$$Q_{\text{топ}} = C_p^m \cdot G_m \cdot t_m \text{ калл.}$$

где:

C_p^m—теплоемкость 1 кг рабочего топлива;
G_m—количество топлива в кг, расходуемого на образование 100 кг-моль газа;
t_m—температура топлива, загруженного в газогенератор.

Тепло, идущее на испарение влаги
При рассмотрении материального баланса было установлено, что в генераторном воздухе содержится $W_{\text{пар}}$ кг пара или $W_{\text{пар}}/18$ кг-моль пара.

По данным Dieterici, теплота испарения 1 кг-моль воды равна 10710 кал (594,7 кал на 1 кг).
Следовательно, на испарение влаги требуется затратить:

$$Q_{\text{n,в}} = 10710 \cdot W_{\text{пар}}/18 \text{ калл.}$$

Внешние потери тепла на лученоспускание и конvectionю в окружающую среду
Часть теплоты газогенератора теряется путем конvectionи, а часть лученоспусканиием.

*По данным Holborn и Scheel.

Тепловой баланс

Потери на конvectionю
По закону Фурье, потери на конvectionю подсчитываются по формуле:

$$Q_n = K \cdot F \cdot (t - t_0) \cdot z \text{ калл,}$$

где:

K—коэффициент потери на конvectionю в калл/м² час при разности температур между нагретой поверхностью и окружающим воздухом в 1 °C;
F—поверхность газогенератора или части ее, для которой ведется расчет, в м²;
t—средняя температура этой поверхности в °C;
t_0—температура окружающего воздуха в °C на таком расстоянии от газогенератора, где нет потери на конvectionю;
z—число часов работы газогенератора, необходимое для образования 100 кг-моль генераторного газа.

Коэффициент потери на конvectionю в свою очередь определяется по формуле:

$$K = \alpha \sqrt{t - t_0},$$

где:

α—коэффициент, учитывающий форму и размеры охлаждаемой поверхности;
t и t_0—соответственно температуры поверхности и окружающего воздуха в °C.

Ниже приводится составленная на основании опытов Диорома и Пти таблица зависимости коэффициента z от рода и размеров поверхностей (табл. 19).

<p>| Высота поверхности | Значение коэффициента z | \hline |
|---------------------|--------------------------| \hline |</p>
<table>
<thead>
<tr>
<th>H в м</th>
<th>для цилиндрических вертикальных поверхностей</th>
<th>для насыпных вертикальных поверхностей</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>2,43</td>
<td>2,20</td>
</tr>
<tr>
<td>1,1</td>
<td>2,38</td>
<td>2,18</td>
</tr>
<tr>
<td>1,2</td>
<td>2,34</td>
<td>2,16</td>
</tr>
<tr>
<td>1,3</td>
<td>2,31</td>
<td>2,14</td>
</tr>
<tr>
<td>1,4</td>
<td>2,28</td>
<td>2,12</td>
</tr>
<tr>
<td>1,5</td>
<td>2,26</td>
<td>2,10</td>
</tr>
<tr>
<td>1,6</td>
<td>2,24</td>
<td>2,09</td>
</tr>
<tr>
<td>1,7</td>
<td>2,22</td>
<td>2,08</td>
</tr>
<tr>
<td>1,8</td>
<td>2,20</td>
<td>2,05</td>
</tr>
<tr>
<td>1,9</td>
<td>2,18</td>
<td>2,04</td>
</tr>
<tr>
<td>2,0</td>
<td>2,16</td>
<td>2,03</td>
</tr>
</tbody>
</table>
Для плоских горизонтальных поверхностей (крышки и днища газогенератора) рекомендуется принимать \(\alpha = 1,75 \).

Ниже приводятся следующие ориентировочные данные о температурах различных частей газогенератора.

Дровяные газогенераторы

Крышка загрузочного люка при обогреве бункерами с перемешением газом	70—120°
Крышка загрузочного люка, когда бункер не обогревается, с перемешением газом	90°
Нижнее днище без изоляции	280—350°
Крышка загрузочного люка с перемешением газом	160—200°
Боковая поверхность газогенератора при отсутствии обогрева бункеров	40—60°
Шахта газогенератора (в зависимости от циркуляции подогреваемого воздуха)	250—400°

Угольные газогенераторы

Крышка загрузочного люка	70—100°
Бункер	120—150°
Шахта (в зависимости от характера тока подаваемого воздуха)	250—300°
Зольник и нижнее днище	300—400°

Потери тепла на лученеспускание

Согласно закону Стефана и Больцмана способность лученеспускания черного тела пропорциональна четвертой степени его абсолютной температуры.

Этот закон применим и к телям с другой окраской.

В час 1 м² поверхности того или иного тела излучает:

\[C \cdot \left(\frac{T}{100} \right)^4 \text{ кал/м}^2 \text{ в час}, \]

где:

- \(C \)—коэффициент лученеспускания, определяется по табл. 20, составленной проф. Кноблаух и Генки;
- \(T \)—абсолютная температура лученеспускаяющей поверхности.

Следовательно, часть поверхности газогенератора площадью \(F \text{ м}^2 \) за \(z \) часов (время образования 100 кг-моль газа) излучает:

\[Q_x = C \cdot F \cdot z \left(\frac{T}{100} \right)^4 \text{ кал}. \]

Коэффициент лученеспускания \(C \) берется из табл. 20.

<table>
<thead>
<tr>
<th>Материал и род поверхности</th>
<th>Коэффициент лученеспускания</th>
</tr>
</thead>
<tbody>
<tr>
<td>Абсолютно черное тело</td>
<td>4,96</td>
</tr>
<tr>
<td>Латунь полированная</td>
<td>0,25</td>
</tr>
<tr>
<td>Латунь прокатная, необработанная</td>
<td>0,34</td>
</tr>
<tr>
<td>Медь полированная</td>
<td>0,20</td>
</tr>
<tr>
<td>Алюминий прокатный</td>
<td>0,26</td>
</tr>
<tr>
<td>Алюминий прокатный, необработанный</td>
<td>0,35</td>
</tr>
<tr>
<td>Алюминиевый лак</td>
<td>1,98</td>
</tr>
<tr>
<td>Железо листовое необработанное</td>
<td>0,29</td>
</tr>
<tr>
<td>Железо листовое, покрытое окраской</td>
<td>0,25</td>
</tr>
<tr>
<td>Сталь листовая с покрытием от прокатки</td>
<td>3,26</td>
</tr>
<tr>
<td>Белая эмаль на железе</td>
<td>4,45</td>
</tr>
<tr>
<td>Лаковые поверхности рядовой окраски</td>
<td>4,46</td>
</tr>
<tr>
<td>Растительная земля (гумус)</td>
<td>3,14</td>
</tr>
<tr>
<td>Глина</td>
<td>1,85</td>
</tr>
<tr>
<td>Пакотная земля</td>
<td>1,79</td>
</tr>
</tbody>
</table>

При выборе величины температуры боковой поверхности газогенератора следует учитывать, что наиболее сильное излучение тепла происходит в нижней части газогенератора и поэтому значение средней температуры боковой стенки газогенератора рекомендуется немного увеличивать.

Инж. Мезин дает формулу для определения тепловых потерь через лученеспускание боковой поверхности газогенератора при условии, что изменение температуры наружной стены газогенератора следует закону прямой. В этом случае:

\[Q_x = 20 \cdot F \cdot C \cdot z \cdot \left(\frac{T}{100} \right)^4 \cdot \left(\frac{T_1}{100} - \frac{T_x}{100} \right)^5 \text{ кал}, \]

где \(T_1 \) и \(T_x \)—температуры стенок в нижней и в верхней части газогенератора.

Обе вышеприведенные формулы справедливы лишь для тел, которые не окружены другими, способными отражать часть тепла.

Для определения тепловых потерь поверхностью газогенератора, обращенной к земле или к землю, следует применить формулу:

\[Q_x = \frac{F \cdot z}{1 + C_1 + \frac{C_1}{C_2}} \cdot \left(\frac{T}{100} \right)^4 \cdot \left(\frac{T_1}{100} \right)^4, \]

где:

- \(T \)—абсолютная температура поверхности газогенератора;
- \(T_1 \)—абсолютная температура кузова и земли;
- \(C_1 \)—коэффициент лученеспускания поверхности газогенератора;
Тепло, идущее на нагрев продуктов газификации (физическая теплота газов и золы)

При рассмотрении материального баланса установлено, что в нормальных условиях на 100 кг-моль генераторного газа приходится $W_{наг}$ кг-моль влаги. Поэтому теплосодержание генераторного газа складывается из теплосодержания сухого генераторного газа и теплосодержания водяного пара.

Теплосодержание компонентов влажного генераторного газа определяется из формулы:

$$Q_{твих} = (CO \cdot C_{p}^{с} + CO_{2} \cdot C_{p}^{cо2} + H_{2} \cdot C_{p}^{h2} + CH_{4} \cdot C_{p}^{ch4} + C_{n}^{ch4} + C_{n}^{h2} \cdot C_{p}^{h2} + \frac{W_{наг}}{18} \cdot C_{p}^{возд}) \cdot t_{твих} \text{ ккал},$$

где:

$\text{CO, CO}_{2}, \text{ H}_{2}, \text{ CH}_{4}, \text{ C}_{n}\text{H}_{m}, \text{ N}_{2}$ — составляющие генераторного газа в кг-моль;

$C_{p}^{cо}, C_{p}^{возд}, C_{p}^{h2}, C_{p}^{ch4}$ и C_{p}^{h2} — средние теплоемкости одного моля соответственно газа при постоянном давлении и температуре $t_{твих}$;

$t_{твих}$ — температура газа, выходящего из генератора.

Для определения средних теплоемкостей одного моля между 0° и $t_{твих}$ при постоянном давлении можно пользоваться новейшими данными, полученными в Германском физико-техническом институте (табл. 21).

Чтобы получить значение $C_{p}^{cо}$ для 1 кг, достаточно данные табл. 21 разделить на молекулярный вес соответствующего газа. Определяя теплоемкость 1 м³ газа, следует данные таблицы делить на 22,41, или на 24, в зависимости от того, ведется ли расчет при 0° и 760 мм давления или при 1 ат и 10° Ц.

Теплоемкость метана в таблице не указана; для определения ее следует пользоваться формулой:

$$C_{p}^{мет} = 7,7 + 0,008 t,$$

Теплоемкость тяжелых углеводородов $C_{p}^{нм}$ принимается равной теплоемкости этилена $C_{p}^{нм}$. для которого согласно последним исследованиям Шюле молекулярная теплоемкость в зависимости от температуры колеблется от 11 до 12.

Расход тепла на нагревание золы и углерода, упомянутого в виде мелочки или в виде, может быть определен по уравнению:

$$Q_{возд} = \frac{A_{m}}{100} \cdot C_{m} \cdot C_{возд} \cdot t + \frac{C_{m}}{100} \cdot G_{m} \cdot C_{угр} \cdot t \text{ ккал},$$

где:

A_{m} — весовое содержание золы и потеря углерода при образовании 100 кг-моль генераторного газа;

$C_{возд}$ и $C_{угр}$ — соответствующие весовые теплоемкости золы и углерода;

t — температура, до которой нагревается зола и углерод. Обычно для простоты ее принимают равной температуре выходящего из генератора газа.

После подсчета количества выделившегося и поглощенного тепла составляет сведений таблица теплового баланса.

Приход тепла

I. Количество тепла, выделившегося при образовании CO, CO₂, CH₄, CₙHₘ:

- по реакции C + O₂ = CO₂
 $$Q_{о₂} = 97,200 \left(\frac{t}{100} \cdot \text{H₂O} \right) \text{ ккал},$$

- по реакции C + 0,5 O₂ = CO
 $$Q_{о₂} = 28,880 \left(\frac{t}{100} \cdot \text{H₂O} \right) \text{ ккал},$$
Тепловой расчет газогенератора

по реакции $C + 2H_2 = CO + H_2O$

$Q_{\text{ген}} = 21720 \text{CH}_4 \text{кал.}$

при образовании C_nH_m

$Q_{\text{генм}} = 2000 \text{C}_n\text{H}_m \text{кал.}$

II. Количество тепла, выделяющегося при разложении клашкети:

$Q_D = 11.5 \text{C}_n \text{O}_2 \text{кал.}$

III. Количество тепла, внесенного в газогенератор с воздухом:

$Q_{\text{вос}} = C_p \cdot L_100 \cdot t_v \text{кал.}$

IV. Количество тепла, введенного в газогенератор с паром:

$Q_{\text{пар}} = C_p \cdot G_H \cdot t_H \text{кал.}$

V. Количество тепла, введенного в газогенератор с топливом:

$Q_{\text{топ}} = C_p \cdot G_m \cdot t_m \text{кал.}$

Общее количество тепла, выделяющегося в газогенераторе:

$Q_{\text{тр}} \text{кал.}$

Расход тепла

I. Количество тепла, поглощенного при образовании водою:

$Q_{\text{w}} = 28690 \frac{n}{100} \text{H}_2\text{O}_2 \cdot \frac{m}{100} \text{H}_2\text{O} \text{кал.}$

II. Количество тепла, идущего на испарение влаги:

$Q_{\text{ф.в}} = 10710 \frac{V_{\text{пар}}}{18} \text{кал.}$

III. Количество тепла, потерянного в окружающую среду (конвекция и лучеиспускание):

$Q_{\text{ок}} = Q_{\text{в}} + Q_{\text{а}} \text{кал.}$

IV. Количество тепла, идущего на нагревание продуктов газификации:

$Q_{\text{газа}} = (C_0 \cdot C_p \cdot CO + CO_2 \cdot C_p \cdot CO + H_2 \cdot C_p \cdot H + CH_4 \cdot C_p \cdot CH_4 + C_nH_m \cdot C_p \cdot C_nH_m + + N_2 \cdot C_H \cdot \frac{V_{\text{пар}}}{18} \cdot C_p \cdot H_2 \text{кал.}$

$Q_{\text{газа}} = \frac{1}{100} \{A^m C_{\text{возд}} + C_n^m C_{\text{тр}} \} \cdot G_m \cdot t \text{кал.}$

Коэффициент полезного действия газогенератора

Общее количество расходуемого в газогенераторе тепла $Q_{\text{расс}} \text{кал.}$

При правильном расчете теплового баланса $Q_{\text{тр}}$ должно равняться $Q_{\text{расс}}$.

Коэффициент полезного действия газогенератора определяется по формуле:

$\eta = \frac{H_f \cdot V_f}{H_m}$

где:

H_f — нижняя теплотворная способность 1 м³ генераторного газа при 0°С и 760 мм ртутного столба.

Теплотворная способность генераторного газа определяется как сумма производений из теплотворных способностей отдельных составляющих газа на процентное содержание их в газе. Она может быть подсчитана по формуле:

$H_f = 30,50 \cdot CO + 25,70 H_2 + 85,10 CH_4 + 139,1 C_nH_m \text{кал./м}^3.$

Здесь CO, H₂, CH₄, CₙHₘ — составляющие генераторного газа в процентах;

V_f — выход газа из 1 кг рабочего топлива в м³ при нормальных условиях; V_f определяется по формуле, вывод которой дан при рассмотрении материального баланса:

$V_f = \frac{C_m - C_m^{\text{CH}}}{0,536 (CO_2 + CO + CH_4 + 2C_nH_m)} \text{м}^3/\text{кг},$

H_m — нижняя теплотворная способность 1 кг топлива, вычисляется по формуле Менделеева для древесины:

$H_m = 81C + 246 H - 26O - 6W \text{кал/кг}.$

После подстановки в формулу к. п. д. газогенератора значений для H_f, V_f, H_m в окончательном виде получается:

$\eta = \frac{(C_m - C_m^{\text{CH}})(30,50 CO + 25,70 H_2 + 85,10 CH_4 + 139,1C/H_m)}{0,536 (CO_2 + CO + CH_4 + 2C_nH_m)(81C + 246H - 26O - 6W)}$

Численные значения к. п. д. для газогенераторов транспортного типа находятся в пределах 0,70—0,80.

Для оценки газогенераторного процесса можно также пользовать...
вательность термометрическим коэффициентом полезного действия. Он представляет собой отношение количества теплоты, которое способен выделить газ — H_f к теплоте углерода H_{yga}, пошедшему на образование газа:

$$\eta_0 = \frac{H_f}{H_{yga}}.$$

Так как

$$H_f = 30,50 \text{ CO} + 25,70 \text{ H}_2 + 85,10 \text{ CH}_4 + 135,1 \text{ C}_m\text{H}_m \text{ кал}$$

и

$$H_{yga} = \frac{12}{100 \cdot 22,4} (\text{CO}_2 + \text{CO} + \text{CH}_4 + 2 \text{ C}_m\text{H}_m) \cdot 8100 \text{ кал},$$

то

$$\eta_0 = \frac{30,50 \cdot \text{CO} + 25,70 \cdot \text{H}_2 + 85,10 \cdot \text{CH}_4 + 135,1 \cdot \text{C}_m\text{H}_m}{43,4 \cdot (\text{CO}_2 + \text{CO} + \text{CH}_4 + 2 \text{ C}_m\text{H}_m)}.$$

ПРИМЕР ТЕПЛОВОГО РАСЧЕТА ДРЕВЕСНОГО ГАЗОГЕНЕРАТОРА

Состав генераторного газа по данным, полученным при испытаниях газогенераторов ЭНС и НАТИ Г-14, принимается следующим:

<table>
<thead>
<tr>
<th>Элемент</th>
<th>Содержание</th>
<th>В %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углерод</td>
<td>C</td>
<td>40,8</td>
</tr>
<tr>
<td>Оксис углерода</td>
<td>O</td>
<td>11</td>
</tr>
<tr>
<td>Метан</td>
<td>C_m</td>
<td>16,9</td>
</tr>
<tr>
<td>Водород</td>
<td>H_m</td>
<td>50,8</td>
</tr>
<tr>
<td>Азот</td>
<td>N</td>
<td>0,2</td>
</tr>
</tbody>
</table>

| Всего | 100 |

Состав древесного топлива берется по табл. 1 с пересчетом на абсолютную влажность в 20% (относительная влажность = 16,7%). В 1 кг топлива с абсолютной влажностью в 20% содержится:

<table>
<thead>
<tr>
<th>Элемент</th>
<th>В весовых процентах</th>
<th>В %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Углерод</td>
<td></td>
<td>40,8</td>
</tr>
<tr>
<td>Водород</td>
<td></td>
<td>5,0</td>
</tr>
<tr>
<td>Азот</td>
<td></td>
<td>35,9</td>
</tr>
<tr>
<td>Вода</td>
<td></td>
<td>1,2</td>
</tr>
<tr>
<td>Зола</td>
<td></td>
<td>16,7</td>
</tr>
</tbody>
</table>

| Всего | 100 |

Кислород из состава генераторного газа не исключается, так как его содержание в газе измеряется десятками долей процента. Содержание основных элементов в компонентах 100 кг-моль генераторного газа определяется из выражений:

$$V_f = \frac{C^m - C_m}{0,536 (\text{CO}_2 + \text{CO} + \text{CH}_4)} = \frac{40,3 - 1}{0,536 \cdot 32,5} = 2,28 \text{ м³/кг}.$$

Для получения 100 кг-моль газа потребуется топлива:

$$G_m = \frac{12 \cdot 100 \cdot \Sigma C_f}{C^m - C_m} = \frac{12 \cdot 100 \cdot 32.5}{39,8} = 980 \text{ кг}.$$

Баланс азота

При образовании 100 кг-моль газа в генератор вместе с топливом вводится азота:

$$N_2 = \frac{980 \times 1,2}{28 \times 100} = 0,42 \text{ кг-моль}.$$

В 100 кг-моль газа содержится азота N_{2}^{r} = 50,8 кг-моль.

Количество азота, поступившего из воздуха, будет:

$$N_{2}^{r} = 50,8 - 0,42 = 50,38 \text{ кг-моль}.$$

Количество воздуха, необходимое для получения 100 кг-моль газа, будет равно:

$$L_{100} = \frac{100 \cdot N_{2}^{r} \times 100 \times 50,38}{79} = 63,8 \text{ кг-моль}.$$
Количество воздуха, расходуемого на газификацию 1 кг топлива, равно:

$$L_{1,кр} = \frac{L_{199}}{G_m} = 63,8 \times 980 = 0,0651 \text{ кг-моль.}$$

или в кубических метрах:

$$V_{1,кр}^B = 22,4 \times L_{1,кр} = 22,4 \times 0,0651 = 1,46 \text{ м}^3 \text{ на 1 кг рабочего топлива.}$$

Баланс кислорода

В 100 кг-моль газа кислорода содержится $\Sigma O_2^* = 21,45$ кг-моль.

Количество кислорода, поступившего с воздухом, равно:

$$O_2^B = \frac{21}{79} \cdot N_2^B = \frac{21 \times 50,58}{79} = 13,4 \text{ кг-моль.}$$

Количество кислорода, полученного за счет разложения влаги, определяется из выражения:

$$O_2^{H_2O} = \Sigma O_2^* - O_2^B = 21,45 - 13,4 = 8,05 \text{ кг-моль.}$$

Баланс водорода

В 100 кг-моль газа водорода содержится $\Sigma H_2^* = 18,5$ кг-моль. В топливе, расходуемом на образование 100 кг-моль газа, содержится водорода:

$$H_2^{топ} = \frac{H_2^{топ} G_m}{2 \times 100} = \frac{0,5 \times 980}{200} = 2,45 \text{ кг-моль.}$$

Количество водорода, образовавшегося из разложившейся влаги, будет равно:

$$H_2^{H_2O} = \Sigma H_2^* - H_2^{топ} = 18,5 - 2,45 = 16,05 \text{ кг-моль.}$$

Для образования 16,05 кг-моль водорода потребуется такое же количество воды, т.е. H_2O = 16,05 кг-моль.

При разложении 16,05 кг-моль воды образуется $\frac{16,05}{2} = 8,025$ кг-моль кислорода.

В балансе кислорода указывается, что за счет разложения воды получается 8,05 кг-моль кислорода. Расхождения в вычислениях составляют 0,025 кг-моль, или 0,31%, что можно признать вполне допустимым.

На каждые 100 кг-моль газа в генератор вводится влага:

$$W_m = \frac{(H_2O)^m G_m}{18 \times 100} = \frac{57,1 \times 980}{18 \times 100} = 31,09 \text{ кг-моль}$$

или

$$W = 18 W_m = 559 \text{ кг.}$$

Влагой, внесенной в генератор с воздухом, пренебрегают.

Количество влаги, находящейся в газе в виде пара, определяется из уравнения:

$$W_{нап}^P = W - 18 (H_2^{H_2O})^* = 559 - 18 \times 16,05 = 270 \text{ кг.}$$

Объем влажного газа, полученного из 980 кг топлива, будет:

$$V_{нап}^P = 22,4 \left(100 + \frac{W_{нап}^P}{18}\right) = 22,4 \left(100 + \frac{270}{18}\right) = 2576 \text{ м}^3$$

а влагосодержание 1 м3 генераторного газа:

$$\Delta = \frac{W_{нап}^P}{2576} = \frac{270}{2576} = 0,105 \text{ кг/м}^3.$$

Для наглядности и проверки проведенных вычислений составляют сводную таблицу материального баланса на 100 кг-моль газа (табл. 22, стр. 176).

Тепловой баланс

Образование водорода

Из материального баланса известно, что общее количество влаги, проходящей через активную зону, равно $W = 559$ кг, а количество влаги, перешедшей в пар, составляет $W_{нап}^P = 270$ кг (см. баланс водорода). Следовательно, процент разложившейся влаги топлива будет равен $rac{559 - 270}{100} \times 100 = 52\%$.

По графику, составленному Хасал и Гичко (рис. 14), определяется процент влаги, разлагающейся по реакциям:

$$C + H_2O = CO + H_2$$

$$C + 2H_2O = CO_2 + 2H_2$$

Процент неразложившейся влаги равен $100 - 52 = 48$.

По графику (рис. 14) общий объем образующегося водорода на единицу объема входящего пара составляет 0,52. Объем водорода, получающегося по первой реакции, равен $0,30 \times 0,52 = 0,30 \times 100 = 58\%$ от общего количества образующегося водорода.

Он образовывается в реакции C + H_2O = CO + H_2 = 28690 кал участвуют:

- углерода $C = 0,58 H_2^{H_2O} = 0,58 \cdot 16,05 = 9,31$ кг-моль воды
- окис углерода $H_2O = 0,58 H_2^{H_2O} = 0,58 \cdot 16,05 = 9,31$

В реакции $C + H_2O = CO + H_2$ образуется:

- окис углерода $CO = 0,58 H_2^{H_2O} = 0,58 \cdot 16,05 = 9,31$
- водорода $H_2 = 0,58 H_2^{H_2O} = 0,58 \cdot 16,05 = 9,31$
<table>
<thead>
<tr>
<th>Статьи прихода и расхода</th>
<th>Углерод в кг</th>
<th>Водород в кг</th>
<th>Кислород в кг</th>
<th>Азот в кг</th>
<th>Зола в кг</th>
<th>Всего в кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Приход</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Рабочее топливо:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) топливо</td>
<td>$G_{m} = 980$</td>
<td>$G_{m} = 980$</td>
<td>$G_{m} = 980$</td>
<td>$G_{m} = 980$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 100$</td>
<td>$= 100$</td>
<td>$= 100$</td>
<td>$= 100$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$= 49$</td>
<td>$= 351,8$</td>
<td>$= 11,8$</td>
<td>$= 3,9$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) влага топлива</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Воздух</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего...</td>
<td>400</td>
<td>67,2</td>
<td>928,2</td>
<td>1422,4</td>
<td>3,9</td>
<td>2 821,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Статьи прихода и расхода</th>
<th>Углерод в кг</th>
<th>Водород в кг</th>
<th>Кислород в кг</th>
<th>Азот в кг</th>
<th>Зола в кг</th>
<th>Всего в кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Расход</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Генераторный газ</td>
<td>$12 \cdot \Sigma C' = 12 \times 32,5 = 390$</td>
<td>$2 \cdot \Sigma H' = 2 \times 18,5 = 37$</td>
<td>$32 \cdot \Sigma O_2' = 32 \times 21,45 = 686,4$</td>
<td>$28 \cdot \Sigma N_2' = 28 \times 50,8 = 1 422,4$</td>
<td></td>
<td>2 535,8</td>
</tr>
<tr>
<td>2. Влага газа</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>$2 \cdot \Sigma W' \frac{m}{m} = 2 \times 270 = 30$</td>
<td>$16 \cdot \Sigma W' \frac{m}{m} = 16 \times 270 = 240$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Потери на унос и провал в золотник</td>
<td>$G_{m} \cdot C_{m} = 980 \times 9,8 = 9,8$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Всего...</td>
<td>399,8</td>
<td>67</td>
<td>926,4</td>
<td>1422,4</td>
<td>3,9</td>
<td>2 819,5</td>
</tr>
</tbody>
</table>

Невязка... +0,2 + 0,2 + 1,8 + 0 + 0 + 2,2

Невязка составляет 0,06%, что вполне допустимо.
Тепловой расчет газогенератора

Поглощается тепла:

\[28 \times 60 \times 0.58 \times H_2O = 28 \times 60 \times 0.58 \times 16.05 = 267075 \text{ кал.} \]
В реакции \(C + 2 H_2O = CO_2 + 2 H_2 \), где участвуют:

углекислоты \(CO_2 = 0.5 \times 0.42 \times H_2O = 0.5 \times 0.42 \times 16.05 = 3.37 \text{ кг-моль} \)
воды \(H_2O = 0.42 \times H_2O = 0.42 \times 16.05 = 6.74 \text{ кг-моль} \)

Поглощается тепла:

\[0.5 \times 17940 \times 0.42 H_2O = 0.5 \times 17940 \times 0.42 \times 16.05 = 60467 \text{ кал.} \]
Всего при образовании водорода поглощается тепла:

\[Q_h = 267075 + 60467 = 327542 \text{ кал.} \]

По реакциям первой и второй образуется:

\[H_2 \rightarrow 9.31 + 6.74 = 16.05 \text{ кг-моль} \]
\[CO \rightarrow 9.31 \text{ кг-моль} \]
\[CO_2 \rightarrow 3.37 \text{ кг-моль} \]

Образование окиси углерода

Общее количество окиси углерода, содержащейся в газе, составляет 20.5 кг-моль; 9.31 кг-моль CO образуется при разложении воды.
Следовательно, по реакции \(C + 0.5 O_2 = CO + 28880 \text{ кал получается} 20.5 - 9.31 = 11.19 \text{ кг-моль} \).
При этом выделяется тепла:

\[Q_{CO} = 28880 \times 11.19 = 323167 \text{ кг-моль} \]

Образование углекислоты

Общее количество углекислоты в 100 кг-моль газа равно 11 кг-моль, 3.37 кг-моль CO образуется при разложении воды.
Следовательно, по реакции \(C + O_2 = CO_2 + 97200 \text{ кал получается} 11 - 3.37 = 7.63 \text{ кг-моль} \).
При этом выделяется тепла:

\[Q_{CO_2} = 97200 \times 7.63 = 741636 \text{ кал.} \]

Образование метана

При образовании 1 кг-моль метана по реакции

\[C + 2H_2 = CH_4 + 21720 \text{ кал} \]

выделяется тепла: \[Q_m = 21720 \times 1 = 21720 \text{ кал.} \]

Поправка Менделеева на воду Дюлонга

Количество тепла, выделяющегося при образовании воды Дюлонга, подсчитывается по формуле:

\[Q_d = 11.5 \times G_m \times O_2 = 11.5 \times 980 \times 35.9 = 404593 \text{ кал.} \]

Пример теплового расчета

Тепло, внесенное с воздухом, входящим в генератор

Тепло воздуха подсчитывается по формуле:

\[Q_{\text{возд}} = (6.98 + 0.000266 l_1) \times L_{100} \times l_2, \]
где \(t_0 \) — температура воздуха, поступающего в генератор.
Для средних летних условий \(t_0 = 20^\circ \text{C} \), Величина \(L_{100} \) известна из материального баланса и равна 63.8 кг-моль.
Тогда \(Q_{\text{возд}} = 8913 \text{ кал.} \)

Тепло внесенного с топливом

Тепло топлива подсчитывается по формуле:

\[Q_{\text{топл}} = C_p m \times t_m, \]
где:

\(C_p \) — теплоемкость 1 кг топлива, для древесины значение теплоемкости может быть принято равным 0.6 (дуб = 0.57, сосна = 0.65);
\(t_m \) — температура топлива. Для нашего примера \(t_m = 20^\circ \text{C} \).
Тогда:

\[Q_{\text{топл}} = 0.6 \times 980 \times 20 = 11760 \text{ кал.} \]

Тепло, идущее на испарение влаги

На испарение влаги расходуется тепло:

\[Q_{\text{в,о}} = 10710 \times \frac{\varphi_{\text{в,о}}}{18} = 10710 \times \frac{270}{18} = 160650 \text{ кал.} \]

Потери тепла на лученоспускание и конвекцию в окружающую среду

Конвекционные потери генератора слагаются из конвекционных потерь днищем, крышкой и боковой поверхностью генератора.
Следовательно:

\[Q_n = Q_{\text{дн}} + Q_{\text{кр}} + Q_{\text{бок.пов.}} \]

или

\[Q_n = k_1 F_1 (t_1 - t_0) + z + k_2 F_2 (t_2 - t_0) + z + k_3 F_3 (t_3 - t_0) \text{ кал.} \]
где:

\(k_1, k_2, k_3 \) — коэффициенты потерь на конвекцию \((k = \alpha \sqrt{t - t_0})
\(F_1 \) — площадь днища или крышки генератора;
\(F_2 \) — боковая поверхность генератора;
\(t_1, t_2, t_3 \) — средняя температура различных поверхностей генератора;
\(t_0 \) — температура окружающего воздуха, равная \(20^\circ \text{C} \);
\(z \) — число часов работы генератора, необходимое для газификации 980 кг топлива.

Высоту \(h_r = 1.9 \text{ м} \) и внешний диаметр газогенератора \(d_r = 0.6 \text{ м} \) берем из конструктивного расчета (см. стр. 207).
Для расчета принимаем среднее значение температуры боковой поверхности генератора \(t_2 = 300^\circ \text{C} \) (см. стр. 166).

Температура нижнего днища принимается равной \(t_1 = 300^\circ \text{C} \), а верхнего днища и крышки \(t_3 = 70^\circ \text{C} \). Значения коэффициента \(\alpha \) берутся из табл. 19. Для боковой поверхности \(\alpha = 2,18 \), а для днища и крышки \(\alpha = 1,75 \).

Тогда:

\[
\begin{align*}
k_1 &= \frac{1,75 \sqrt{300-20}}{4} = 7,16 \\
k_2 &= \frac{1,75 \sqrt{70-20}}{4} = 4,66 \\
k_3 &= \frac{2,18 \sqrt{300-20}}{4} = 8,92 \\
\end{align*}
\]

Площадь днища и крышки генератора \(F_1 = \frac{\pi d_t^4}{4} = \frac{3,14 \times 0,6^4}{4} = 0,283 \text{ м}^2 \).

Боковая поверхность генератора \(F_2 = \pi \cdot d_t \cdot h_c = 3,14 \times 0,6 \times 1,9 = 3,58 \text{ м}^2 \).

Средний часовой расход топлива для автомобиля ЗИС может быть принят равным 35 кг (при скорости движения машины в 35 км/ч часовой расход топлива составляет около 1 кг/км).

Тогда \(z = \frac{G_m}{35} = \frac{980}{35} = 28 \text{ час} \).

Конвекционные потери составят:

\[
Q_c = 7,16 \times 0,283(300 - 20) \times 28 + 4,66 \times 0,283(70 - 20) \times 28 + 8,92 \times 3,58 \times (300 - 20) \times 28 = 268092 \text{ кал}.
\]

Лучепропускание поверхности, окруженной со всех сторон только воздухом, подсчитывается по формуле:

\[
Q_{\text{л.п.в}} = C \cdot F \cdot z \left(\frac{T}{100} \right)^4 \text{ кал}.
\]

В том случае, когда около нагретой поверхности расположена другая лучепропускающая поверхность, подсчет следует вестись по формуле:

\[
Q_{\text{n}} = \frac{1}{C_1 + \frac{1}{C_2} - \frac{1}{C_3}} \cdot F \cdot z \left[\left(\frac{T}{100} \right)^4 - \left(\frac{T_1}{100} \right)^4 \right] \text{ кал},
\]

где:

\(C_1 \) — коэффициент лучепропускания рассматриваемой поверхности;

\(C_2 \) — коэффициент лучепропускания окружающей поверхности;

\(C_3 \) — коэффициент лучепропускания абсолютно черного тела;

\(T \) — абсолютная температура рассматриваемой поверхности;

\(T_1 \) — абсолютная температура окружающей поверхности.

Для боковой поверхности газогенератора следует пользоваться формулами Мезина:

а) в том случае, когда поверхность газогенератора окружена воздухом:

\[
Q_x = \frac{20 \cdot F \cdot C \cdot z}{T_{\text{н}} - T_B} \left(\left(\frac{T_{\text{н}}}{100} \right)^4 - \left(\frac{T_B}{100} \right)^4 \right) \text{ кал}.
\]

б) в том случае, когда газогенератор окружен лучепропускающей поверхностью:

\[
Q_x = \frac{F \cdot z}{C_1 + \frac{1}{C_2} - \frac{1}{C_3}} \left[\frac{20}{T_{\text{н}} - T_B} \left(\left(\frac{T_{\text{н}}}{100} \right)^4 - \left(\frac{T_B}{100} \right)^4 \right) - \left(\frac{T_1}{100} \right)^4 \right] \text{ кал},
\]

где:

\(T_{\text{н}} \) — абсолютная температура нижней части боковой поверхности газогенератора;

\(T_B \) — абсолютная температура верхней части боковой поверхности газогенератора;

\(T_1 \) — абсолютная температура поверхности, окружающей газогенератор.

В рассматриваемом примере днище газогенератора всегда обращено к земле. Кроме того, можно считать, что половина боковой поверхности газогенератора окружена другими лучепропускающими поверхностями (стены кабины, кожух, ящик для топлива).

По таблице 20 находим значения коэффициентов лучепропускания. Для железных окрашенных поверхностей значение \(C \) колеблется от 3,4 до 4,46.

Принимаем среднюю величину \(C = 4 \).

Для просохшей земляной дороги значение \(C \) берем равным 1,85.

Тогда для верхнего днища и крышки:

\[
Q_{x} = 4 \times 0,283 \times 28 \left(\frac{343}{100} \right)^4 = 4387 \text{ кал},
\]

для нижнего днища:

\[
Q_{x} = \frac{F_{\text{н.д.}}} {C_1 + \frac{1}{C_2} - \frac{1}{C_3}} \left[\left(\frac{T_{\text{н.д.}}}{100} \right)^4 - \left(\frac{T_{\text{земля}}}{100} \right)^4 \right] =
\]

\[
= \frac{0,283 \times 28}{4} \left[\left(\frac{573}{100} \right)^4 - \left(\frac{293}{100} \right)^4 \right] = 13476 \text{ кал}.
\]

Абсолютная температура земли и стен кабины принята равной абсолютной температуре воздуха (273 + 20).

Для части боковой поверхности, воспринимающей лучепропускание кабины и кузова:
Тепловой расчет газогенератора

\[Q'_{\text{т,60к}} = \frac{F}{2} \cdot \frac{z}{1 + \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} \cdot \left(\frac{20}{(T_H - T_B)} \right) \left(\left(\frac{T_H}{100} \right)^5 - \left(\frac{T_B}{100} \right)^5 \right) \left(\frac{T_{\text{т,60к}}}{100} \right)^4 \]

\[= 3,58 \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 4,96 \cdot \left(\frac{233}{100} \right)^4 = 192,264 \text{ ккал.} \]

Температура нижней части газогенератора принята при этом 400° Ц, а верхней -- 225° Ц.

Для части боковой поверхности газогенератора, окруженной воздухом:

\[Q'_{\text{т,60к}} = \frac{F}{2} \cdot \frac{z}{1 + \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}} \cdot \left(\frac{20}{(T_H - T_B)} \right) \left(\left(\frac{T_H}{100} \right)^5 - \left(\frac{T_B}{100} \right)^5 \right) \]

\[= 3,58 \cdot 20 \cdot 4,28 \cdot \left(\frac{673}{100} \right)^5 - \left(\frac{498}{100} \right)^5 = 245,958 \text{ ккал.} \]

Суммарные потери от лучепускания составляют:

\[Q_{\text{т,60к}} = Q'_{\text{т,60к}} + Q'_{\text{т,60к}} + Q'_{\text{т,60к}} + Q'_{\text{т,60к}} = 4387 + 13476 + 192264 + 245958 = 456,085 \text{ ккал.} \]

Тепло, расходуемое на нагрев продуктов газификации

Теплосодержание генераторного газа определяется из уравнения:

\[Q_{\text{т,60к}} = \left(\text{CO} \cdot C_{\text{CO}} + \text{CO}_2 \cdot C_{\text{CO}_2} + \text{H}_2 \cdot C_{\text{H}_2} + \text{CH}_4 \cdot C_{\text{CH}_4} + \text{N}_2 \cdot C_{\text{N}_2} + \right. \]

\[\left. \frac{W_{\text{тар}}}{18} \cdot C_{\text{H}_2O} \right) \cdot t_{\text{т,60к}} \text{ ккал.} \]

Значения средних молекулярных теплосодержаний берутся из табл. 21, а значение составляющих генераторного газа даны в материальном балансе.

Обычно температура газа при выходе из генератора, имеющего полный подогрев бункера, находится в пределах 300—400° Ц. Для нашего случая ориентировочно принимаем ее равной 350° Ц.

Тогда:

\[C_{\text{CO}} = C_{\text{CO}} = C_{\text{N}_2} = 6,98 + 0,000,026 \times 350 = 7,073 \]

\[C_{\text{H}_2O} = 8,48; \quad C_{\text{CO}_2} = 10,14; \quad C_{\text{CH}_4} = 7,7 + 0,008 \times 350 = 10,5. \]

Подставляем значения в уравнение:

\[Q_{\text{т,60к}} = \left(20,5 \times 7,073 + 11 \times 10,14 + 16,5 \times 7,073 + 1 \times 10,5 + \right. \]

\[\left. + 50,8 \times 7,073 + \frac{270}{18} \times 8,48 \right) \cdot t_{\text{т,60к}}, \]

или после подсчетов:

\[Q_{\text{т,60к}} = 870,2 \cdot t_{\text{т,60к}} \text{ ккал.} \]

Теплосодержание зоны и углерода, уносимого в виде мелочки и сажи, определяется по уравнению:

\[Q_{\text{т,60к}} = \frac{A_m}{100} \cdot C_m \cdot C_{\text{т,60к}} \cdot t_{\text{т,60к}} + \frac{C_m}{100} \cdot C_d \cdot t_{\text{т,60к}} \text{ ккал.} \]

Значения \(A_m \) и \(C_m \) принимаем:

\[A_m = 0,4/%, \quad C_m = 1%. \]

Теплоемкость зоны и угля одинаковы и равны:

\[C_d = C_{\text{т,60к}} = 0,2 \text{ ккал/кг.} \]

После подстановки получаем:

\[Q_{\text{т,60к}} = \frac{0,4}{100} \times 980 \times 0,2 t_{\text{т,60к}} + \frac{1}{100} \times 980 \times 0,2 t_{\text{т,60к}} = 2,74 \cdot t_{\text{т,60к}}. \]

Температура газа, выходящего из генератора, определяется из условия равенства статей расхода и прихода теплового баланса:

\[Q_{\text{т,60к}} = Q_{\text{CO}} + Q_{\text{CO}_2} + Q_{\text{H}_2} + Q_{\text{CH}_4} + Q_{\text{N}_2} + Q_{\text{H}_2O} + Q_{\text{т,60к}}. \]

\[Q_{\text{т,60к}} = Q_{\text{т,60к}}. \]

Тепловая производительность генератора определяется по формуле:

\[Q_{\text{т,60к}} = \frac{H_{\text{вр}} \cdot V_{\text{вр}}}{H_{\text{вр}}}. \]

где:

\[H_{\text{вр}} = 30,50 \cdot \text{CO} + 25,70 \cdot \text{H}_2 + 85,10 \cdot \text{CH}_4; \]

\[V_{\text{вр}} = 2,28 \text{ м}^3/\text{кг} (\text{смотрите баланс углерода}); \]

\[H_{\text{вр}} = 81 \cdot \text{C} + 246 \cdot \text{H} - 26 \cdot \text{O} - 6 \text{ W} \text{ ккал/кг}, \]
Значения CO, H₂, CH₄ и C, H, O₃, W берутся из материального баланса.
Подставляя цифровые данные, имеем:

\[H_r = 30,50 \times 20,5 + 25,70 \times 16,5 + 85,1 \times 1 = 1134,4 \text{ ккал/м}^3; \]
\[H_m = 81 \times 40,8 + 246 \times 5,0 - 26 \times 35,9 - 6 \times 16,7 = 3501,2 \text{ ккал/кг}. \]

Тогда:

\[\eta_r = \frac{1134,4 \times 2,28}{3501,2} = 0,738. \]

Коэффициент полезного действия газогенератора близок к практическим величинам и подтверждает реальность проведенного теплового расчета.

Глава VIII
ОСНОВЫ КОНСТРУКТИВНОГО РАСЧЕТА ЭЛЕМЕНТОВ ГАЗОГЕНЕРАТОРНОЙ УСТАНОВКИ

Определение основных размеров элементов газогенераторной установки носит название конструктивного расчета. В конструктивный расчет газогенераторной установки входят: 1) расчет газогенератора с определением размеров бункера, топливника, зольника и газопровода, 2) расчет системы охлаждения и очистки генераторного газа и 3) расчет смесителя.

РАСЧЕТ ГАЗОГЕНЕРАТОРА

Определение размеров бункера

Размеры бункера (рис. 133) определяются с таким расчетом, чтобы он обеспечивал непрерывную работу двигателя в течение 1,5—2 часов без загрузки топлива. Располагая данными, характеризующими двигатель, подсчитывают часовой расход смеси, отнесенный к 0°Ц и 760 мм рт. ст. по формуле:

\[V_{cm} = 60 \times \frac{\pi d^2}{4} \times S \times \frac{273}{T_0} \times \frac{P_0}{760} \times \eta_r \text{ м}^3/ч, \]

где:

- \(d \) — диаметр цилиндра в метрах;
- \(S \) — ход поршня в метрах;
- \(i \) — число цилиндров;
- \(n \) — число оборотов двигателя в минуту;
- \(T_0 \) — абсолютная температура окружающей атмосферы;
- \(P_0 \) — давление окружающей атмосферы Рис. 123. Схема бункера в мм-рт. ст.;
- \(\eta_r \) — коэффициент подачи (коэффициент наполнения) двигателя при работе на генераторном газе для данных \(P_0 \) и \(T_0 \), обычно \(\eta_r \) принимается равным 0,7 — 0,8.

Газовоздушная рабочая смесь состоит из генераторного газа, водяных паров и воздуха. Если газифицируется влажное топливо и в системе охлаждения имеется конденсат, то водяные пары насы-
шают генераторный газ. При работе на сухом древесноугольном топливе и отсутствии конденсата в охладителях количество влаги в газе равно 18 кг-моль на 100 кг-моль газа (см. материальный баланс). Объем водяных паров, поступающих в двигатель за час, определяется из выражения:

\[V_{\text{пар}} = \omega \cdot V_{\text{газ}} \text{ м}^3/\text{час}, \]

где:

- \(V_{\text{газ}} \) — объем сухого генераторного газа, засасываемого двигателем в час;
- \(\omega \) — коэффициент объемного содержания паров воды в генераторном газе.

Величина \(\omega \) подсчитывается по формуле:

\[\omega = \frac{P_8}{P - P_8}, \]

где:

- \(P \) — давление генераторного газа перед входом в смеситель, обычно равное 0,93—0,98 кгс/см²;
- \(P_8 \) — давление пара, насыщающего генераторный газ при температуре \(t_8 \); величина \(P_8 \) берется из табл. 23, составленной по Шульцу.

Таблица 23

<table>
<thead>
<tr>
<th>(t_8)</th>
<th>(P_8) кгс/см²</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0,0174</td>
<td>35</td>
<td>0,0573</td>
<td>55</td>
<td>0,1602</td>
<td>75</td>
<td>0,3098</td>
</tr>
<tr>
<td>20</td>
<td>0,0228</td>
<td>40</td>
<td>0,0752</td>
<td>60</td>
<td>0,1962</td>
<td>80</td>
<td>0,4827</td>
</tr>
<tr>
<td>25</td>
<td>0,0323</td>
<td>45</td>
<td>0,0977</td>
<td>65</td>
<td>0,2547</td>
<td>85</td>
<td>0,5893</td>
</tr>
<tr>
<td>30</td>
<td>0,0433</td>
<td>50</td>
<td>0,1258</td>
<td>70</td>
<td>0,3175</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Количество воздуха, содержащегося в газовоздушной смеси, засасываемой двигателем в час, может быть подсчитано по формуле:

\[V_{\text{возд}} = \alpha \cdot L_0 \cdot V_{\text{газ}} \text{ м}^3/\text{час}, \]

где:

- \(\alpha \) — коэффициент избытка воздуха, обычно равный 1,1—1,2;
- \(L_0 \) — теоретически необходимое количество воздуха для сгорания 1 м³ генераторного газа.

Для подсчета \(L_0 \) служит формула:

\[L_0 = \frac{1}{21} \left[0,5 (CO + H_2) + 2CH_4 + 3 \cdot C_n H_m - O_2 \right] \text{ м}^3/\text{м}^3, \]

где CO, H₂, CH₄, CₙHₘ — компоненты генераторного газа, выраженные в процентах.

Следовательно, объем смеси влажного генераторного газа и воздуха, засасываемого двигателем за час, будет равен:

\[V_{\text{см}} = V_{\text{газ}} + \omega \cdot V_{\text{газ}} + \alpha \cdot L_0 \cdot V_{\text{газ}} \text{ м}^3/\text{час}, \]

откуда:

\[V_{\text{газ}} = \frac{V_{\text{см}} - \omega \cdot V_{\text{газ}} - \alpha \cdot L_0 \cdot V_{\text{газ}}}{1 + \alpha \cdot L_0 + \omega}. \]

В материальном балансе был подсчитан выход газа из 1 кг топлива, который равнялся:

\[V_r = \frac{C_m^\text{н} - C_m^\text{в}}{0,536 (CO_2 + CO + CH_4 + 2C_n H_m)} \text{ м}^3/\text{кг}. \]

Часовой расход топлива определяется по формуле:

\[V_{\text{см}} = \frac{V_{\text{см}}}{(1 + \alpha \cdot L_0 + \omega) \cdot V_6} \text{ кг/час}. \]

Обозначая через \(Z \) время непрерывной работы двигателя на 100% нагрузке, и через \(G \) — насыщенной вес 1 м³ топлива, можно определить объем бункера:

\[V_6 = \frac{Z \cdot G_{\text{час}}}{G} \text{ м}^3. \]

Значения \(G \) берутся по табл. 24, составленной инж. Мезенцем.

Таблица 24

<table>
<thead>
<tr>
<th>Род топлива и порода</th>
<th>(G) насыщенной вес кг/м³</th>
<th>(W) влажность в %</th>
<th>Приблиźительные размеры в мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>Древесные чурки</td>
<td></td>
<td></td>
<td>220</td>
</tr>
<tr>
<td>сосна</td>
<td></td>
<td>12%</td>
<td>40×50×50</td>
</tr>
<tr>
<td>ель</td>
<td></td>
<td></td>
<td>230</td>
</tr>
<tr>
<td>береза</td>
<td></td>
<td></td>
<td>270</td>
</tr>
<tr>
<td>бук</td>
<td></td>
<td></td>
<td>275</td>
</tr>
<tr>
<td>дуб</td>
<td></td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Древесный уголь</td>
<td></td>
<td>6—8%</td>
<td>—</td>
</tr>
<tr>
<td>еловый</td>
<td></td>
<td></td>
<td>131</td>
</tr>
<tr>
<td>сососновый</td>
<td></td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>березовый</td>
<td></td>
<td></td>
<td>190</td>
</tr>
<tr>
<td>Торф</td>
<td></td>
<td></td>
<td>300—350</td>
</tr>
<tr>
<td>торф сухой</td>
<td></td>
<td></td>
<td>400—500</td>
</tr>
<tr>
<td>сырой</td>
<td></td>
<td></td>
<td>—</td>
</tr>
</tbody>
</table>

Большинство автотракторных газогенераторов делается цилиндрической формы и поэтому высота и диаметр бункера выбирается по формулам:

\[h_6 = 1,274 \frac{V_6}{d_6^2} \text{ м}, \]
\[d_6 = 1,129 \sqrt{\frac{V_6}{h_6}} \text{ м}, \]
где \(d_6 \) и \(h_6 \) — соответственно диаметр и высота бункера в метрах.

Определение размеров топливики

На основе рассмотренной выше теории газификации Научно-исследовательским авто-тракторным институтом (НАТИ) был разработан следующий метод расчета топливики.

Площадь сечения топливики (рис. 134) на уровне воздушных фурм подсчитывается по формуле:

\[F = \frac{G_{нас}}{R} \text{ м}^2, \]
где:

- \(G_{нас} \) — часовой расход топлива в кг;
- \(R \) — напряженность горения топлива (количество кг топлива, сгорающего в час на 1 м² площади сечения на уровне воздушных отверстий).

Практически величина \(R \) для газотурбинных газогенераторов составляет для дров 600—1000 кг/м³ в час и для древесного угля 160—250 кг/м³ в час.

Величина жароаппаратности выбирается с таком расчетом, чтобы топливо безотлагательно опускалось и чтобы в топливнике создавались высокие температуры, необходимые для сжигания и разложения смол (в случае работы на смолистых топливах). Более высокие значения жароаппаратности берутся для смолистого и влажного топлива.

Зная площадь сечения топливики и учитывая, что он в подавляющем большинстве случаев делается квадратного сечения, диаметр его на уровне воздушных отверстий определяется из выражения:

\[d_m = 1,129 \sqrt[3]{F} \text{ м}. \]

В зависимости от конструкции газогенератора топливики имеют цилиндрическую, коническую, или диабазообразную форму. При газификации углей топливо обычно имеет цилиндрическую форму, а при газификации дров и торфа — более сложную конфигурацию, суживающуюся к концу или в середине в целях создания условий для лучшего разложения продуктов сухой перегонки.

Высота топливики определяется следующим образом.

Скорость движения газов в топливики на данной высоте его \(h \) определяется из выражения:

\[v = \frac{A + B}{\pi \cdot \mu \left(\frac{\tga}{\atga - h} \right)^2} \text{ м/сек.}, \]

где:

- \(A \) и \(B \) — объемные количества газов, протекающих в секунду через сечение топливики на данной высоте \(h \) (\(A \) м³/сек. — объем газов, подающих восстановление, \(B \) м³/сек. — объем инертных газов);
- \(\alpha \) — угол наклона образующей топливики;
- \(a \) — радиус топливики в месте подачи воздуха, равный \(\frac{d_m}{2} \text{ м}; \)
- \(h \) — высота сечения камеры в метрах в месте, для которого определяется скорость газов;
- \(\mu \) — коэффициент, показывающий, какая часть сечения топливики остается незаполненной топливом. Он подсчитывается по формуле:

\[\mu = 1 - \frac{G}{1000 \gamma}, \]

где:
- \(\gamma \) — удельный вес топлива;
- \(G \) — насыпной вес 1 м³ топлива.

Значения \(G \) приведены в табл. 24.

Для практических подсчетов величина \(A + B \) достаточной точностью может быть определена как среднее арифметическое значение объемных количеств газов, протекающих через верхнее и нижнее сечения топливики.

Допустим, что вся окись углерода получается по реакции восстановления, можно определить, что объем углекислоты, содержащейся в газах в верхней части топливики, будет в двух раза меньше объема окиси углерода, содержащейся в образовавшемся газе. Тогда объем газов, протекающих через верхнее сечение топливики, будет равен:

\[V'' = V_{газ} \left(1 - \frac{CO}{200}\right) \text{ м³/час}, \]

где:

- \(V_{газ} \) — часовой расход газа в м³, равный расходу газа через нижнее сечение топливики;
- \(CO \) — процентное содержание окиси углерода в газе.

Среднее количество газов, протекающих через топливики в секунду, определяется из выражения:

\[(A + B)_{ср} = \frac{V_{газ} + V''}{2 \cdot 3600} \text{ м³/сек.}, \]

или

\[(A + B)_{ср} = \frac{V_{газ} \left(1 - \frac{CO}{400}\right)}{3600} \text{ м³/сек.}. \]
При расчете топливника сложной формы необходимо вычислить скорость движения газов в различных его сечениях.

Для упрощения расчета топливника можно допустить, что он имеет форму цилиндра с диаметром \(d \).

Тогда средняя скорость движения газов в топливнике определяется из выражения:

\[
q_{ср} = \frac{(A+B)_{ср}}{\mu \cdot F} \cdot \text{м/сек},
\]

где \(F \) — площадь поперечного сечения топливника в \(\text{м}^2 \).

Как уже указывалось, время реакции восстановления углекислоты определяется из формулы:

\[
k_1 \cdot t = \frac{2.3}{1 + m} \log \left(\frac{1}{m - \frac{1}{1 + m}} \cdot \frac{1}{2} \right) + C,
\]

где:

\(k_1 \) — коэффициент скорости реакции (берется по табл. 13);
\(t \) — длительность реакции восстановления в секундах;
\(m \) — концентрация углекислоты в начале реакции восстановления;
\(x \) — концентрация окиси углерода, восстановленной за время \(t \);
\(C \) — свободный член.

Величину \(C \) находят подстановкой в формулу численных значений, соответствующих началу реакции.

Время, необходимое для восстановления углекислоты, имеющейся в генераторном газе, в окись углерода, можно найти, задавшись концентрацией окиси углерода.

Для определения времени восстановления \(\text{CO}_2 \) может быть применена следующая формула:

\[
t = \frac{1}{k_1} \ln \frac{a}{a - b},
\]

где:

\(a \) — количество молей углекислоты, подлежащей восстановлению;
\(b \) — количество молей восстановленной углекислоты.

Обе формулы дают приблизительно одинаковые результаты.

Необходимое для образования достаточно высокого процента окиси углерода время, подсчитанное по приведенным формулам, составляет 0,6—1 секунду.

Зная скорость движения газов в топливнике и время, необходимое для восстановления углекислоты, можно определить высоту топливника из выражения:

\[
h_m = q_{ср} \cdot t \text{ м}.
\]

Вышеприведенный расчет высоты топливника дает вполне удовлетворительные результаты для газогенераторов с низкой наружностью горения; в этом случае высота топливника обычно находится в пределах 350—500 мм. Для газогенераторов с высокой жаронапряженностью, в которых получается большее срединное движение газа, высота топливника, определенная по приведенной формуле, достигает нескольких метров и практически неосуществима.

Метод расчета газогенератора скоростного процесса газификации и в частности расчет топливника был предложен инж. Вознесенским. По формуле инж. Вознесенского, если скорость движения газов в топливнике \(\varphi \) выше 0,6—0,7 м/сек, высота цилиндрической части топливника равна:

\[
h_m = \frac{\varphi \cdot n}{D \cdot b \cdot F} \left(C_0 - C_1 \right) \cdot 10^4 \text{ м},
\]

где:

\(\varphi \) — критическая толщина газовой пленки, равная 0,07 см;
\(D \) — коэффициент диффузии, равный 4,52 (для температуры 1100° Ц);
\(b \) — величина активной поверхности топлива в \(\text{м}^2 \) на 1 \(\text{м}^3 \) насыщенного топлива. Чем меньше топливо, тем больше его активная поверхность и тем меньше будет высота топливника. Значение \(b \) приведено в табл. 25 (стр. 192). Для топлива среднего размера (5 см x 5 см x 6 см):

\[
b = 69 \text{ м}^2/\text{м}^3;
\]

\(F \) — площадь сечения топливника в \(\text{м}^2 \);
\(C_0 - C_1 \) — разность концентраций кислорода на границах газовой пленки, равная \(\frac{6,02}{22,4 \times 5,04 \times 10^8} \text{ мол/см}^2 \);

\(t \) — время, необходимое для образования 100 кг-моль газа в секундах;

\[
t = \frac{2240 \times 3600}{V_{\text{газ}}} \text{ сек.} \quad (V_{\text{газ}} \text{ — расход газа в час});
\]

\(n \) — количество молей кислорода, необходимое для образования 100 кг-моля генераторного газа; \(n \) — определяется из формулы:

\[
n = 0,21 L_{100}.
\]

Величина \(L_{100} \), обозначающая количество воздуха, необходимое для получения 100 кг-моль газа, берется из материального баланса.

1 И. П. Вознесенский, Лёгкие газогенераторы, ГОТИ, 1938.
<table>
<thead>
<tr>
<th>Топливо</th>
<th>Размеры кусков</th>
<th>Таблица 25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>см³</td>
<td>поверхность в м²</td>
</tr>
<tr>
<td>Чурки твердого древа</td>
<td>5×6</td>
<td>0,0062</td>
</tr>
<tr>
<td>5×20</td>
<td>0,0130</td>
<td>0,000100</td>
</tr>
<tr>
<td>Деревяная дрова</td>
<td>8×20</td>
<td>0,0184</td>
</tr>
<tr>
<td>8×28</td>
<td>0,0226</td>
<td>0,000224</td>
</tr>
<tr>
<td>16×20</td>
<td>0,0328</td>
<td>0,000660</td>
</tr>
<tr>
<td>8×6</td>
<td>0,0092</td>
<td>0,000048</td>
</tr>
<tr>
<td>8×28</td>
<td>0,0226</td>
<td>0,000224</td>
</tr>
<tr>
<td>16×20</td>
<td>0,0328</td>
<td>0,000660</td>
</tr>
<tr>
<td>25×40</td>
<td>0,078</td>
<td>0,00100</td>
</tr>
<tr>
<td>50×50</td>
<td>0,160</td>
<td>0,00350</td>
</tr>
<tr>
<td>Дрова</td>
<td>75×50</td>
<td>0,225</td>
</tr>
<tr>
<td>100×60</td>
<td>0,352</td>
<td>0,00600</td>
</tr>
</tbody>
</table>

Упрощенная формула для определения высоты топлива газогенератора скоростного процесса будет иметь следующий вид:

\[h = 42,1 \times \frac{n}{F} \text{м.} \]

Высота топлива, подсчитанная для газогенератора скоростного процесса газификации, лежит в пределах 120—150 мм. Казалось бы, это позволяет уменьшить размеры топлива, создавая более компактную установку. На самом же деле, в генераторах скоростного процесса газификации при малых нагрузках скорости газа в топливнике снижаются до 0,1—0,3 м/сек, при которых генератор работает, как обычно, с восстановительным слоем. Поэтому всякий транспортный газогенератор скоростного процесса газификации должен быть проверен на работу с восстановительным слоем при малых нагрузках. Высота топлива газогенератора скоростного процесса газификации обычно берется в пределах 300—200 мм.

Расчет воздушных отверстий (рис. 135)

Количество воздуха, необходимое для газификации 1 кг топлива, определяется по формуле, выведенной в материальном балансе:

\[V_a = \frac{22,4 \times 100 \times N_a^{\text{м³/кг}}}{79} \]

где:

- \(N_a \) — расход воздуха на газификацию в м³/час;
- \(V_a \) — скорость воздуха, входящего в топливник в м/сек.

При периферийно-фурменном подводе воздуха диаметр одной фуры определяется из выражения:

\[d_f = 2 \sqrt{\frac{F_a}{\pi \cdot n}} \text{см.} \]

Число фурр \(n \) — определяется конструктивными соображениями. В топливниках, в которых газифицируется древесина, делают 8—12 фурр.
При периферийно-щелевом подводе воздуха размеры воздушного отверстия могут быть определены по формуле:

$$F_a = a \cdot b \ cm^2,$$

где:
- \(a \) — ширина воздушной щели в см;
- \(b \) — высота воздушной щели в см.

При центрально-фурменном подводе воздуха расчет основного воздухопроводящего канала производится по формуле:

$$d_f = 1.129 \sqrt{F_a} \ cm.$$

Периферийные отверстия центральной фурмы рассчитываются по формуле расчета фурм периферийно-фурменного подвода воздуха.

Определение размеров зольника

Объем зольника рассчитывается с учетом чистки его один раз в сутки или в двое суток. В килограмме топлива содержится \(A^m \) кг золы, которая собирается в зольнике. Там же собирается некоторое количество угольной мелочки. Количество этих остатков в зольнике с 1 кг газифицируемого топлива определяется из выражения:

$$\frac{A^m}{100(1-\gamma)} \ kg,$$

где:
- \(A^m \) — процентное содержание золы в топливе;
- \(\gamma \) — содержание углерода в 1 кг остатков.

Общее количество остатков, накапливающихся в зольнике за время \(t \), определяется по формуле:

$$A^m \cdot G_{\text{час}} \cdot t \ \frac{m^3}{(1-\gamma) \cdot \gamma_0 \cdot 10^6},$$

где:
- \(G_{\text{час}} \) — часовой расход топлива в кг;
- \(t \) — время между чистками зольника в часах;
- \(\gamma_0 \) — удельный вес остатков.

Удельный вес остатков подсчитывается по формуле:

$$\gamma_0 = \frac{1}{y \left(\frac{1}{\gamma_0} - \frac{1}{\gamma_a} \right) + \frac{1}{\gamma_a}},$$

где:
- \(\gamma_y \) — удельный вес угольной пыли, обычно принимаемый равным 1,5;
- \(\gamma_a \) — удельный вес золы, равный 0,3.

Содержание углерода в 1 кг остатков принимается равным для дров 0,17 кг, древесного угля 0,20 кг, каменного угля 0,20—0,30 кг, торфяного кокса 0,4 кг.

Объем зольника выбирается с запасом в 30—60% и определяется по формуле:

$$V_{\text{пол.}} = \frac{1,3 A^m G_{\text{час}} t}{(1-\gamma) \cdot \gamma_0 \cdot 10^6} \ m^3.$$

Зная объем зольника и принимая его диаметр равным диаметру бункера газогенератора, можно найти высоту зольника из выражения:

$$h_{\text{пол.}} = 1,27 \frac{V_{\text{пол.}}}{d_f^5} \ m.$$

Конструирование газогенераторов с зольниками больших размеров не рекомендуется, так как в этом случае увеличивается пространство, имеющее температуру 700—400° Ц, при которой протекает реакция распада окиси углерода.

Определение размеров газопровода

Размеры газопроводов выбираются с таким расчетом, чтобы торможение в них проходящего газового потока было минимальным. Через любой участок газогенераторной установки в час проходит следующий объем газа:

$$V_{\gamma_{\text{gaz}}} = \frac{V_{\gamma_{\text{gaz}}} \cdot 273 + t}{273} \ m^3/час,$$

где:
- \(V_{\gamma_{\text{gaz}}} \) — часовой расход газа при температуре 0° Ц и 760 мм рт. столб.;
- \(V'_{\gamma_{\text{gaz}}} \) — действительный часовой расход газа, проходящего по выбранному участку газопровода, при температуре \(p \) Ц.

Ввиду того, что изменение давления представляет незначительную величину, поправка на него не вводится.

Для простоты изготовления и монтажа газопроводы делаются круглого сечения. Диаметр газопровода определяется по формуле:

$$d_{\text{газ.}} = 0,114 \sqrt{\frac{(273+t) V_{\gamma_{\text{gaz}}}}{V_r}} \ cm,$$

где \(V_r \) — скорость газа в м/сек.

Для уменьшения сопротивления движению газа следует выбирать меньшие значения \(V_r \), но в этом случае получаются большие диаметры газопроводов.

Практикой установлено, что наиболее приемлемой скоростью газа в газопроводе, не дающей больших потерь на всасывание, будет 10—15 м/сек.
Расчет газоохладителя

Температура газа, выходящего из топливника, достигает нескольких сот градусов. Как уже указывалось, в интервале температур от 400 до 700° Ц протекают реакции распада окиси углерода. Поэтому генераторный газ должен быстро охлаждаться до 400—350° Ц. Это иногда осуществляется в самом газогенераторе, для чего газ пропускают между стенками бункера и наружного кожуха. В этом случае газ частично подогревает топливо, а частично отдает тепло окружающему воздуху.

Подача горячего генераторного газа в двигатель приводит к понижению его мощности из-за уменьшения удельного веса газа и увеличения влагосодержания. Возможность же интенсивно охлаждать газ лимитируется допустимыми размерами охладителей и температурой окружающего воздуха. Обычно принимается, что температура, до которой практически можно охладить генераторный газ, бывает на 15—30° Ц выше температуры окружающего воздуха.

Количество газа, проходящего в час через холодильник, равно:

\[V_r \cdot G_{въ} \div \frac{22,4}{\text{кг-моль}} \]

где:

- \(V_r \) — выход газа из 1 кг топлива в м³;
- \(G_{въ} \) — часовой расход топлива в кг.

Количество тепла, которое отнимается от газа в час при его охлаждении с температурой \(t_1 \) до \(t_2 \), определяется из уравнения:

\[Q_{охл} = (CO \cdot C_{CO} + CO_2 \cdot C_{CO_2} + H_2S \cdot C_{H_2S} + CH_4 \cdot C_{CH_4} + C_nH_m \cdot C_{C_nH_m} + \]
\[+ N_2 \cdot C_{N_2} + \frac{N_2}{18} \cdot C_{N_2}^{\text{вап}} \cdot (t_1 - t_2) + (W_{вап}^0 - W_{вап}^{т_2}) \left[600 - t_2 + \right. \]
\[\left. \frac{C_{H_2O}^{\text{вап}}}{18} (t_1 - 100) \right] \text{кал}, \]

где:

- CO, CO₂, H₂S, CH₄, CₙHₘ, N₂ — компоненты генераторного газа в кг-моль. Они могут быть легко подсчитаны, если известен состав газа и его количество в кг-моль в час;
- \(C_{CO}, C_{CO_2}, C_{H_2S}, C_{CH_4}, C_{C_nH_m}, C_{N_2}^{\text{вап}} \) — средние молекулярные тепловыделения соответствующих компонентов в интервале температур от \(t_1 \) до \(t_2 \). Значения средних молекулярных тепловыделений даны в табл. 21;
- \(W_{вап}^0 \) — количество кг влаги, содержащейся в \(V_r \cdot G_{въ} \div 22,4 \) кг-моль генераторного газа при выходе из газогенератора (см. материальный баланс);
- \(W_{вап}^{т_2} \) — количество кг влаги, насыщающей \(V_r \cdot G_{въ} \div \text{м² генераторного газа при температуре } t_2 \).

Для предварительных подсчетов количества тепла, теряемого газом в час, можно пользоваться формулой:

\[Q_{охл} = V_r \cdot G_{въ} \cdot C_p (t_1 - t_2) \text{кал}, \]

где:

- \(V_r \cdot G_{въ} \) — часовой расход газа в м³;
- \(C_p \) — средняя теплоемкость 1 м³ газа; для предварительных подсчетов \(C_p \) принимается равной 0,32 кал/м³.

Поверхность охладителя подсчитывается по формуле:

\[F = \frac{Q_{охл}}{K \left(\frac{t_1 + t_2}{2} - \frac{t_1^n + t_2^n}{2} \right) \cdot m}, \]

где:

- \(t_1 \) и \(t_2 \) — начальная и конечная температура газа, проходящего охладитель;
- \(t_1^n \) и \(t_2^n \) — температура воздуха до прохода охладителя и после прохода, ввиду незначительной разности этих температур, их считают равными;
- \(K \) — общий коэффициент теплопередачи от газа воздуху в кал/м² час при разности температур в 1° Ц.

Для определения \(K \) служит формула:

\[K = \frac{1}{\alpha_1 + \frac{1}{\alpha_2 + \frac{1}{\alpha_3 + \frac{1}{\lambda}}}} \]

где:

- \(\alpha_1 \) — коэффициент теплопередачи путем конвекции и теплопроводности от газа к стенке охладителя, разделяющего газ от воздуха, в кал/м² час при разности температур в 1° Ц;
- \(\alpha_2 \) — коэффициент теплопередачи путем конвекции и теплопроводности от стенки охладителя воздуху в кал/м² час при разности температур в 1° Ц;
- \(\alpha_3 \) — коэффициент теплопередачи лучевого тепла от охладителя к окружающему среду в кал/м² час при разности температур в 1° Ц;
- \(\delta \) — толщина стенки охладителя в м;
- \(\lambda \) — коэффициент теплопроводности стенки в кал/м² °Ц час при разности температур в 1° Ц.

Рис. 136. Схема циклона
Коэффициенты теплопередачи от газа к стенке и от стенки к воздуху могут определяться по формулам:

$$a_1 = 2 + 10 \sqrt{V_r}$$

$$a_2 = 2 + 10 \sqrt{V_n}$$

$$a_3 = \frac{C}{t_1 - t_2} \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]$$

где:

- V_r — скорость движения газа в охладителе в м/сек;
- V_n — скорость движения охлаждающего воздуха в м/сек;
- C — постоянная лучеперехода охладителя (C=4 кал/м³ час при разности температур в 1° C);
- t_1 — температура наружной стены охладителя;
- t_2 — температура предметов, окружающих охладитель;
- T_1 — температура воздуха;
- T_2 — абсолютная температура наружной стены охладителя, равная 273 + t_1;
- T_3 — абсолютная температура предметов, окружающих охладитель, равная 273 + t_2.

Для различных материалов коэффициент теплопроводности составляет:

<table>
<thead>
<tr>
<th>Материал</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Железо</td>
<td>40–60</td>
</tr>
<tr>
<td>Красной меди</td>
<td>260–340</td>
</tr>
<tr>
<td>Латунь</td>
<td>70–90</td>
</tr>
<tr>
<td>Латунь с медью</td>
<td>100–200</td>
</tr>
<tr>
<td>Сажа</td>
<td>0,03</td>
</tr>
<tr>
<td>Масло</td>
<td>0,1</td>
</tr>
<tr>
<td>Вода</td>
<td>0,5–0,6</td>
</tr>
</tbody>
</table>

При определении размеров охладителя следует вести расчет по частям, так как коэффициент теплопередачи зависит от типа, формы охладителя и скорости и температуры газа.

Расчет газоочистительных устройств не приводится ввиду отсутствия исследований в этой области.

Процесс Каппа предлагает следующие размеры матерчатых фильтров:

Для машины с двигателем мощностью до 40 л. с. Поверхность фильтра 0,7–1,0 м²

- 0,7 м²
- 1,0 м²
- 1,3–2,0 м²

Упрощенный расчет складок очистителей (рис. 136, стр. 197) производится следующим образом.

Задается скорость выходящего из складки газа в пределах до 1 м/сек, определяют сечение выходного газового патрубка D. Остальные размеры складки очистителя выбираются по ниже приведенным эмпирическим формулам:

$$d = 0,5 D$$

$$D_1 = (2–2,5) D$$

$$D_2 = (0,8–0,9) D$$

1 Более точное определение a_1 и a_2 может быть проведено по формулам Нуссельта и Гребера. См. Ниelle, т. 1, Передача теплоты.

Расчет смесителя

Отношение объемов воздуха и газа, поступающих в смеситель в секунду, подсчитывается по формуле:

$$K = \frac{F_v}{F_r} \cdot \frac{\varphi_r}{\varphi_v}$$

где:

- F_v — площадь сечения воздушного канала в м²;
- F_r — площадь сечения газового канала в м²;
- φ_v — скорость воздуха, поступающего в смеситель, в м/сек.;
- φ_r — скорость газа, поступающего в смеситель, в м/сек.

На стр. 186 приведен расчет количества воздуха, необходимого для горения 1 м³ газа. Для газовых двигателей значение $K = 1$.

Определяют площади сечений воздушного и газового каналов F_v и F_r, обозначается через q.

Тогда:

$$q = K \frac{\varphi_r}{\varphi_v}$$

Скорость газа и воздуха в каналах смесителя подсчитывают по формулам:

$$u_v = 3,54 \sqrt{\frac{P_o - P_{g,0}}{t_v}}$$

$$u_r = 3,54 \sqrt{\frac{P_o - P_{g,1}}{t_r}}$$

где:

- P_o — давление окружающего воздуха в мм вод. столба;
- $P_{g,0}$ — сопротивление воздушного фильтра в мм вод. столба;
- $P_{g,1}$ — сопротивление газогенераторной установки в мм вод. столба;
- t_v — вес 1 м³ газа при температуре поступления в смеситель;
- t_r — вес 1 м³ воздуха при температуре поступления в смеситель.

Для приближенных вычислений можно принимать:

$$t_v = 1,1 \text{ кг}$$

$$t_r = 1,186 \text{ кг}$$

Отношение площадей сечений воздушного и газового каналов после подстановки значений t_v и t_r определяется по формуле:
Площадь сечения воздушного канала подсчитывается из условия равенства секундного расхода газовой смеси сумме секундных расходов газа и воздуха:

\[V_{v, \text{ см}} = F_v \cdot q_v + F_r \cdot q_r \]

откуда:

\[F_v = \frac{V_{v, \text{ см}}}{q_v + \frac{q_r}{q}} \]

Величина секундного расхода смеси подсчитывается по формуле:

\[V_{v, \text{ см}} = \frac{V_{v, \text{ см}} \cdot T_{v, \text{ см}}}{273 \cdot 3600 \cdot P_v} \]

где:

\(V_{v, \text{ см}} \) — часовой расход рабочей смеси (стр. 185);
\(T_{v, \text{ см}} \), \(P_{v, \text{ см}} \) — температура и давление смеси в смесителе.

Зная значение \(F_v \), определяют \(F_r \):

\[F_r = \frac{F_v}{q} \]

ПРИМЕР КОНСТРУКТИВНОГО РАСЧЕТА ГАЗОГЕНЕРАТОРА ДЛЯ АВТОМОБИЛЯ ЭНС

Определение размеров бункера

Расход газо-воздушной смеси, потребляемой двигателем в час, подсчитывается по формуле:

\[V_{v, \text{ см}} = 60 \cdot \frac{\pi d^2}{4} \cdot S \cdot \frac{i \cdot n}{2} \cdot \frac{273}{T_v} \cdot \frac{P_n}{760} \cdot \eta_v \]

где:

\(d \) — диаметр цилиндра, равный 0,1016 м;
\(S \) — ход поршня, равный 0,1143 м;
\(i \) — число цилиндров, равное 6;
\(n \) — число оборотов двигателя в минуту, равное 2300;
\(\eta_v \) — коэффициент наполнения, равный 0,7.

Атмосферные условия принимаются равными:

\(t_v = 20^\circ \text{C} \) или \(T_v = 273 + 20 = 293^\circ \text{C} \)
\(P_n = 750 \) мм ртут. столба.

Тогда:

\[V_{v, \text{ см}} = 60 \cdot \frac{3,14 \times 0,1016^2}{4} \cdot 0,1143 \times \frac{6 \times 2300}{2} \cdot \frac{273}{293} \cdot \frac{750}{760} \times 0,7 : = 247 \text{ м}^3/\text{ч.с.} \]

Часовой расход сухого генераторного газа определяется по формуле:

\[V_{\text{газ}} = \frac{V_{v, \text{ см}}}{1 + \alpha L_o + \omega} \]

Значение коэффициента объемного сокращения паров воды в генераторном газе \(\omega \) определяется по уравнению:

\[\omega = \frac{P_r}{P - P_o} \]

Значение \(P \) — давление генераторного газа перед входом в смеситель принимается равным 0,95 кгс/см², а \(P_o \) для температуры \(t = 20^\circ \text{C} \) берется из табл. 23:

\(P_o = 0,0238 \) кгс/см².

Тогда:

\[\omega = \frac{0,0238}{0,95 - 0,0238} = 0,0257 \]

Коэффициент избытка воздуха \(\alpha \) берется равным 1, 2, а значение \(L_o \) определяется по формуле:

\[L_o = \frac{1}{21} \left\{ 0,5 (\text{CO} + \text{H}_2) + 2\text{CH}_4 - \text{O}_2 \right\} = \frac{1}{21} \left\{ 0,5 \cdot 37 + 2 - 0,2 \right\} = 0,967 \text{ м}^3/\text{м}^3 \]

После подстановки числовых величин получаем:

\[V_{\text{газ}} = \frac{247}{1 + 0,0257 + 1,2 \times 0,967} = \frac{247}{2,176} = 114 \text{ м}^3/\text{ч.с.} \]

Из материального баланса известно, что выход газа из 1 т котельного топлива равен \(V_r = 2,28 \) м³/кг. Тогда часовой расход топлива составит:

\[G_{\text{ча}} = \frac{114}{2,28} = 50 \text{ кг/ч.с.} \]

50 килограммов топлива будет расходоваться при полной нагрузке двигателя. Обычно же двигатель загружен на 70%. В этом случае часовой расход топлива составит: 50 × 0,7 = 35 кг.

Объем бункера подсчитывается по формуле:

\[V_b = \frac{Z \cdot G_{\text{ча}}}{G} \]
где:

z — время между загрузками генератора. При полной загрузке двигатель промежутки между засыпками топлива не должны быть менее 1,5 час;

G — насыпной вес топлива. Для хвойного топлива с влажностью 20% — $G = 240$ кг/м³.

Тогда:

$$V_0 = \frac{1,5 \times 50}{240} = 0,31 \text{ м}^3.$$

Внутренний диаметр цилиндрического бункера принимается равным 0,54 м. Бункер имеет полный обогрев. Расстояние между стенками бункера и наружной стеной генератора обычно берется в пределах 20—30 мм; в нашем примере принимаем его равным 25 мм. Толщина стенок генератора берется 2,5 мм. Следовательно, наружный диаметр генератора составляет:

$$0,54 + 0,025 \times 2 + 0,0025 \times 4 = 0,60 \text{ м.}$$

Высота бункера:

$$h_0 = 1,274 \frac{V_0}{d_0^2} = 1,274 \times \frac{0,31}{0,54^2} = 1,36 \text{ м.}$$

Определение размеров топливника

Для проектируемого древесного газогенератора жаронапряженность на линии воздушных фурм берется в пределах, указанных на стр. 188. Принимаем среднее значение жаронапряженности $R = 800$ кг/м²·час.

Тогда площадь сечения топливника на линии воздушных фурм будет равна:

$$F = \frac{G_{\text{час}}}{R} = \frac{50}{800} = 0,0625 \text{ м}^2.$$

Диаметр топливника в плоскости воздушных фурм будет равен:

$$d_m = 1,129 \sqrt{F} = 1,129 \sqrt{0,0625} = 0,282 \text{ м.}$$

Первоначально предполагаем, что камера газификации имеет цилиндрическую форму с диаметром $d_m = 0,282$ м.

Для определения высоты камеры газификации необходимо знать среднюю скорость движения газов по топливнику. Для этого пользуются формулой:

$$v_{\text{ср}} = \frac{(A + B)_{\text{ср}}}{\mu \times F} = \frac{V_{\text{газ}} (1 - \frac{CO}{400})}{3600 \times \mu \times F} \text{ м/сек},$$

где:

CO — процентное содержание окиси углерода в газе, равное 20,5%;

$V_{\text{газ}}$ — часовой расход газа = 114 м³;

$F = 0,0625$ м²;

μ — коэффициент свободного сечения топливника, подсчитывается по формуле:

$$\mu = 1 - \frac{G}{1000 \gamma},$$

где:

G — насыпной вес топлива, находящегося в топливнике;

γ — удельный вес этого топлива.

Так как в топливнике всегда находится уголь, можно принять:

$G = 180$ кг/м³; $\gamma = 0,35$,

тогда:

$$\mu = 1 - \frac{180}{1000 \times 0,35} = 0,485.$$

Подставляя найденное значение в выражение $v_{\text{ср}}$, находим:

$$v_{\text{ср}} = \frac{114 (1 - \frac{20,5}{400})}{3600 \times 0,485 \times 0,0625} = 0,99 \text{ м/сек.}$$

Скорость газов в топливнике превышает 0,6 м/сек.

Следовательно, проектируемый генератор будет работать по скоростному процессу газификации. В этом случае высота топливника определяется по сокращенной формуле нж. Вознесенского:

$$h_m = 42,1 \frac{n}{F \cdot t} \text{ м,}$$

где:

$n = 0,21 \times L_{100}$ и $t = \frac{2240 \times 3600}{V_{\text{газ}}}.$

Значение L_{100} берется из материального баланса.

$L_{100} = 63,8$ кг-моль; $V_{\text{газ}} = 114$ м³/ч,

тогда:

$$h_m = 42,1 \times \frac{0,21 \times 63,8 \times 114}{0,0625 \times 2240 \times 3600} = 0,128 \text{ м или} 128 \text{ мм.}$$

Полученная высота топливника требует проверки при работе с малым отбором газа (например при 30-процентной нагрузке двигателя). Определяем необходимую высоту топливника при этой на-
груже двигателя. В этом случае средняя скорость газов в топливе будет в 3,3 раза меньше, чем при полной нагрузке, т. е.

$$v_{cp} = \frac{0,99}{3,3} = 0,3 \text{ м/сек.}$$

Время, необходимое для восстановления углекислоты, определяется из формулы:

$$k_1 t = \frac{2,3}{1 + m} \log \left(\frac{1}{m - \frac{1 + m}{2} x} \right) + C.$$

Значение k_1 для температуры 1000—1100° берется из табл. 13 $k_1 = 1,5$. Первоначальная концентрация углекислого газа может быть принята равной 18—20%. Концентрация окиси углерода x в конце реакции восстановления должна составлять 15—20%. Принимаем $m = 0,18$, $x = 0,20$. Свободный член C находится при условии, что значения величин, входящих в формулу, берутся соответствующими началу реакции, т. е.

$$t = 0, m = 0,18, x = 0, k_1 = 1,5,$$

тогда:

$$1,5 : 0 = \frac{2,3}{1 + 0,18} \log \frac{1}{0,18} + C,$$

откуда

$$C = -3,9 \log 5,55 = -2,9.$$

Располагая всеми величинами, находим время, необходимое для восстановления СО:

$$1,5 t = \frac{2,3}{1 + 0,18} \log \left(\frac{1}{0,18 - \frac{1 + 0,18}{2} \times 0,20} \right) - 2,9,$$

откуда $t = 1,2$ сек.

Зная скорость газов в топливе и время пребывания их в слое раскаленного угля, определяем высоту топлива из выражения:

$$h_m = v_{cp} \cdot t = 0,3 \times 1,2 = 0,36 \text{ м или 360 мм.}$$

При малом отборе газа совершенно необязательно добиваться наличия 20% CO в газе, а можно ограничиться 15%. В этом случае высота топлива снизится до 300 мм. Для надежной работы генератора на различных режимах отбора газа высоту топлива принимаем равной 300 мм. Чтобы создать лучшие условия для разложения смолистых элементов, топливо в вершине несколько суживают. Практикой установлено, что наиболее целесообразно суживать топливо на расстоянии около 130—150 мм ниже воздушных отверстий. Диаметр суженной части (горловины) топлива рассчитывается из условий жаропрочности. Обычно жаропрочность в горловине доходит до 1500—2500 кг/м² час.

Примем $R_e = 1500$ кг/м² час,

gогда

$$F_e = \frac{G_{cak}}{R_e} = \frac{50}{1500} = 0,0333 \text{ м}^2.$$

Диаметр горловины будет,

$$d_r = 1,129 \sqrt{F_e} = 1,129 \sqrt{0,0333} = 0,206 \text{ м.}$$

Принимаем $d_r = 200$ мм.

При $R_e = 2500$ кг/м² час диаметр горловины будет около 150 мм.

Вследствие сужения топлива уменьшается объем камеры газификации. Для сохранения первоначально вычисленного объема камеры газификации несколько увеличиваем внизу диаметр топлива и принимаем его равным не 282 мм, как вверху, а 375 мм.

Расчет воздушных отверстий

В топливе проектируемого генератора воздух будет подводиться по периферии через круглые фуры.

Площадь сечения воздуховодящих отверстий определяется по формуле:

$$F_v = 2,78 \times \frac{V^V}{v_v} \text{ см}^2,$$

где:

V^V — расход воздуха на газификацию в м³/час.

На газификацию 1 кг рабочего топлива расходуется 1,46 м³ воздуха (см. материальный баланс) и на газификацию 50 кг топлива 1,46 × 50 = 73 м³/час воздуха.

v_v — скорость воздуха, входящего в топливо, принимается равной 30 м/сек.

Тогда:

$$F_v = 2,78 \times \frac{73}{30} = 6,76 \text{ см}^2.$$

Число фурм принимается равным $n = 8$ и диаметр фурм определяется по формуле:

$$d_f = 2 \sqrt{\frac{F_v}{\pi \cdot n}} = 2 \sqrt{\frac{6,76}{3,14 \times 8}} = 1,03 \text{ см или 10,3 мм.}$$

Принимаем $d_f = 10,5$ мм.

Определение размеров зольника

Зольник у проектируемого генератора не будет иметь колосниковой решетки, что несколько упрощает конструкцию. Чистка зольника будет происходить раз в два суток.
Объем зольника вычисляется по формуле:

\[V_{\text{зольн.}} = \frac{1,3 \cdot A^m \cdot G_{\text{час}} \cdot t}{(1 - y) \gamma_0 \cdot 10^3} \text{ м}^3, \]

где:

- \(A^m = 0,4\% \);
- \(G_{\text{час}} = 50 \text{ кг/час} \);
- \(t \) — время между чистками зольника = 32 часа (двухсменная работа);
- \(y \) — содержание углерода в 1 кг очищенных остатков = 0,17 кг
- \(\gamma_0 \) — удельный вес остатков, определяемый по формуле:

\[\gamma_0 = \frac{1}{y \left(\frac{1}{\gamma_y} - \frac{1}{\gamma_0} \right) + \frac{1}{\gamma_3}}, \]

где:

- \(\gamma_y \) — удельный вес угольной пыли = 1,5;
- \(\gamma_3 \) — удельный вес золы = 0,3.

После вычислений \(\gamma_0 = 0,348 \).

Подставляем числовые значения в выражение:

\[V_{\text{зольн.}} = \frac{1,3 \times 0,4 \times 50 \times 32}{(1 - 0,17) \times 0,348 \times 10^3} = 0,0288 \text{ м}^3. \]

Зольник ограничивается заружными стенками генератора, поэтому диаметр зольника равен диаметру генератора, \(d_r = 0,6 \text{ м} \).

Высота зольника равна:

\[h_{\text{зольн.}} = 1,27 \cdot \frac{V_{\text{зольн.}}}{d_r^2} = 1,27 \cdot \frac{0,0288}{0,6^2} = 0,102 \text{ м или 102 мм.} \]

Принимаем высоту зольника равной 110 мм.

Определение размеров газопровода (от генератора к очистителю)

Диаметр газопровода определяется по формуле:

\[d_{\text{г.п.}} = 0,114 \sqrt{\frac{(273 + t) V_{\text{газ}}}{\nu_r}} \text{ см}, \]

где:

- \(t \) — температура газа, выходящего из генератора, равная 343° Ц;
- \(V_{\text{газ}} \) — часовой расход газа = 114 м³/час;
- \(\nu_r \) — скорость газа в газопроводе.

Для максимального уменьшения потерь на всасывание величина \(\nu_r \) принимается равной 12 м/сек.

После подстановки числовых значений получаем:

\[d_{\text{г.п.}} = 0,114 \sqrt{\frac{(273 + 343) \times 114}{12}} = 8,7 \text{ см или 87 мм.} \]

![Рис. 137. Схема проектированного газогенератора](image)

Принимаем внутренний диаметр газопровода равным 90 мм. Толщина стенок газопровода принимается равной 2,5 мм.

На рис. 137 приведена схема проектированного газогенератора, построенная по размерам, определенным в конструктивном расчете.
Глава IX

МОЩНОСТЬ ДВИГАТЕЛЯ, РАБОТАЮЩЕГО НА ГЕНЕРАТОРНОМ ГАЗЕ, И СПОСОБЫ ЕЕ ПОВЫШЕНИЯ

МОЩНОСТЬ ДВИГАТЕЛЯ, РАБОТАЮЩЕГО НА ГЕНЕРАТОРНОМ ГАЗЕ

При переводе бензинового двигателя на питание генераторным газом неизбежно понижается его мощность. Это явление вызывает следующие причины:
а) понижение калорийности газовоздушной смеси по сравнению с бензиновой;
б) уменьшение коэффициента подачи;
в) сокращение объема продуктов сгорания газовоздушной смеси по сравнению с объемом поступившей свежей смеси.

Понижение калорийности

Теплотворная способность 1 м³ газовоздушной смеси представляет меньшую величину, чем теплотворная способность 1 м³ бензиновоздушной смеси. Теплотворная способность газо-воздушной смеси может быть подсчитана по формуле:

\[H''_{\text{ем}} = \frac{H_r}{1 + \alpha L_0}, \]

где:

- \(H''_{\text{ем}} \) — теплотворная способность 1 м³ смеси в калориях при 0° Ц и 760 мм рт. ст.;
- \(H_r \) — нижняя теплотворная способность 1 м³ генераторного газа в калориях;
- \(\alpha \) — коэффициент избытка воздуха; для двигателей, работающих на генераторном газе, он равняется примерно 1,1 — 1,2;
- \(L_0 \) — количество воздуха, теоретически необходимое для сжигания 1 м³ генераторного газа, в м³.

Нижняя теплотворная способность генераторного газа подсчитывается по формуле:

\[H_r = 30,50 \text{ CO} + 25,7 \text{ H}_2 + 85,1 \text{ CH}_4 + 139,1 \text{ C}_n \text{ H}_m \text{ кал}, \]

где CO, H₂, CH₄ и Cₙ Hₘ — содержание компонентов генераторного газа в %.

Теоретически необходимое количество воздуха определяется из формулы:

\[L_0 = \frac{0,5 (\text{CO} + \text{H}_2) + 2\text{CH}_4 + 3 \text{C}_n \text{ H}_m - \text{O}_2}{21} \text{ м³/м³}. \]

Приведенная формула для определения теплотворной способности газовой смеси справедлива для температуры в 0° Ц и давления 760 мм рт. ст. Чтобы получить теплотворную способность 1 м³ газовоздушной смеси при существующих атмосферных условиях (давление \(P_r \) и температура \(T_r \)) следует пользоваться формулой:

\[H''_{\text{ем}} = \frac{273}{760} \cdot \frac{P_0}{T_0} H''_{\text{ем}}, \]

где:

- \(P_0 \) — давление окружающего воздуха в мм рт. ст.;
- \(T_0 \) — абсолютная температура окружающего воздуха.

На теплотворную способность газовоздушной смеси оказывают существенное влияние водяные пары, насыщующие газ. Калорийность 1 м³ смеси при данной температуре и давлении с поправкой на влажность газа может быть определена по формуле:

\[H_{\text{ем}} = \frac{273 \cdot P_0}{760 \cdot T_0} \cdot \frac{H_r (1 - x)}{1 + \alpha L_0 (1 - x)} \text{ кал}, \]

где \(x \) — паросодержание газа в долях объема при заданных температурах газа перед смесителем и давлении перед смесителем (берется из табл. 26).

<table>
<thead>
<tr>
<th>Температура в °Ц</th>
<th>Давление насыщения в кг/см²</th>
<th>Парциальный объем пара в газе при (P=0,9 \text{ кг/см²}) в м³/м³</th>
<th>Парциальный объем пара в газе при (P=0,95 \text{ кг/см²}) в м³/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0,0323</td>
<td>0,0359</td>
<td>0,034</td>
</tr>
<tr>
<td>30</td>
<td>0,0433</td>
<td>0,0462</td>
<td>0,045</td>
</tr>
<tr>
<td>35</td>
<td>0,0573</td>
<td>0,0637</td>
<td>0,060</td>
</tr>
<tr>
<td>40</td>
<td>0,073</td>
<td>0,0836</td>
<td>0,079</td>
</tr>
<tr>
<td>45</td>
<td>0,0977</td>
<td>0,1074</td>
<td>0,103</td>
</tr>
<tr>
<td>50</td>
<td>0,1258</td>
<td>0,1358</td>
<td>0,132</td>
</tr>
</tbody>
</table>

Таблица дает парциальные объемы пара, насыщающего газ. Однако при работе на влажном топливе в газе может дополнительно содержаться вода в виде взвешенных частич. Появляя в двигатель, эта вода снижает тепловой эффект рабочей смеси и отрицательно влияет на мощность двигателя; поэтому рекомендуется для газогенераторов брать топливо с влажностью не более 20\%. Приведенный по вышеуказанной формуле подсчет теплотворной способности газовоздушной смеси дает величину, близкую к 500 кал/м³.
Уменьшение коэффициента подачи

Коэффициент подачи или наполнения цилиндров двигателя представляет собой отношение веса поступившей рабочей смеси к весу смеси при давлении и температуре окружающего воздуха, взятой в объеме рабочей части цилиндра. Этот коэффициент может быть определен по формуле:

$$ \eta_v = \frac{G_v}{G_0}, $$

где:
- G_v — вес поступившей смеси;
- G_0 — вес смеси в объеме рабочей части цилиндра при температуре и давлении окружающего воздуха (T_0, P_0).

Для расчетов можно пользоваться формулой:

$$ \eta_v = \left(\frac{P_a}{T_a} \frac{T_{oc}}{T_{oc}} \right) \left(z - 1 \right) P_0, $$

где:
- z — степень сжатия;
- P_a — давление конца такта всасывания;
- P_0 — давление окружающего воздуха;
- T_{oc} — давление остаточных газов;
- T_a — абсолютная температура в конце всасывания;
- T_{oc} — абсолютная температура окружающего воздуха;
- T_{oc} — абсолютная температура остаточных газов.

Как видно из формулы, коэффициент подачи зависит от давления и температуры в конце такта всасывания, от давления и температуры остаточных газов и степени сжатия.

Давление всасывания всегда меньше атмосферного и зависит от суммы сопротивлений газогенераторной установки в целом, т. е.

$$ P_a = P_n - (P_{ген} + P_{осн} + P_{трубопровод} + P_{смесь} + i + t). $$

Суммарное сопротивление транспортных газогенераторных установок, по данным НАТИ и ЛТА, колеблется в пределах 0,07—0,2 кгс/см².

Температура в конце такта всасывания T_a может быть подсчитана по формуле:

$$ T_a = \frac{T_{oc} + T_{oc} + \gamma}{1 + \gamma}, $$

где:
- T_{oc} — температура смеси в цилиндре с учетом подогрева от стенок цилиндра; обычно подогрев вследствие короткого времени контакта смеси со стенками цилиндра равняется 6—12 °C;
- γ — коэффициент остаточных газов (отношение объема остаточных газов к новому заряду) может быть определен из выражения:

$$ \gamma = \frac{T_{oc} \cdot P_{oc}}{T_{oc} \cdot (P_{oc} - P_{oc})}. $$

Для двигателей, работающих на генераторном газе, давление остаточных газов может быть принято в пределах 1,08—1,1 кгс/см².

Температура смеси может быть определена по формуле:

$$ T_{oc} = \frac{M_r \cdot C_p \cdot T_r + M_m \cdot C_p \cdot T_0}{M_r \cdot C_p + M_m \cdot C_p}, $$

где:
- M_r и M_m — количество кг-моль циркулирующего в двигатель в час газа и воздуха;
- C_p и C_p — молекулярные теплоемкости газа и воздуха при постоянном давлении (подсчитываются по формуле, приведенной на стр. 169);
- T_r и T_0 — абсолютные температуры газа и воздуха.

Для определения температуры смеси существует другая приближенная формула:

$$ T_{oc} = \frac{T_r (1 + \alpha L_0)}{1 + \frac{T_r \cdot \alpha L_0}{290}}, $$

где:
- T_r — температура газа;
- α — коэффициент избытка воздуха;
- L_0 — количество м³ воздуха, теоретически необходимое для сжигания 1 м³ газа.

Из изложенного видно, что повышение температуры газа приводит к повышению температуры смеси и, следовательно, к уменьшению ее калорийности.

Влияние температуры газа на мощность двигателя характеризуется кривой, приведенной на рис. 138.

Коэффициент подачи, подсчитанный по вышеуказанной формуле, для газовых двигателей лежит в пределах 0,7—0,8.
Сокращение объема продуктов сгорания

Получающиеся после сгорания окиси углерода, водорода и углеводородов продукты имеют меньший объем, чем горючая газовоздушная смесь.

Пример. Один моль окиси углерода, соединяясь с половиной моля кислорода, дает один моль углекислоты:

\[
CO + \frac{1}{2} O_2 \rightarrow \frac{1}{2} CO_2 \quad (1 \text{ моль}) \quad \frac{1}{2} O_2 \quad (\frac{1}{2} \text{ моль}) \quad (1 \text{ моль})
\]

Так как кислород для горения берется из воздуха, количество воздуха, участвующего в реакции, будет:

\[
\frac{O_2}{2} \quad 2 \cdot 0.21 \quad \text{моля},
\]

или для примера

\[
\frac{0.5}{0.21} \quad \text{моля}.
\]

Таким образом, количество веществ, вступивших в реакцию горения, будет:

\[
1 + \frac{0.5}{0.21} \quad \text{моля,}
\]

а количество образовавшихся после их сгорания:

\[
1 + \frac{0.5}{0.21} \cdot 0.79 \quad \text{моля,}
\]

t. е. объем уменьшается на величину, равную количеству кислорода, участвующего в реакции.

Отношение количества продуктов сгорания (в молях) к количеству нового заряда рабочей смеси называется коэффициентом химического молекулярного изменения; он обозначается через \(\mu_0 \).

Для разобранного примера:

\[
\mu_0 = \frac{1 + \frac{0.5}{0.21} \cdot 0.79}{1 + \frac{0.5}{0.21}} = 0.852.
\]

В общем виде коэффициент химического молекулярного изменения определяется по формуле:

\[
\mu_0 = 1 - \frac{\Delta M}{1 + \alpha L_0},
\]

где \(\Delta M \) — уменьшение объема продуктов сгорания в кг-моль на 1 кг-моль свежей рабочей смеси.

Для генераторного газа:

\[
\Delta M = \frac{H_2 + CO}{200} \quad \text{кг-моль}.
\]

Мощность двигателя

Так как в процессе сгорания принимают участие остаточные газы, заполняющие камеру сгорания, коэффициент полного молекулярного изменения определяется по уравнению:

\[
\mu = \frac{\mu_0 + \gamma}{1 + \gamma},
\]

где:

\(\gamma \) — коэффициент остаточных газов;

\(\mu_0 \) — коэффициент химического молекулярного изменения.

Коэффициент полного молекулярного изменения для генераторного газа всегда меньше единицы.

Уменьшение объема продуктов сгорания отрицательно влияет на величину среднего индикаторного давления.

Для примерной оценки падения мощности при переводе двигателя на генераторный газ может служить формула:

\[
\frac{N_r}{N_6} = \frac{H_{cm}^r}{H_{cm}^6} \cdot \frac{\eta_r^r}{\eta_6^r} \cdot \frac{\eta_m^r}{\eta_m^6},
\]

где:

\(\frac{N_r}{N_6} \) — отношение эффективной мощности двигателя на генераторном газе к эффективной мощности на бензине;

\(H_{cm}^r \) и \(H_{cm}^6 \) — низшие теплотворные способности смеси генераторного газа и бензиновоздушной смеси;

\(H_{cm}^6 \) вычисляется по формуле:

\[
H_{cm}^6 = \frac{273 \cdot P_0 H_r (1-x)}{760 \cdot T_0 \left[1 + a L_0 (1-x) \right]} \quad \text{кал/м}^3,
\]

а \(H_{cm}^6 \) примерно равна 800—820 кал/м³ (для ОПЦ и 760 мм рт. ст. \(H_{cm}^6 = 880—890 \) кал/м³);

\(\frac{\eta_r^r}{\eta_6^r} \) — отношение коэффициентов подачи при работе на газе и бензине;

\(\frac{\eta_m^r}{\eta_m^6} \) — отношение механических коэффициентов полезного действия при работе на газе и бензине.

По данным прф. Дубельта, работа трения в частях двигателя слабо меняется с изменением нагрузки, а в основном
зависит от конструкции двигателя, числа оборотов и температуры охлаждающей воды. Поэтому приближенно можно считать, что мощность, расходуемая на трение, у двигателей, переводимых с бензина на генераторный газ, остается та же, какая была при работе на бензине, но так как индикаторная мощность двигателя снижается, то величина механического коэффициента полезного действия падает и для газовых двигателей находится в пределах 0,78—0,85.

Отношение коэффициентов подачи при работе на газе и бензине определяется по формуле:

$$\frac{n_6}{n_0} = \frac{P_a^n}{P_a^0} \cdot \sqrt{\frac{T_a^6}{T_a^0}}$$

где:

- P_a^n и T_a^n — давление и температура всасывания при работе на газе;
- P_a^0 и T_a^0 — давление и температура всасывания при работе на бензине.

Как показывают теоретические подсчеты и практические данные, падение мощности при переводе двигателя на газ достигает 50—45%. Для иллюстрации на рис. 139 приводятся внешние характеристики двигателя «Сталлан-60» при работе на жидкотопливном и генераторном газе. Испытания двигателя ЧТЗ производились авторами в Лесотехнической академии им. Кирова.

СПОСОБЫ ПОВЫШЕНИЯ МОЩНОСТИ ДВИГАТЕЛЯ ПРИ РАБОТЕ ЕГО НА ГЕНЕРАТОРНОМ ГАЗЕ

Падение мощности двигателя при переводе его с бензина на генераторный газ существенно ухудшает динамические качества машины. В некоторых случаях это приводит к тому, что машина без труда передвигается на четвертой передаче. Мощность газовых двигателей может быть повышена рядом мер. Важнейшими из них являются следующие:

1) повышение калорийности рабочей смеси,
2) увеличение коэффициента подачи.

3) увеличение литражна двигателя,
4) увеличение термического коэффициента полезного действия.

Повышение калорийности рабочей смеси

Теплотворная способность рабочей смеси может быть повышена:
a) улучшением процесса газификации,
b) введением в зону восстановления газогенератора отработанных газов или различных сложных углеводородов (отработанное масло, остатки при нефтеперегонке),
в) присадкой к газовоздушной смеси жидкого топлива (спирт, керосин, бензин).

Газификация топлива и калорийность получающегося генераторного газа при всех прочих равных условиях находится в тесной зависимости от размеров топлива, способа подвода воздуха, величины подогрева бункера и быстроты охлаждения газа до температуры +400° Ц. Исследования, проведенные в НАТИ, дали следующие результаты (табл. 27).

<table>
<thead>
<tr>
<th>Подогрев бункера</th>
<th>Подача воздуха</th>
<th>Число обмоток м. ч.</th>
<th>Мощность на газе № 4 м. ч.</th>
<th>Средняя мощность на газе № 4 м. ч.</th>
<th>Потеря мощности в %</th>
<th>Потеря мощности в %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Полный подогрев</td>
<td>Без подогрева</td>
<td>2100</td>
<td>40,3</td>
<td>30,8</td>
<td>23,5</td>
<td>33,8</td>
</tr>
<tr>
<td>Частичный подогрев</td>
<td>2100</td>
<td>40,3</td>
<td>31,3</td>
<td>25,8</td>
<td>33,6</td>
<td>16,1</td>
</tr>
<tr>
<td>Без подогрева</td>
<td>2100</td>
<td>40,3</td>
<td>29,2</td>
<td>27,5</td>
<td>30,8</td>
<td>23,5</td>
</tr>
</tbody>
</table>

При полном подогреве бункера получается более калорийный газ и мощность двигателя увеличивается на 13% (без подогрева бункера двигатель ГАЗ развивал 27,2 л. с., с подогревом 30,8 л. с.). С подогревом поступающего в газогенератор воздуха качество газа также улучшается. Испытания газогенератора «Имбер», проведенные в Германии, указывают на повышение калорийности газа при комбинированном периферийно-фурменном и централизованном подводе воздуха.

Работы инж. С. И. Мезина по исследованию влияния формы воздушных фурм на процесс газификации дают возможность установить, что фурмы типа насадки Вентури (рис. 140, стр. 216) являются наиболее рациональными.
Испытания газогенераторного трактора ЧТЗ-60, проведенные авторами под руководством проф. Е. А. Флорова, с очевидностью доказывают, что газ, получающийся из мелкого топлива (щепа), оказывается более высококалорийным. На рис. 141 приведены тяговые характеристики трактора ЧТЗ-60 на II передаче при работе на древесных чурках в щепе.

Проф. Карповым были проделаны опыты по получению более калорийного газа путем подачи в зону горения отработанных газов двигателя. Результаты исследований указывают, что теплотворная способность получаемого генераторного газа примерно на 100 кал. выше, чем у обычного газа. При подаче в восстановительную зону сложных углеводородов качество генераторного газа резко повысилось.

Присадка к топливу жидкого топлива с генераторным газом также дает возможность получить увеличение мощности. На рис. 142 приведены внешние характеристики двигателя при степени сжатия 4,02; при работе на газе (1), на газе со спиртом (2) и на бензине (3). С увеличением степени сжатия потеря мощности еще более уменьшается, что видно из табл. 28.

В НАТИ были проведены детальные исследования присадок бензина к генераторному газу, получаемому из генераторной установки НАТИ-10, на автомобиле ЗИС-5. На двигателе была установлена головка, обеспечивающая степень сжатия 7,3. На газе при

Рис. 140. Различные формы воздушных фурм

Рис. 141. Тяговые характеристики трактора Ставленск-60 с газогенераторной установкой. Автомотор-1, полученные при работе на древесных чурках и щепе при нормальной степени сжатия: 1 — на II скорости при щепе влажностью 16%; 2 — на II скорости при чурках влажностью 15%; 3 — на II скорости при щепе влажностью 20%.

Рис. 142. Внешние характеристики двигателя, полученные на различном топливах

2 400 об/мин. двигатель развивал 47 л. с. С присадкой 65% бензина (15,8 кг/час) мощность двигателя при том же числе оборотов поднималась до 72,5 л. с. против 72,5 л. с. на бензине. Однако в случае присадки бензина больше 11 кг/час имела место детонация.

Кроме того, было установлено, что бензин можно заменять керосином. Присадка жидкого топлива необходима только при тяжелых условиях работы машины, в остальное время двигатель должен работать на газе.

Увеличение коэффициента подачи

Коэффициент подачи может быть повышен путем:

а) повышения температуры смеси,

б) уменьшения сопротивления газогенераторной установки,

в) увеличения времени открытия и высоты подъема клапанов,

г) подачи газовоздушной смеси при помощи компрессора.

Для снижения температуры поступающего в смеситель генератора газа рекомендуется устанавливать газоохладители с большой поверхностью, помещая их перед радиатором двигателя. Обязательным условием для газовых двигателей следует считать отделение всасывающего коллектора от выхлопного и устранение подогрева газовоздушной смеси. Для уменьшения сопротивления, встречаемого газовоздушной смесью, необходимо, чтобы газовые каналы всасывающего коллектора имели достаточные сечения и были выполнены без резких перегибов. Общее сопротивление газогенераторной установки в основном зависит от сопротивления газогенератора и очистителей. При проектировании газогенераторов следует учитывать, что повышение скорости поступающего в газогенератор воздуха и увеличение жаронапряженности вызывают повышенное сопротивление и уменьшают коэффициент подачи.

Наполнение двигателя уменьшается также при установке фильтров с большим сопротивлением (масло, вода, засол). Чтобы уменьшить время поступления газовоздушной смеси в цилинды двигателя и уменьшить ее торможение, изменяют кулачковый вал (при боковом нижнем расположении клапанов), или заменяют клапанные коромысла (при верхнем расположении клапанов). Таким образом удается повысить мощность двигателя на 10—12%.
Довольно эффективной мерой для повышения мощности газового двигателя является наддув — нагнетание рабочей смеси в цилиндр.

Рис. 143. Внешние характеристики двигателя „Ижега” 30 л. с., полученные при работе на генераторном газе и бензине и при разных величинах наддува: 1 — при работе на бензине и полностью открытом дросселе; 2 — при работе на газе и при полном открытии дросселя без наддува; 3 — при работе на газе при наддуве 0,1 атм; 4 — то же при наддуве 0,3 атм; 5 — то же при наддуве 0,5 атм; 6 — то же при наддуве 0,7 атм.

Рис. 144. Зависимость свободной мощности от величины наддува.

На рис. 145 приведено влияние степени наддува на различные параметры.

Из графика видно, что при давлении наддува $P_n = 1,4$ кг/см2 давление вспышки p приближается к значению его при работе на бензине, когда оно лежит в пределах 25—30 кг/см2.

Дальнейшее увеличение наддува ведет к перегрузке кривошипно-шатунного механизма и в худшем случае может вызвать аварию.

Применение наддува в двигателях требует установки дополнительного и довольно сложного оборудования. В газовых двигателях для автомобилей и тракторов способ повышения мощности с применением наддува почти не применяется.

Увеличение литража двигателей

Мощность двигателя можно повысить, увеличивая диаметр цилиндров. Для этого либо растачивают цилинды, либо устанавливают новые гильзы большего диаметра.

У большинства двигателей значительное увеличение диаметра цилиндров ограничивается толщиной стенок цилиндров и их механической прочностью, а изменение диаметра на небольшую величину не дает ощутимого эффекта.

Это подтверждается следующим примером.

Приближенно можно принять, что мощность двигателя пропорциональна его литражу, а последний в свою очередь пропорционален квадрату диаметра цилиндра.

Из графика (рис. 146) видно, что для повышения мощности двигателя на 25% надо увеличить литраж также на 25% и диаметр на 12%, а так как современные бензиновые или лигроиновые двигатели при переводе на газ теряют до 50% своей мощности, то для получения от двигателя нормальной мощности необходимо увеличивать литраж в два раза (100%), а диаметр цилиндров на 41%, что конструктивно невозможно.

Поэтому рассмотренный способ повышения мощности газового двигателя может быть применен только в сочетании с другими.

У двигателей МГ-17 для тракторов ЧТЗ-65 с газогенераторными установками НАТИ Г-25 диаметр гильзы цилиндра увеличивается на 10 мм, что дает возможность повысить мощность двигателя в пределах до 5%.

Увеличение термического коэффициента полезного действия

Теоретическая зависимость между термическим коэффициентом полезного действия и степенью сжатия для цикла Отто выражается следующей формулой:

$$ n_t = 1 - e^{-k}, $$

где:

e — степень сжатия,

k — показатель адабаты.

Из этого уравнения видно, что с увеличением степени сжатия повышается термический к. п. д. следовательно, увеличивается
мощность. Предел повышения степени сжатия обусловливается температурой самовоспламенения рабочей смеси и прочностью деталей двигателя.

Самовоспламенение газо воздушной смеси зависит от ее состава (наличие в ней водорода приводит к более раннему самовоспламенению). На рис. 147 показана зависимость ряда параметров от степени сжатия. Кривая 1 представляет изменение механического коэффициента полезного действия, 2 — изменение термического коэффициента полезного действия, 3 — изменение экономического коэффициента полезного действия и 4 — изменение давления в конце сжатия. Следует считать, что максимально допустимой и рациональной степенью сжатия для газовых двигателей будет 9,5—10.

Рис. 146. Изменение мощности двигателя в зависимости от изменения диаметра цилиндров

Рис. 147. Влияние степени сжатия на различные параметры

Существующие бензиновые, керосиновые и лигроиновые двигатели, спроектированные на определенное максимальное давление вспышки (около 25–30 кгс/см²), могут быстро выйти из строя, если при посадке их на генераторный газ степень сжатия повышается до 6—8, так как в этом случае давление вспышки поднимается до 35—40 кгс/см². Поэтому при переводе бензиновых и керосиновых двигателей на генераторный газ степень сжатия повышается лишь до 7, а при конструировании новых газовых моторов с усиленным кризоплинно-шатунным механизмом (диэлнного типа) — до 9—9,5.

Кроме того, при выборе степени сжатия должен быть решен вопрос о запуске двигателя. До последнего времени впервыеный пуск осуществлялся на бензине, а затем двигатель переводился на газ. В 1934 г. проф. Карпов пробовал ряд опытов над непосредственным пуском автомобиля Я-5 — на генераторном газе, а в 1935 г. авторы на автомобиле ГАЗ-АА с газогенераторной установкой ЛТА без бензинового оборудования были совершен пробег Ленинград — Москва — Ленинград с производственными испытаниями в Загорске. Машина безупречно и быстро заводилась на газе.

Если двигатель оборудован силовым пусковым приспособлением (электростартером, пусковым мотором) и вентилятором для розжига газогенератора, пуск двигателя может осуществляться на газе и степень сжатия может быть повышена до максимального предела.

Если же газовый двигатель при повышенной степени сжатия (неизменяемой при пуске) заводится на бензине (как, например, у трактора ЧТЗ-60), степень сжатия выбиралась с таким расчетом, чтобы двигатель мог работать в холостую на бензине без детонации. В этом случае степень сжатия на двигателя ЧТЗ-60 также связано с эксплуатацией машин в зимнее время и с их безотказным хранением.

На рис. 148, 149 приводятся внешние характеристики, полученные авторами во время торжественных испытаний двигателя ЧТЗ-60 с газогенератором «Автодор-1». С увеличением степени сжатия и уменьшением влажности топлива возрастает эффективная мощность двигателя.

Следует заметить, что при увеличенной степени сжатия уменьшается удельный расход топлива на 1 л. с. в час, что видно из графика (рис. 149), полученного проф. Кюне.

На этом графике показаны внешние характеристики при различных степенях сжатия и соответствующие удельные расходы топлива.

Увеличение степени сжатия осуществляется двумя путями:
а) установкой новой головки цилиндров с уменьшенной камерой сгорания.

Рис. 148. Внешние характеристики двигателя трактора «Станислав-60»:
1 — оценочное износостойкое; 2 — рабочие: 1 = 3,9;
3 — рабочая в работе 13% = 8; 4 — потребление 2 мощность 15% = 8; 2 — урожайность 30% = 8; 5 — мощность 15% = 8; 6 — урожайность 12% = 8; 7 — мощность 15% = 8; 8 — урожайность 30% = 8; 9 — урожайность 30% = 8.

Рис. 149. Характеристика двигателя «Гамомат», полученная при работе на бензине и газогенераторном газе и различных степенях сжатия:
1 — при работе на бензине; 2 — при работе на газогенераторном газе 1,8; 3 — то же при к = 0,7; 4 — то же при к = 0,7; 5 — удельный расход топлива в кг на час при к = 0,7; 6 — то же при к = 0,7; 7 — то же при к = 0,7.
б) установкой новых поршней с удлиненной верхней частью.
Форма камеры сгорания и расположение в ней свечи также влияют на мощность двигателя. На автозаводе им. Сталина и в НАТИ в 1937—38 гг. были проведены детальные испытания камер сгорания различной формы с расположением свечи в разных местах камеры сгорания.
На рис. 150 изображены три камеры сгорания, из пяти подвергшихся испытанию. Наибольшую мощность двигатель развивал с камерой 1, а наибольшее наполнение давал камера 3, что видно из внешней характеристики двигателя (рис. 151).
Опыты дали возможность выбрать для автомобиля ЗИС-21 наилучший тип головки с повышенной степенью сжатия и одностроенно показали, что камера сгорания должна быть компактной, без острых углов и резких переходов, свеча должна располагаться ближе к впускному клапану, и для максимального наполнения проходное сечение цилиндра в камере сгорания должно иметь обтекаемую форму и максимальную величину. На двигателе МГ-17 для более быстрого сгорания рабочей смеси Челябинский тракторный завод устанавливает в каждом цилиндре две свечи по обеим сторонам камеры сгорания.

Рис. 151. Кривые, полученные при испытании головок (камер сгорания)

Перечисленные меры дают возможность получить от газового двигателя мощность, близкую к развиваемой двигателем на жидком топливе.
Глава X

ЭКСПЛУАТАЦИЯ АВТОМОБИЛЕЙ И ТРАКТОРОВ С ГАЗОГЕНЕРАТОРНЫМИ УСТАНОВКАМИ

ОСМОТР И ЗАПРАВКА ГАЗОГЕНЕРАТОРНЫХ МАШИН

При осмотре газогенераторной машины, кроме обычного контроля ее состояния, необходимо проверять:

а) прочность всех креплений элементов газогенераторной установки (в случае необходимости следует подтянуть болтовые соединения);

б) плотность всех фланцевых соединений (наличие и исправность прокладок и т. д.);

в) герметичность крышек всех люков газогенератора, крышек очистителей-охладителей и наличие исправных асbestosовых и прочих уплотнений;

г) состояние и работу воздушных обратных клапанов в газогенераторе, если они имеются;

д) исправность действия дросселей смесителя и трося тяг;

е) регулировку опережения зажигания; зажигание должно быть отрегулировано так, чтобы величину опережения можно было доводить до 45°—35°.

Кроме того, необходимо убедиться в отсутствии конденсата во всех контрольных точках. Обнаруженный конденсат следует полностью спустить, а спускные отверстия прочистить.

После заправки машины и проверки уровня и качества масла в двигателе производится подготовка газогенератора к розжигу и работе. Если газогенератор розжигается в первый раз, или если он прошел полную чистку, то его зажигают следующим образом.

Через загрузочный люк древесного газогенератора насыпают в бункер некрупный сухой уголь до высоты верхней кромки топливника, после чего загружают бункер до половины древесными чурками принятого размера. Если в газогенераторе имеется дополнительный восстановительный слой угля, то соответствующее пространство около топливника засыпают сухим, хорошо высушенным углем, размером 30 мм × 30 мм × 40 мм. Уголь для дополнительного восстановительного слоя и для засыпки в топливник должен быть просеян и освобожден от мелочи, которая ухудшает условия розжига, увеличивая сопротивление проходу газа. Крупный уголь также не рекомендуется брать для розжига, так как он медленнее разгорается и увеличивает время розжига.

Заправка угольного газогенератора заключается только в засыпке в бункер угля. Если в заправляемом газогенераторе имеется остаток топлива, то уголь перед розжигом не засыпается, так как он уже имеется в топливнике, и заправка сводится только к досыпке чурок в бункер. Эта досылка производится после розжига газогенератора.

Перед загрузкой чурок следует прошуршить топливник, чтобы устранить возможность образования сводов, которые могут препятствовать опусканию чурок, способствовать появлеению пустот и нарушать процесс газификации. Шурвку во всех случаях следует производить только для разрыхления топлива, а не уплотнения, от которого затрудняется розжиг и забивается топливник, колосниковая решетка и зольник.

Засыпать топливо для удобства можно из мешков, из коробок, или особых загрузочных бункеров, устраиваемых на топливных складах.

РОЗЖИГ ГАЗОГЕНЕРАТОРА

После того как автомобиль или трактор с газогенераторной установкой осмотрен и заправлен, можно приступить к розжигу газогенератора естественной или принудительной тягой.

Для розжига газогенератора естественной тягой необходимо открыть загрузочный и зольниковый люк и заполнить зольник растопочным материалом — сухими стружками, лучниками, коломы или тряпками, смоченными в керосине, и этот материал поджечь. Под действием естественной тяги воздуха пламя будет поджигать уголь в топливнике и постепенно подниматься вверх. Процесс розжига можно наблюдать через фуры топливника или смотровые люки, если они имеются. После появления в них пламени зольниковый люк закрывают.

Через несколько минут закрывается и загрузочный люк, и газогенератор готов для питания двигателя.

Если газогенератор снабжен вытяжной трубой (конструкция проф. Керцова), то при розжиге открывается эта труба, а не загрузочный люк.

Розжиг газогенератора естественной тягой обладает рядом достоинств и недостатков.

Одно из достоинств состоит в том, что двигатель не питается газом, вырабатываемым при низких температурах начала процесса газификации. Поэтому уменьшается возможность попадания смол в двигатель. Это особенно важно при первом розжиге газогенератора, при включении сильным толчком, а также в тех случаях, когда уплотнение топлива, оставшееся от предыдущей загрузки, ниже воздухоподводящих отверстий.

Недостатками являются длительность розжига, доходящая до одного часа, и необходимость при обратном процессе газификации перенести зону горения из нижней части топливника в верхнюю, на что затрачивается некоторое время. Кроме того, тазы, выходящие из бункера, отравляют окружающий воздух, а выпадающий из нижнего люка горячий уголь может вызвать пожар.
Значительно лучше и удобнее розжиг электровентилятором. Хотя такой розжиг более продолжителен, чем розжиг двигателем (до 10 мин.), но зато он не имеет недостатков, свойственных розжiku двигателем, и требует только исправных аккумуляторов.

Конец розжига газогенератора и готовность его к пуску газом двигателя определяется по появлению почти бесцветного газа, который выходит из отверстия вентилятора или воздухоподводящей трубы, или специального отверстия в газопроводе, снабженного контрольным кранником. При пробном зажигании от сжигания этот газ дает устойчивое ровное пламя фиолетового цвета.

Не рекомендуется вводить в отверстие для розжига незажженный факел, так как пары керосина или бензина, попавшие внутрь газогенератора, могут образовать взрывчатую смесь с воздухом.

В настоящее время к каждой газогенераторной машине заводом прилагается факел с асBESTовой обмоткой.

ПУСК ДВИГАТЕЛЯ И ПЕРЕВОД ЕГО НА ПИТАНИЕ ГЕНЕРАТОРНЫМ ГАЗОМ

Двигатель, приспособленный для работы на генераторном газе, запускается или непосредственно на газе, или же на бензине с последующим переводом на питание газом.

Для пуска на газе холодного двигателя необходимо, чтобы процесс газификации топлива был устойчивым и интенсивным, обеспечивая нужное количество хорошего газа. Кроме того, нужно пусковое устройство, которое могло бы легко преодолеть большую степень сжатия газовоздушной смеси в цилиндрах, а также сильная чека в свечах.

Пуск двигателя непосредственно на газе применяется пока только на автомобилях, снабженных, как правило, усиленным электрооборудованием с более мощным стартером и надежной системой зажигания (автомобили ЗИС-13, ГАЗ-42, ЗИС-21). В тракторных двигателях пуск на газе осуществлен только в двигателе МГ-17 при помощи бензинового двигателя В-20. Для облегчения пуска двигателя на газе элементы газогенераторной установки должны быть заполнены газом влажно до смесителя. Такое заполнение лучше всего достигается розжигом газогенератора при помощи электровентилятора.

Перед пуском двигателя на газе дроссель газовоздушной смеси открывается на одну четверть или на одну треть, воздушный дроссель открывается полностью, включают зажигание и устанавливают его на небольшое положение, затем проверяют устойчивость горения газа, после чего нажимают кнопку стартера. При пуске манетку тяги воздушного дросселя необходимо перемещать до полного срабатывания состава смеси, обеспечивающего вспышку и начало работы двигателя. Двигательное пользование стартером при пуске не допускается; если двигатель не заводится с одного или двух нажатий кнопки стартера, необходимо проверить причины отказа вспышки.

После того как двигатель пущен, увеличивают открытие газовоздушного дросселя и опережение зажигания и ставят воздушный...
дроссель в наивыгоднейшее положение, т. е. такое, при котором двигатель работает ровно и бесперебойно.
Пуск двигателя на бензине с последующим переводом на питание газом производится следующим образом.
Закрывают все дроссели в смесителе, открывают сообщение карбюратора с бензиновым баком, устанавливают зажигание на запас-дывание вспышки, прикрывают дроссель смеси карбюратора и двигатель пускают обычным путем. Когда двигатель проработал на бензине некоторое время, необходимое для его прогрева, можно начинать перевод питания на газ.
Перевод производится при нормальном числе оборотов; для этого частично открывают воздушный дроссель и дроссель газовоздушной смеси в смесителе и частично прикрывают дроссель смеси в кар-бюраторе. Если при переводе двигатель начинает снижать число оборотов, то все дроссели возвращают в положение, в котором они находились до начала перевода. Доведя число оборотов двигателя до нормального, процесс перевода повторяют вновь до тех пор, пока двигатель не стабилизировался на заданном числе оборотов. После этого дроссель газовоздушной смеси в смесителе постепенно открывают, одновременно постепенно закрывают дроссель смеси в карбюраторе. Таким образом достигается плавный перевод двигателя на питание газовоздушной смесью.
Для улучшения качества газовоздушной смеси, облегчающего ее воспламенение при переходе двигателя, приходится пользоваться воздушным дросселем в смесителе, меняя величину его открытия во время передования на газ.
Когда двигатель переводом полностью на питание газовоздушной смесью, закрывают кран, открывющий доступ бензину из бака в карбюратор, и увеличивают опережение зажигания соответственно числу оборотов. Число оборотов двигателя регулируется открытием дросселя газовоздушной смеси, а качество последней — положением воздушного дросселя.
Если газогенератор разжигается двигателем, то перевод двигателя на питание газовоздушной смесью начинается сейчас же после определения готовности газа. Для этого прикрывают дроссель газовоздушной смеси, открыто в хорошем качестве газа сразу воз-растает число оборотов двигателя. Самый же процесс перевода остается аналогичным вышеуказанному.

ОСОБЕННОСТИ ОБСЛУЖИВАНИЯ МАШИН ПРИ РАБОТЕ
При эксплуатации газогенераторной машины бункер газогенератора должен загружаться топливом примерно через 1—1½ часа непрерывной работы двигателя. За этот период уровень топлива в загруженном полностью бункере уменьшается на ½ или 1/4 его высоты.
Дальнейшая работа газогенератора без догрузки может привести к нарушению процесса газификации, уменьшению интенсивности газообразования и, наконец, к остановке двигателя. Кроме того, если топливо в газогенераторе будет выжжено, то после дальнейшей загрузки бункера свежим топливом процесс газификации также может быть нарушен. Это будет вызвано тем, что холодное влажное топливо снижает температуру в активной зоне и ухудшает сжигание и разложение смол. Чтобы процесс газификации шел бес-перебойно и топливо в бункере постепенно подошивалось, загрузку следует производить в срочном порядке по указанные промежутки времени.
Топливо засыпается через загрузочный люк газогенератора. Люк следует открывать на возможно короткое время, чтобы через него в генератор не попало большое количество воздуха, который может понизить температуру в активной зоне и этим нарушить процесс газификации. Иногда попавший в газогенератор воздух, соединяясь с газом, дает внезапные вспышки. Поэтому избегайте оживки при загрузке нельзя наклонять голову над отверстием люка. После загрузки крышку люка необходимо сначала же плотно закрыть.
После остановки двигателя на 5—10 минут в большинстве случаев его можно пустить непосредственно на газе, немного при открывая воздушный дроссель и дроссель газовоздушной смеси. Если двигатель запустить непосредственно на газе трудно, как это часто бывает с тракторными двигателями, прибегают к пуску его из бен-зине и затем быстро переводят на газ.
После более длительных остановок (от 10 до 20 минут) двига-тель запускают на бензине или на газе после короткой раздувки газогенератора электронтриевитром. После остановки, длившейся от 20 минут до 2 часов, для пуска двигателя всегда необходим предварительный раздув газогенератора естественной тягой или раздувочным устройством и пробы готовности газа. После этого двигатель пускают на газе, или прибегают к пуску на бен-зине и затем переводят на питание газом.
После остановки больше чем на 2 часа перед пуском двигателя приходится интенсивно раздувать газогенератор, или даже разжи-гать его факелом.
При раздувке естественной тягой во время стоянок загрузочный и золоотводный люки надо открывать неполностью, чтобы избежать сильного разгорания топлива и поднятия зоны горения выше топли-вника. Если крышка загрузочного люка имеет специальное отверстие для прохода воздуха, то для раздувки и поддержания горения в газогенераторе можно загрузочный люк не открывать, а открывать только отверстие крышки (вынур прикрывающую его пробку).
Если в газогенераторе образуются своды и уменьшается подача газа в смеситель, приходится прибегать к шурфовке топлива, откры-вав на короткое время загрузочный люк и разрыхляя чурки и угол без их уплотнения и дробления.
В большинстве газогенераторных установок процесс газификации топлива ухудшается, если двигатель долгое время работает не более 4-5 минут, так как малая скорость и недостаточное количество поступающего в топливник воздуха уменьшают интенсивность горе-ния и температуру в активной зоне. В связи с этим увеличивается возможность засмоляния двигателя, так как ухудшаются условия.
сгорания и разложения смол. Поэтому работу двигателей газогенераторных машин рекомендуется поддерживать на нормальном или среднем числе оборотов, допуская малое число оборотов в течение не более 15 минут.

По указанным выше причинам, длительная езда на машинах с параллельным питанием двигателя безнозовой рабочей смесью и газовоздушной (т. е. с присадкой бензина) также не рекомендуется. Однако в отдельных случаях, например на затяжных подъемах, при трогании с места, можно допускать кратковременное присадку бензина для усилния мощности двигателя.

На крутых спусках лучше не уменьшать подачу газовоздушной смеси в двигатель, а прикрывать воздушный дроссель смеся, чтобы не нарушать процесс газификации в газогенераторе.

Правильная установка опережения зажигания имеет весьма большое значение для газогенераторного двигателя, так как для сгорания газовоздушной смеси требуется больше времени, чем для бензиновоздушной. Поэтому при езде необходимо величину опережения зажигания устанавливать соответственно оборотам и условиям работы двигателя, добиваясь наилучшего положения и используя значительный диапазон изменения величины опережения, доходящего до 45°.

Во всех случаях регулировки качества газовоздушной смеси необходимо пользоваться воздушным дросселем смеся.

Последнюю дозорку газогенератора следует производить с таким расчетом, чтобы по приезду в город в бункере остался толиво не меньше половины. Это облегчает последующий розжиг газогенератора.

Всегда нужно стремиться к тому, чтобы для питания двигателя газогенераторной машины бензин применялся в самых ограниченных пределах. Для максимальной экономии бензина необходимо, чтобы газогенераторная установка и двигатель тщательно подготовлялись к работе и чтобы трактористы и шоферы имели необходимые практические навыки.

Нужно также помнить, что двигатель, имеющий повышенную степень сжатия, не предназначен для работы на бензине, поэтому злоупотребление пользованием последним может привести к явлениям детонации со всеми вытекающими из этого последствиями.

ГАРАЖНЫЙ УХОД

По прибытии газогенераторной машины в гараж необходимо выпустить конденсат через спускные краны или пробки, после чего плотно закрыть все люки и отверстия как в самом газогенераторе, так и в остальных частях установки. Если люки и воздухоподводящие отверстия оставить открытыми, горение топлива в газогенераторе полностью не прекращается и в нем, благодаря притоку кислорода воздуха, будет происходить медленное горение в течение продолжительного времени.

Наружные части охладительно-очистительной батареи, загрязнившиеся во время поездок, необходимо мыть, так как грязь ухудшает теплообмен и ухудшает охлаждение газа.

В обслуживании газогенераторной установки входят: чистка зольника и газогенератора в целом, чистка очистителя, охладителя, смесителя, вентилятора и трубопроводов, а также смаэка вентилятора.

Наиболее частой очистки требует зольник. Для того чтобы зола и угольная мелочь свободно проваливались на дно зольника и не повышали сопротивления движению газа, необходимо тщательно очищать колосниковую решетку (если она есть). Чистка колосников и выгребание золы из зольника производится через зольниковый люк при помощи металлического стержня с загнутым концом.

В автомобильных газогенераторах (автомобиль ЗИС-13 и ЗИС-21) зольник очищают через 700—800 км пробега машины и выше в зависимости от состояния дорог, условий движения и качества применяемого топлива. Эти газогенераторы не имеют специальной зольниковой камеры, ее служит нижняя их часть, не отделенная колосниковой решеткой и предназначенная также для добавочного восстановительного слоя угля.

При работе газогенератора на древесной щепе чистка зольника и колосниковой решетки производится значительно чаще (через 500—600 км).

В тракторных газогенераторах зольник очищают ежедневно (через 10—20 часов работы).

Очистка газогенераторов, работающих на древесном угле, должна производиться через 200—300 км пробега.

Полная очистка газогенератора производится на автомобилях через 1500—2000 км, а на тракторах через 250—300 часов работы. При очистке газогенератора из него полностью удаляется все содержимое, а стенки топливника, воздухоподводящие устройства, колосниковая решетка и зольник освобождаются от шлака, золы, угольной мелочи и т. д., после чего проверяется состояние отдельных частей газогенератора.

Газогенераторах, имеющих добавочную восстановительную зону, через 300—400 км пробега производят проверку ее уровня и дозорку угла.

Чистка грубых очистителей в зависимости от их конструкции производится после 700—1000 км пробега автомобиля или через 40—60 часов работы трактора. Циклонные очистители на тракторах очищаются ежедневно, одновременно с зольником газогенератора.

Очистители для тонкой очистки газа должны очищаться в следующие сроки: в автомобильных установках, работающих на древесных чурках, — через 3000—4000 км; в древесно-угольных установках — через 700—900 км; в тракторных установках — через 40—80 часов работы.

Чистка жидкостных очистителей заключается в смыв очищаемой жидкости; в сухих очистителях промывают фильтрующие сетки водой или дезинфицирующими средствами. В поверхностных очистителях промывают водой и керосином, затем устанавливают на место очиститель.
УХОД В ЗИМНЕЕ ВРЕМЯ

Генераторный газ, как правило, содержит пары воды, так как полного освобождения его от влаги обычно не происходит. Поэтому возможно замерзание воды в агрегатах, расположенных за тонкими очистителями, т. е. в газоподводящих патрубках смесителя, в самом смесителе и во всасывающем коллекторе двигателя. Кроме того, при несвоевременном сбросе конденсата из отстойников очистителей и охладителей он также может замерзнуть.

Замерзание воды может вызвать перебой в работе смесителя, нарушить движение газа и привести к остановке двигателя.

Чтобы предупредить замерзание воды в газогенераторных установках, рекомендуется надевать теплые чехлы-капоты на последний очиститель, выключать охладительную секцию в радиаторе-фильтре (установка ЛС-1-3), отопить газоподводящие патрубки и отстойники, оберывая их войлоком или другим материалом.

При особо низких температурах (−30—50° C) следует подогревать смеситель и всасывающий коллектор, сделав для них специальный обогреватель-кужух, сообщающийся с выхлопным коллектором.

При запуске двигателя газогенераторной машины в холодном помещении в радиатор обязательно должна быть залита горячая вода, а в картер разогретое масло. Холодный двигатель следует сначала проверить при помощи пусковой рукоятки, чтобы не испортить аккумуляторы и стартер.

НЕИСПРАВНОСТИ ГАЗОГЕНЕРАТОРНЫХ МАШИН И ИХ УСТРАНЕНИЕ

Как показала практика, в газогенераторных машинах наиболее частые неисправности, связанные с перебоями в работе двигателя, происходящими от нарушения процесса газификации топлива, от недостаточного охлаждения и очистки газа и от плохого качества газовоздушной смеси.

Все эти явления вызываются отсутствием надлежащего ухода и предупредительного ремонта, применением сырого топлива, недоброкачественным изготовлением установки, неудовлетворительным креплением и т. д.

Наиболее часто встречающиеся неисправности и способы их устранения сведены в табл. 29 (стр. 234—237).

В ряде случаев при эксплуатации газогенераторных машин на лесосвоее обнаруживается недостаточная прочность крепежного материала, поставленного при монтаже отдельных частей газогенераторных установок. Болты малого диаметра, легкие хомуты и скобы, слабые опорные лапы у газогенератора и очистителей машин не выдерживают возникающих усилий и ломаются. Такой крепежный материал должен быть заменен более прочным.

Ежедневным осмотром креплений и их подтяжкой можно предупредить ослабление соединительных швов в газогенераторе.
<table>
<thead>
<tr>
<th>Характер неисправности</th>
<th>Причина неисправности</th>
<th>Способы определения неисправности</th>
<th>Способы устранения неисправности</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Двигатель не заводится на бензине</td>
<td>Чрезмерно бедная рабочая смесь вследствие засасывания воздуха через смеситель из-за неплотного закрытия дросселей смесителя</td>
<td>Определяется по слабому засасыванию воздуха в карбюратор</td>
<td>Плотно пригивать дроссели в смесителе.</td>
</tr>
<tr>
<td></td>
<td>Частичное или общее засоление всасывающих каналов из-за длительной работы при малом числе оборотов или из-за очень большой влажности топлива, а в дренажно-угольных газогенераторных установках из-за применения топлива плохого качества (исполненого выжога).</td>
<td>Определяется по отсутствию компрессии в двигателе и испытанием в карбюраторе</td>
<td>При небольшом засолении влиять в систему охлаждения горячую воду, а в цилиндре в отверстия для смеси заливать бензин; снять всасывающий и выхлопной коллекторы, закрыть пробками всасывающие и выхлопные отверстия, заливать в цилиндры бензин, после чего проворачивая коленчатый вал до тех пор, пока клапаны не придут в нормальное рабочее состояние. При большом количестве засоленного в цилиндрах бензина перед пуском двигателя следует смазать масло в картере. В случае сильного засоления клапанов снять головку блока и тщательно прочистить клапаны и направляющие.</td>
</tr>
<tr>
<td>2. Двигатель не переводится на питание генераторным газом</td>
<td>Плохое качество газа, вызываемое работой на сырой топливе, попаданием в газогенератор воздуха через неплотно закрытые заслонки, засорение мешалок или других элементов газогенераторной установки, загрязнение топлива, трещинами в топливнике во линии воздушного пояса, подсосами воздуха в местах соединения различных элементов газогенераторной установки</td>
<td>Определяется проблемным поджиганием генераторного газа в выхлопной трубе вентилятора: газ плохого качества не горит; полученный из влажного топлива очень сырой газ остается на руках, подпседенкой к отверстию вентиляторной трубы, капли влаги. Если есть подсос в газогенераторе, или трещины в топливнике, газогенератор сильно нагревается. Засорение газогенераторной установки обнаруживается по слабому засасыванию воздуха в вентиляционные отверстия и сильному подсосу воздуха через неплотности в соединениях элементов установки. Для обнаружения подсоса следует остановить двигатель, закрыть заслонки смесителя, и внимательно осмотреть установку. В имеющемся случае будет струйками выходить газ.</td>
<td>Если топливо влажное, открыть крышку бункера на тридцать—сорок минут и дать топливу подсохнуть. При подсосе воздуха через топки газогенератора установить новые абстествовые прокладки и плотно прижимать крышки люков. При засорении установки очистить заслонки, охладитель и очистители, в зимнее время внимательно осмотреть места скопления конденсата, так как при низкой температуре он может за мерзнуть и создать препятствие для прохода газа. При обнаружении трещин в топливнике заварить ее.</td>
</tr>
<tr>
<td>3. Двигатель переводится с бензина на газ, но работает с перебоями.</td>
<td>Плохое качество газовоздушной смеси; чрезмерно богатая или, наоборот, бедная смесь в результате недостаточного или избыточного количества воздуха (из-за подсосов); недостаточное или избыточное количество воздуха, поступающего в смеситель. Засоление клапанов</td>
<td>Определение мест подсосов см. в п. 2. Засоление клапанов обнаруживается по неравномерной работе двигателя и выстрелам в карбюратор. Чтобы восстановить нормальную работу, нужно смазировать клапаны.</td>
<td>Для получения нормального качества газовоздушной смеси изменить положение воздушного дросселя. Подсосы воздуха через неплотности в засолении клапанов устранять способами, описанными в пп. 1 и 2.</td>
</tr>
</tbody>
</table>
и других местах, а также в значительной степени избежать появления трещин и поломок.
Высокая температура активной зоны газогенератора требует как высококачественного огнеупорного материала для топливников, так и хорошей сварки или соединения топливника с соответствующей поддерживающей деталью. При несоблюдении этих требований в топливниках возникают трещины и прорывы, что приводит к прекращению работы газогенератора и необходимости замены топливника. Прогары могут образоваться не только в топливнике, но и в других частях газогенератора, близких к топливнику (в воздушной камере, бункере, наружному кожуху и др.). Такие прогары являются следствием или воздушных подсосов, вызывающих повышение температуры у мест подсосов, или недоброкачественности материала соответствующих деталей. Наложив и привив заплату из прочного металла, можно заделать места прогара; одновременно нужно устранить причины их появления.
Кроме прогаров, встречаются случаи разъедания бункера и наружного кожуха, а также крышки загрузочного люка уксусной кислотой, выделяющейся при сухой перегонке дерева, служащего топливом для газогенератора.
Предохранить газогенератор от действия кислоты можно омеднением внутренней поверхности бункера, установкой в бункере специальной медной обшивки или употреблением в качестве материала для бункера кислотоупорной стали. Поврежденные кислотой места заделываются также наложением заплаты и зачернкой.

ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРЫ

В процессе эксплуатации газогенераторных машин необходимо соблюдать следующие основные правила по технике безопасности:
1. В целях предохранения от ожога при загрузке газогенератора топливом и при шурфовке не следует наклонять голову над загрузочным люком. Ожог может произойти при вспышке генераторного газа в момент соединения его с воздухом при открытии загрузочного люка. На руках заправляющего газогенератор должны быть рукавицы.
2. При открывании зольниковых люков и воздушоподводящих отверстий горячего газогенератора нельзя смотреть в них на близком расстоянии, так как возможны ожоги от вспышки газа и выбросы пламени.
3. При очистке открытых элементов очистителей, в то время когда они могут быть наполнены генераторным газом (по приезде в гараж), нельзя подходить к ним огонь до избежание вспышек оставшегося газа и могущих произойти ожогов.
4. Так как генераторный газ содержит в себе около 20% окиси углерода, то во избежание угорания необходимо:
a) во время загрузки газогенератора, когда открыт загрузочный люк, стараться не вдыхать газ;
б) стремиться к тому, чтобы газогенераторная машина с работающим двигателем находилась в гараже наиболее короткое время;
в) иметь в гараже вытяжные и вентиляционные устройства; при розжиге и при заглущении после работы газогенераторы следует ставить под вытяжными устройствами.
Из основных противопожарных мер необходимо соблюдать следующее:
1) при эксплуатации газогенераторных машин легко воспламеняющиеся материалы и предметы не должны соприкаться с газогенератором до тех пор, пока он совершенно не остывает. Это необходимо делать потому, что наружные нижние части газогенератора при работе нагреваются до 300—400° Ц; 2) не следует допускать въезда газогенераторных машин на территорию, где не разрешается наличие открытого огня, и тем более нельзя там загружать газогенераторы или останавливать двигатель;
3) нельзя перевозить на газогенераторных машинах огнеопасные (легковоспламеняющиеся) грузы;
4) нельзя наливать бензин в пусковой топливный бак при работе двигателя;
5) зольник газогенератора необходимо чистить только тогда, когда он остывает; чистку зольника в горячем газогенераторе надо производить в безопасном в пожарном отношении месте; остатки, удаленные из зольника, следует заливать водой;
6) после заглущения газогенератора необходимо установить за ним наблюдение до полного остывания во избежание самовозгорания топлива;
7) в гараже следует иметь в постоянной готовности очистители, ящики с песком и лопаты, а также аптечку с медикаментами, необходимыми для оказания помощи при ожогах, угаре и ранениях.

Глава XI

ТОПЛИВНОЕ ХОЗЯЙСТВО*

Задачей топливного хозяйства в механизированных лесопунктах является бесперебойное снабжение всех газогенераторных машин твердым топливом и создание не менее чем десятидневного его запаса. Такой запас необходим для того, чтобы можно было организовать воздушную сушку топлива. В функции топливного хозяйства входит:
1) определение потребного количества древесины, подлежащей заготовке на топливо-заготовительных базах,
2) заготовка древесины,
3) хранение и сушка заготовленной древесины,
4) разделка древесины на чурки,
5) хранение чурок,
6) сушка чурок,
7) учет приема и выдачи топлива,
8) организация линейных складов,
9) заготовка древесного угля.
Отдельные этапы ведения топливного хозяйства изложены ниже в порядке приведенной последовательности.

ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА ДРЕВЕСИНЫ, ПОДЛЕЖАЩЕГО ЗАГОТОВКЕ

Количество заготовляемой древесины определяется на основе среднего эксплуатационного расхода чурок 15—20% абс. влажности на одну машину. Средний расход сухих чурок для тракторов определяют на один час работы двигателя, а для автомобилей — на один километр пробега.
Для наиболее распространенных в лесной промышленности газогенераторных машин может быть принят следующий средний расход чурок:

Трактор "Сталинец-60* с установкой ЛС-1-3 . . . 30 кг/час
Трактор "Сталинец-65* с установкой НАТИ Г-25 35
Автомобиль ЗИС-13 и ЗИС-21:
 при работе с прицепом 1,6 кг/км
 без прицепа 1

* Глава составлена в соответствии с временной инструкцией технического отдела Наркомлеса СССР от 28 февраля 1939 г. по заготовке и хранению древесного топлива для газогенераторных тракторов и автомобилей.
Зна́я расход чу́рок на один час работы тракто́ра и на один ки́лометр прого́ба автомоби́ля, легко опре́делять расход топлива на маши́нсмену, расход суточный, месячный и годовой на одну машину, а также и расход чу́рок на все маши́ны лесопо́дка.

Определяя расход в весовых единицах, необхо́димо вычис́лить его в объемных единицах, пользуясь следующими данными:

<table>
<thead>
<tr>
<th>Порода</th>
<th>Средний насыщенный вес 1 м³ чу́рок 15—20%, влажности в кг</th>
</tr>
</thead>
<tbody>
<tr>
<td>Дуб</td>
<td>350</td>
</tr>
<tr>
<td>Береза</td>
<td>320</td>
</tr>
<tr>
<td>Сосна</td>
<td>277</td>
</tr>
<tr>
<td>Ель</td>
<td>265</td>
</tr>
</tbody>
</table>

При переводе складских объемных единиц в плотные коэффициент полнодревесности чу́рок принимают равным 0,55. Далее необходимо подсчитать потери древесины при разделке ее на чу́рки. При заготовке чу́рок из сухостойного леса или из возду́шно-су́хой древесины эти потери ориентировочно можно принять (в процентах к объему сырой древесины) в следующих размерах:

- а) при распи́лке на пла́шку (оплани́) ... 8%
- б) при расска́зке пла́шку на чу́рку (межа́я щелка) и при пере́воечке чу́рка .. 6%
- в) при сучке́ чу́рку до требуемой влажности (су́шка) 8%

Если сучку чу́рк производят в специальных суши́лках, то необхо́димо еще учесть расход древесины на работу суши́лки (в каве́стве топлива).

ЗАГОТОВКА ДРЕВЕСИНИ

Древесину, предназначенную для разделки на чу́рки, загото́вляют обычными способами. При этом должны быть соблюдены следующие условия:

- а) древесина не должна быть сухой или сырой, влажные породы, окончательно потерявшие влажность, перед мягкими газификацией;
- б) загото́вляемая древесина должна быть гни́лой; другие лю́дки древесины допуска́ются;
- в) при заготовке древесины в первую очередь должны быть использованы: сухостойный лес без гнили, вершинник, толстые сучья и горе́льник, а также отходы лесопильной и деревообрабатывающей промышленности, где они имеются;
- г) при загото́вке топлива из съедобу́щей древесины длинником бревна́ для скорейшей просу́шки следует подвергать окорке́ или прольскому, а при загото́вке коротко́м (1—2 м) поленья́ должны быть раска́занны;
- д) прольскому длинником следует производить топором или лопа́тами до забо́лвано́ древесины; ширина полосы коры, остающе́йся между прольсками, должна быть около 6 см;

- е) использование целой древесины для загото́вки газо́генераторного топлива не разрешается.

ХРАНЕНИЕ И СУШКА ЗАГОТОВЛЕННОЙ ДРЕВЕСИНИ

Загото́вленную древесину вывозят (главным образом в зимнее вре́мя) на топливо-разделяющую базу, где ее укладывают так, чтобы создать лучшие условия для возду́шной су́шки. С этой целью площадку для топливо-разделяющей базы выбирают на открытых возвы́шенных, незатопляемых и незастроененных местах, вблизи авто-тракторных баз.

Древесину, загото́вленную длинником, укладывают в рядовую шта́бели на слеги диаметром 20 см. Между каждым рядом бревен кладутся слеги диаметром 15 см.

Древесину, загото́вленную коротко́м, укладыва́ют в клеточные полени́цы на слеги диаметром 20 см. При ру́пой укладке шта́бели и полени́цы их делают высотою 2 м и длиной до 20 м. Разры́зы между штабелями длинником должны быть не менее 2 м, между полени́цами коротко́й в раско́лке — не менее 1 м, а между пара́ми полени́цы — не менее 2 м. Кроме указанных разры́зов, обязательно сохраня́ются установленные противопожарные разры́зы.

Если позволяет площадь топливо-разделяющей базы, целесо́образно уменьшать плотность укладки древесины в шта́белях и полени́цах, чтобы достичь лучшего просу́шения. Разры́зы между штабелями и полени́цами полезно увеличивать для боле́е удобного подъезда при подво́зке древесины.

Общий запас древесины в виде долготы, коротко́й и чу́рк должен обеспечи́вать до нача́ла зимнего сезона не менее, чем 10-меся́чную работу авто-тракторного парка лесопо́дка. Запас загото́вленной древесины на топливо-разделяющей базе в долготе, коротко́й и чу́рк должен покрывать се́мисеме́чную потребность лесопо́дка в твердом топливе, трехмеся́чную потребность удовлетво́рять запа́сом древесины в виде чу́рк.

РАЗДЕЛКА ДРЕВЕСИНИ НА ЧУРКИ

Загото́вленная и доставленная на топливо-разделяющую базу древесина должна быть распилена на плашки и расколота на чу́рки опре́деленных размеров. Для тракторов ЧТЗ с газо́генераторными установками ЛС-1-3, НАТИ Г-25 и автомобилей ЗИС-13 и ЗИС-21 чу́рки должны быть размером 60 мм × 60 мм × 80 мм, а для автомобилей ГАЗ-42 с газо́генераторных установках НАТИ Г-14 — 40 мм × 40 мм × 50 мм. Форма чу́рка может быть различна и неправильна, но по размерам они должны быть в возможности длино́к, что необходимо для нормального процесса газификации.

Распиловка древесины на плашки должна произво́житься баланси́рными или цирку́льными пилами.

Из пилевых станков, выпускаемых заводами Лесо́бумашинные, для установки на топливо-разделятельных базах пригодны:
Балансирный станок ЦКБ

Основной частью станка (рис. 153) является качающаяся рама (балансир), на которой в двух подшипниках установлен пильный вал со шкивом.

Рис. 153. Балансирный станок ЦКБ

Балансирная рама 1 насажена на эксцентрик 2, надетые на вал 3. Натяжение ремня регулируется поворотом эксцентриков 2. При помощи упора 4 пилу можно поднимать, нажимая коготь на педаль 5, или при помощи рукоятки 6. Груз 7 предназначен для облегчения подъема пилы. Пила опускается под действием веса рамы (балансира) и пилы. Нормальная мощность двигателя для привода этого станка равна 6,8 квт. Пильный вал станка делает 1500 об/мин. Диаметр пилы доходит до 700 мм.

Станок ЦКБ рассчитан на поперечную распиловку крежей диаметром до 250 мм.

Балансирный станок ЦБ

Для более толстых крежей может быть использован станок ЦБ с верхней подачей (рис. 154).

Рис. 154. Балансирный станок ЦБ

Балансирная рама 1 этого станка состоит из брусков сечением 140 мм × 90 мм и качается на горизонтальной оси 2, закрепленной в двух чугунных подставках 3. Электромотор 4 установлен на той же балансирной раме и одновременно служит противовесом. Для натяжения ремня мотор перемещается по раме в направляющих салазках.

Диаметр пилы 1000—1200 мм, максимальный диаметр распиливаемых крежей 400 мм, пильный вал делает 900 об/мин. Нормальная мощность двигателя 6,8 или 7,5 квт.

Мятниковый станок ЦКМ

Значительно меньше распространены мятниковые станки, один из которых изображен на рис. 155. Диаметр пильного диска такого станка до 700 мм, число оборотов пильного вала 1500 об/мин.

Нормальная мощность электромотора — 4,5 квт.
Производительность пильных станков

Производительность балансирных станков может быть определена по формуле:

$$\Pi_a = \frac{3600 \cdot \varphi \cdot M}{T \left(\frac{L}{I} - 1 \right)} \text{ пл. м}^3,$$

где:

Π_a — производительность станка в час в пл. м3;

φ — коэффициент использования станка по времени с учетом простое;

M — объем распиливаемого бревна в пл. м3;

T — полное время, затрачиваемое на 1 пропил, с учетом всех вспомогательных операций в сек.;

L — длина распиливаемого бревна в метрах;

I — длина полена или плашки, получаемых в результате распиловки, в метрах.

Полное время, затрачиваемое на один пропил T, указано в табл. 30 (стр. 245).

Практически при поперечной распиловке плашек для газогенераторов производительность балансирного станка составляет от 6 до 10 пл. м3 в смену.

Рис. 155. Маятниковый станок ЦКМ

Таблица 30

<table>
<thead>
<tr>
<th>Операция</th>
<th>Продолжительность операции (в сек.) при диаметре кружка в см</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Опускание пиль в соприкосновении с кружком</td>
<td>1</td>
</tr>
<tr>
<td>Пильный пропил</td>
<td>1,7</td>
</tr>
<tr>
<td>Подъем пиль</td>
<td>1</td>
</tr>
<tr>
<td>Подача кружка вдоль оси на длину обрезаемой части (0,08 м)</td>
<td>1</td>
</tr>
<tr>
<td>Всего T</td>
<td>4</td>
</tr>
</tbody>
</table>

1 Эти данные взяты у проф. К. М. Ашепулин, Механизация лесоразработок, ч. 11.

Разделка кружей на плашки на многоопильном станке (слесере) еще не применяется, и конструкция такой установки только разрабатывается.

Заготовленные из древесины плашки должны быть расколоты на определенного размера кружки. Расположение плашек на большинстве газогенераторных баз до последнего времени производилась вручную, представляя собой крайне трудоемкую операцию (норма выработки в смену 1 — 1,5 пл. м3).

За последние годы для расколки плашек на кружки стали применяться механические колонны.

Механический колонн конструкции Лебедева-Назарова

Колонна Лебедева-Назарова (рис. 156) состоит из следующих основных частей: станины, главного приводного вала с эксцентриком и шатуном, ножевой головки, механизма подачи и подающего транспортера.

Станина колонны изготовлена из деревянных брусьев и стали углово-вого и корытного сечения. Два деревянных полоз 1, соединенные между собой в поперечном направлении тремя угольниками 2; эти угольники в свою очередь соединяются в продольном направлении двумя угольниками 3.

К поперечным угольникам укреплены четыре стойки корытного сечения 4 и две углового сечения 5; на этих стойках смонтированы все механизмы колонна. На стойках 4 установлен главный приводной вал 6 с эксцентриком 7 и шатуном, ножевая головка и механизм подачи. Транспортер колонна смонтирован на двух продольных изогнутых угольниках 8, прикрепленных к стойкам.

Главный вал 6 покоятся в двух подшипниках 9, укрепленных на пласти, уложенной на верху стоеч 10. На конце главного вала, на шпонках поставлен эксцентрик 7. На эксцентрик надет хомут 11. Нижняя часть хомута представляет одно целое с шатуном. На дру-
Рис. 156. Колум конструкции Лебедева-Назарова

Продольный нож закреплен в головке неподвижно; крайние малые ножи насажены на оси 4 и могут под действием, отжимающих сил, отходить в сторону. Ножевая головка скользит по лузанам 5 в направляющих 6, укрепленных болтами к стойкам станницы. Направляющие соединены поперечной стальной балкой приводного механизма, на которой имеются выступы 7. Выступы служат отбойниками и во время расколки выбирают чурки, застрявшие между ножами.

Механизм подачи состоит из передаточного вала, кривошипно-шатунного и храпового механизмов.

Передаточный вал 15 (рис. 156) покоятся в двух подшипниках 16. На конце вала на шпонке насажена коническая шестерня 17, которая входит в зацепление с конической шестерней, сидящей на главном валу. На другом конце сидит кривошип 18, на палец которого надет шатун 19. Шатун приводит в действие храповой механизм 20 ведущего вала подающего транспортера. На ведущем валу транспортера 21 насажен барабан 22, имеющий канавки для чурек транспортера. На противоположном конце изогнутых угольников поставлены направляющие скользящих подшипников 23 ведомого вала транспортера. На ведомом валу насажен барабан.

Транспортер состоит из 4 чурек с шагом 100 мм; на средних звеньях имеются шипы для лучшего захвата плашек при транспортировке их под ножевую головку.

Техническая характеристика колуна

| Тип | вертикальный |
| Число оборотов главного вала в мин. | 300 |
| Привод—режимная передача от электродвигателя внутреннего сгорания |
Потребная мощность	4,5 кВт
Габариты:	
длина	2500 мм
ширина	1200 мм
высота	1435 мм
Вес	800 кг
Наибольший диаметр раскалываемых плашек	300 мм
Наибольшая высота плашек	70 мм
Размер чурек	59 мм
Ход ножевой головки	60 мм

Производительность колуна в смену может быть определена по следующей формуле:

\[P = 120 \cdot \pi \cdot d \cdot n \cdot h \cdot b \cdot K_{p \cdot n} \cdot K \]

где:

\[d \] — диаметр раскалываемой плашки в м;
\[n \] — число оборотов главного вала в мин.,
\[h \] — высота раскалываемой плашки в м;
\[b \] — величина подачи за один ход ножа в м;
\[K_{p \cdot n} \] — коэффициент использования рабочего времени механизма;
\[K \] — коэффициент загрузки механизма.
Для колонн Лебедева-Назарова $n = 300$ об/мин., $h = 0,06$ м, $b = 0,05$ м, $K_p = 0,875$ (7 часов из 8-часовой смены).

$T_0 = 297d K_s$.

Производительность колоны в смену при разных диаметрах раскалываемых плашек и при разных коэффициентах загрузки механизма приводится в табл. 31.

<table>
<thead>
<tr>
<th>Коэффициент загрузки механизма K_s</th>
<th>Диаметр плашек в см</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15</td>
</tr>
<tr>
<td>1,00</td>
<td>44,5</td>
</tr>
<tr>
<td>0,75</td>
<td>33,4</td>
</tr>
<tr>
<td>0,53</td>
<td>22,3</td>
</tr>
</tbody>
</table>

Колонн конструкции Лебедева-Назарова следует применять в комбинации с балансировыми пилами. Производительность балансированной пилы при распиловке долготье на кружки колеблется в пределах 6—10 пл. м³ в смену.

Рис. 158. Схема установки колонн Лебедева-Назарова в сочетании с четырьмя балансировыми пилами

Поэтому для обслуживания одного колонна необходимо иметь 4 балансированных пилы. На рис. 158 приводится схема расположения балансированных пил и колонны Лебедева-Назарова. Долготье поступает из штабелей 1 по слегам на рольганги 2 четырех балансированных пил 3. На балансированных пилах долготье расплывается на плашки, которые по лоткам 4 попадают на приемные столы 5 колонны 6. Со столов плашки подаются на транспортер колонны, раскладываемые на колонне 7 и попадают на ленточный транспортер, выносящий чурки из помещения разделочного цеха.

Колонна обслуживается двумя рабочими, подающими плашки на транспортер колонны.

ХРАНЕНИЕ ЧУРОК

Запас заготовленных чурок должен быть не менее трехмесячной потребности авто-тракторной базы лесопункта. Из трехмесячного запаса чурок выделяют двухмесячный запас, который подвергают воздушной сушке под специально построенными навесами. Эти навесы должны иметь прорезанные деревянные настилы, устраиваемые на высоте от 0,3 до 0,5 м от земли. Однолетний же запас сухих чурок помещают в закрытые сараи, в которых их влажность не увеличивается.

Сарай для хранения сухих чурок должен быть расположен на суходоле, иметь хорошую крышу, деревянный настил на высоте не ниже 0,3 м от земли и естественную вентиляцию.

В помещении для хранения сухих чурок следует иметь загрузочные лотки, по которым чурки можно удобно насывать в мешки или ящики.

Навесы и сарай для хранения чурок должны строиться с соблюдением правил пожарной безопасности и обязательно иметь противопожарные средства (огнетушители, песок, кошку и т. д.).

СУШКА ЧУРОК

Для обеспечения нормального процесса газификации древесных чурок не должны иметь более 20%/абс. влажности. Заготовленные чурки в весенне-летнее время необходимо подвергать естественной сушке. В осенне-зимнее время сушку чурок можно вести в сушилках.

Каждая сушилка независимо от типа должна быть снабжена:
1) термометром (или несколькими при неравномерном режиме в сушилке), к которому должен быть удобный доступ, 2) помещением, оборудованным точными весами для взвешивания проб и образцов топлива до 250 г и с точностью до 0,25 г; 3) опытной сушильной печью для высушивания образцов топлива; 4) набором герметичной лабораторной посуды для хранения проб и образцов топлива.

Постоянный надзор за работой сушилек дает возможность установить режим ее работы для каждого конкретного случая.

1 Существующие типы сушилок можно разделить на калориферные, огневые (сушилки продуктами сгорания) и паровые. В лесной промышленности получили распространение сушилки типа ЦНИИМЭ-6с, Сн6НИИЛХЭ и Хушанова, огневые типа ЦНИИМЭ-9с и простейшие—овниные.

Конструкции сушилок и их работа в настоящем учебнике не рассматриваются, так как они должны изучаться в специальном курсе "сушика древесины",
После пребывания чурок в сушнике необходимо проверить их влажность.

Определение влажности заготовленных и высушенных чурок, хранимых в закрытых помещениях, рекомендуется проводить не реже двух раз в месяц.

При определении влажности чурок необходимо всю массу чурок, рассчитанных в топливо-агрегате, разделить на равные участки и из верхнего, среднего и нижнего слоев каждого участка взять для пробои от одной чурки. Пробные чурки раскатывают пополам и по массе расказ от чурок откладывают в личные линии в одинаковом количестве. Личники взвешивают, после чего измеряют в сырым шкафу до состояния постоянного веса, а по формуле, приведенной на стр. 16, определяют процент абсолютной влажности.

УЧЕТ ПРИЕМА И ВЫДАЧИ ТОПЛИВА

На древесину, поступающую на топливно-агрегатную базу, высушивается фактура, в которой указывается количество древесины по породам и размерам. После этого древесины укладывают в штабели и поленицы, которые нумеруют и снабжают биркой. В бирке указывается количество древесины в плотных кубометрах по породам, время поступления на базу и время укладки.

На каждый штабель и поленницу заводят ведомость. В этой ведомости учитывается количество древесины по породам и размерам, время ее поступления, укладки и ежемесячный расход. Заготовленные чурки укладывают путем залага мерным ящиком. Во избежание лишних переписок необходимо, чтобы чурки ссыпались в мерный ящик из-под колуна самоходом.

Мерный ящик рекомендуется изготавливать размером 627 мм х 627 мм х 627 мм, что соответствует емкости в 0,25 м³ (насыпных).

На чурки, поступающие для хранения под навесы и в сараи, выписываются фактура с указанием количества чурок в складских кубометрах, породы, а также чурок и их влажности.

Отпуск чурок со склада для заправки машин записывают в путевом листе. В нем указывают количество отпущенных чурок, их породу и влажность. Перед отпуском чурок, заготовленных из разных пород древесины, их следует равномерно смешать.

Поступление и расход чурок отмечается в ежедневной ведомости топливно-агрегатной базы.

Организация линейных складов

Кроме складов древесных чурок, устраиваемых на топливно-агрегатных базах, для бесперебойной эксплуатации газогенераторных машин должны быть организованы небольшие склады на трассе лесовозной дороги. При размещении таких складов и определении их количества необходимо учитывать дальность вывозки леса, протяженность дороги и ее профиль.

Линейные склады должны быть расположены в пунктах возможных остановок машин (погрузка, разъезды и т. д.).

Емкость линейных складов должна быть достаточной для запаса чурок, необходимого для работы в течение 3—4 смен всех машин на линии, тяготеющих к складу.

Линейные склады устраивают как стационарные, так и передвижные. Они должны отвечать всем требованиям, которые предъявляются к складским помещениям для хранения сухих чурок. Запас чурок в линейных складах стационарного типа пополняется путем подвоза их на автомобилях с топливно-агрегатной базы. Передвижные склады можно пополнять чурками непосредственно на базе, если она отстоится недалеко и подвоз к ней передвижного склада удобоч.

ЗАГОТОВКА ДРЕВЕСНОГО УГЛЯ

Древесный уголь заготавливают как для работы древесноугольных газогенераторных установок, так и для розжига древесных газогенераторов.

Запас углей для розжига газогенераторов должен составлять не менее одного процента (по весу) от месячного запаса сухих чурок, имеющихся на топливно-агрегатной базе.

Заготавляемый уголь должен быть хорошо выжженный, с влажностью не более 10—12%, зеленый, блестящий в изломе и иметь черный цвет с синеватым отливом, не содержащийши, угольной жилки и посторонних примесей. Выжиг углей производят из негорной дровяной древесины. Лучший по качеству уголь получается из твердозеленных древесных пород (дуб, бук, береза). Породы древесины, дающие слабый уголь, применять не рекомендуется. Для выжига углей могут быть использованы отходы лесосечки.

Куски углей должны быть величиной в среднем от 40 до 60 мм, а для газогенераторных установок НАТИ Г-21 и НАТИ Г-23 от 10 до 25 мм.

Уголь хранят в помещениях для сухих чурок, но отдельно от сухих чурок, или в специальных помещениях, имеющих настил на высоте 0,3—0,5 м от земли.

Уголь выжигают как ярным и костровым (кучным) способами, так и в переносных печах.

Уголь, полученный в переносных печах, по своим качествам походит на уголь кострового выжига.

Переувлажнение древесины в переносных печах довольно сильно распространено на западе и в Америке.

Научным сотрудником ЦНИИМЭ М. С. Немирович-Данченко в 1938 г. была сконструирована переносная углевыжигательная печь, в основе которой легли последние модели печей Маньбей и Данкера.

Углевыжигательная печь ЦНИИМЗ (рис. 159) состоит из нижнего I и верхнего 2 колец, крышки 3 с глушилителем 4, четырех воздухоподводящих 5 и четырех газоотводных труб 6. Для предохранения от прохода воздуха через неплотности в соединениях составных элементов печи сложены железобетонные, которые перед работой засыпываются землей.

Печь изготавливают из 1,5-миллиметрового железа, и ее легко пе-
реносить с места на место. Печь вмещает 2.5 м3 лесных отходов толщиной от 2 до 8 см.

В процессе углеждения воздуха, необходимого для горения, входит по трубам 5, образующимся от стопоров газы выходят по трубам 6. Горение происходит в нижней части печи. Верхние слои топлива, подвергаясь сильному нагреванию без доступа воздуха, переугляются. Чем плотнее в печи уложена древесина, тем больше выход угля и лучше его качество.

Рис. 159. Углевыжигательная печь ЦНИИМЭ

Процесс углеждения автоматически регулируется количеством воздуха, входящего в печь по трубам 5. Поступление воздуха связано с выходом газов, образующихся при горении. Если количество выходящих из печи газов велико, то они отводятся не только через дымовые трубы 6, но и через трубы 5. В этом случае количество входящего в печь воздуха уменьшается и горение ослабевает. Потом за счет уменьшающегося количества отводимых газов поступление воздуха увеличивается и горение снова усиливается. Печи ЦНИИМЭ работали в Коробовском механизированном лесопункте.

Основные производственные показатели работы этих печей следующие:
1) полный оборот печи занимает 12 часов;
2) в печи за один выход переугляивается 2.5 м3;
3) один рабочий обслуживает 2—3 печи (сборка и укладка древесины, пуск и остановка печи);
4) стоимость изготовления одной печи 300 руб.;
5) стоимость 1 тонны полученного угля с доставкой к трасе составляет 170—180 руб.
КРАТКАЯ ХАРАКТЕРИСТИКА АВТО-ТРАКТОР

| Показатели | ЗИС для
| автомобиль ЗИС-13 | ЗИС для
| автомобиль ЗИС-21 | ДГ-13 | НАТИ-Г-23 |
|-------------------------------|-----------------|-----------------|---------------|---------------|
| Род топлива | древесные чурки 60×60×80 мм обратный | древесные чурки 60×60×80 мм обратный | древесный угол 10×25 мм горизонтальный электровен-
| тилитором или двигата-
| телем | электровен-
| тилитором или двигате-
| телем | электровен-
| тилитором или двигата-
| телем |
Габариты газогенератора	—	—	1 550	1 840
Высота в мм	1 300	1 362	1 200	1 048
Диаметр бункера (внутренний)	498	498	498	497
Диаметр загрузочного люка в				
мм	300	304	230	336
Подогрев бункера	полный	полный	нет	нет
Предохранение бункера от коррозии	нет	нет	нет	нет
Отбор конденсата из бункера	нет	нет	нет	нет
Тип топлива	цилиндрического диабазообразного	цилиндрического диабазооб-		
радиального	чугунный	разного диабазооб-		
радиального	цилиндрического свар-			
ных рычагов	ной из стали	ных рычагов		
Подача воздуха в зону горения	300	340	310	—
Число и диаметр воздухоподводящих фурм	10 фурм Ø = 10 мм	10 фурм Ø = 9,2 мм	16 фурм Ø = 8 мм	190
Диаметр горловины топливника в				
мм	150	150	200	нет
Расстояние от воздуш-				
ных фурм до днища газогенератора в				
мм	315	320	—	нет
Колосниковая решетка	—	—	из жаро-	
упорного чугуна	из листовой			
<p>| стали | 190 | 190 | | |</p>
<table>
<thead>
<tr>
<th>Элементы газогенераторной установки</th>
<th>Назначение машины</th>
<th>ZIS-13</th>
<th>ZIS-21</th>
<th>Автомобиль ZIS-5 с установкой ДГ-13</th>
<th>Автомобиль ZIS-5 с установкой НАТИ Г-23</th>
<th>Автомобиль ГАЗ-42 с установкой НАТИ Г-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип охладителя</td>
<td>Газ охлаждается в очистителях</td>
<td></td>
</tr>
<tr>
<td>Тип грубого очистителя</td>
<td>Горизонтальный инерционно-ударный</td>
<td>Горизонтальный инерционно-ударный</td>
<td>Поверхностный</td>
<td>Горизонтальный инерционно-ударный</td>
<td>Горизонтальный инерционно-ударный</td>
<td></td>
</tr>
<tr>
<td>Тип тонкого очистителя</td>
<td>Поверхностный с кольцами Рашпига</td>
<td>Поверхностный с кольцами Рашпига</td>
<td>Поверхностный</td>
<td>Поверхностный</td>
<td>Матерчатый фильтр</td>
<td></td>
</tr>
<tr>
<td>Расположение очистителей</td>
<td>Горизонтальные за кабиной, вертикальный справа кабины</td>
<td>Горизонтальные под кузовом, вертикальный слева у кабины</td>
<td>Горизонтальный под кузовом, вертикальный между кузовом и кабиной</td>
<td>Горизонтальный под кузовом, вертикальный между кузовом и кабиной</td>
<td>Поверхностный с кольцами Рашпига</td>
<td></td>
</tr>
<tr>
<td>Габариты очистителей в мм:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>а) горизонтальных</td>
<td>200×1440 (4 шт.)</td>
<td>204×1905 (3 шт.)</td>
<td>220×1400 (3 шт.)</td>
<td>210×1800 (1 шт.)</td>
<td>138×256×1420 (2 шт.)</td>
<td></td>
</tr>
<tr>
<td>б) вертикальных</td>
<td>384×1440 (1 шт.)</td>
<td>384×1610 (1 шт.)</td>
<td>220×650 (2 шт.)</td>
<td>454×1617 (1 шт.)</td>
<td>400×1669 (1 шт.)</td>
<td></td>
</tr>
<tr>
<td>Тип смесителя</td>
<td>ZIS-1 параллельно-поточный</td>
<td>ZIS-1 или ZIS-2 параллельно-поточные</td>
<td>Электрический 12 вольт</td>
<td>Электрический 12 вольт</td>
<td>Электрический.HATI</td>
<td></td>
</tr>
<tr>
<td>Вентилятор розжига</td>
<td>Электрический 12 вольт</td>
<td>Электрический 12 вольт</td>
<td>Электрический 12 вольт</td>
<td>Электрический HATI</td>
<td>Электрический 6 вольт</td>
<td></td>
</tr>
</tbody>
</table>

ПРИЛОЖЕНИЕ 3 (продолжение)

<table>
<thead>
<tr>
<th>Элементы газогенераторной установки</th>
<th>Назначение машины</th>
<th>Автомобиль ГАЗ-42 с установкой НАТИ Г-14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тип охладителя</td>
<td>Газ охлаждается в очистителях</td>
<td>Радиаторный</td>
</tr>
<tr>
<td>Тип грубого очистителя</td>
<td>Горизонтальный инерционно-ударный</td>
<td>Циклоны</td>
</tr>
<tr>
<td>* Тип тонкого очистителя</td>
<td>Поверхностный</td>
<td>Поверхностный с кольцами Рашпига</td>
</tr>
<tr>
<td>Расположение очистителей</td>
<td>Горизонтальный под кузовом, вертикальный между кузовом и кабиной</td>
<td>Под сидением тракториста перед радиатором</td>
</tr>
<tr>
<td>Габариты очистителей в мм:</td>
<td>140×1740 (1 шт.)</td>
<td>210×1200 (2 шт.)</td>
</tr>
<tr>
<td>а) горизонтальных</td>
<td>400×1640 (1 шт.)</td>
<td>210×1200 (4 шт.)</td>
</tr>
<tr>
<td>б) вертикальных</td>
<td>Эжекционный HATI</td>
<td>Эжекционный HATI</td>
</tr>
<tr>
<td>Тип смесителя</td>
<td>Нет</td>
<td>Нет</td>
</tr>
<tr>
<td>Вентилятор розжига</td>
<td>Электрический 6 вольт</td>
<td>Нет</td>
</tr>
</tbody>
</table>
Сроки чистки установок газогенераторных установок

<table>
<thead>
<tr>
<th>ЧИСЛО</th>
<th>ПРИЛОЖЕНИЕ 4</th>
<th>Примечания</th>
<th>ГАЗ-А с УСТАНОВКОЙ ГАТК-1</th>
<th>ГАЗ-12 с УСТАНОВКОЙ ГАТК-1</th>
<th>ЗИС-5 с УСТАНОВКОЙ ГАТК-1</th>
<th>ЗИС-21</th>
<th>ЗИС-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>JZ.1-61.1</td>
<td>16: 250-300</td>
<td>16: 300-350</td>
<td>250-300</td>
<td>8: 300-350</td>
<td>40-50</td>
<td>40-50</td>
</tr>
<tr>
<td>2</td>
<td>ИЗ.1-61.1</td>
<td>16: 300-350</td>
<td>300-350</td>
<td>250-300</td>
<td>16: 300-350</td>
<td>40-50</td>
<td>40-50</td>
</tr>
<tr>
<td>3</td>
<td>ИЗ.1-61.1</td>
<td>16: 300-350</td>
<td>300-350</td>
<td>250-300</td>
<td>16: 300-350</td>
<td>40-50</td>
<td>40-50</td>
</tr>
</tbody>
</table>

Использованная литература

1. Р. Т. Хаслам и Р. П. Руссел, "Топливо и его сжигание", 1934 г.
2. Д. Б. Гинзбург, "Газификация топлив и газогенераторные установки", Гостехиздат, 1938 г.
3. Д. Б. Гинзбург, Газогенераторные установки, т. II, 1937 г.
4. В. Е. Грум - Грижмайло, Пламенные печи, изд. ВИИ, 1925 г.
5. М. Д. Артамонов, Автотракторные газогенераторы, Сельхозиздат, 1937 г.
6. И. Р. Карачап и А. А. Введенский, Газогенераторы на автомобилях и тракторах, 1934 г.
7. Н. П. Волкесский, Легкие газогенераторы, ОНТИ, 1938 г.
8. Г. П. Гренхлеер, Газогенераторы, ОНТИ, 1934 г.
9. К. А. Пилюти, Автомобильные газогенераторные установки, Гостехиздат, 1937 г.
10. К. А. Пилюти, Руководство по переборудованию бензинового автомо- биля ЗИС-5 в газогенераторный тип ЗИС-21, Гостехиздат, 1939 г.
11. М. Д. Артамонов, Ю. В. Михайловский и Б. С. Цветков, Руководство по эксплуатации газогенераторных тракторов на газовом топливе, Гостехиздат, 1939 г.
12. В. П. Карпов, Автомобильные газогенераторы, Госиздат, 1939 г.
13. Д. Ефимов, Автомобиль на угле, ОГИЗ, 1931 г.
14. В. П. Карпов, Н. Н. Фокин, Автотранспортные газогенераторные установки, Наркомхоз, 1938 г.
16. С. И. Е. Копанов, Газогенераторная установка "Любов", НАТИ, Отчет по испытанию грузовых газогенераторных автомобилей в Загорском лесопромысле.
17. Технический отдел Наркомлеса СССР, Инструкция по заготовке и хранению газогенераторного топлива.
18. С. И. Ванин, Древесновоздание, Гостехиздат, 1934 г.

Статьи из журналов

1. "Автотракторное дело*"
2. "Motor*"
3. "За рулем*"
4. "Лесная промышленность*"
5. "Станции пожарной охраны*"
6. "Сельскохозяйственная промышленность*"
7. "Химия твердого топлива*"
8. "Журнал прикладной химии*"
9. "Станция-65*"
10. "Automobiletechnische Zeitschrift*"
11. "Last-Auto*"
12. "Motor*"
13. "Holzzentralblatt*"
15. "Le Bois*"
16. "La Technique Moderne*"
<table>
<thead>
<tr>
<th>Глава VIII</th>
<th>Стр.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Основы конструктивного расчета элементов газогенераторной установки</td>
<td>185</td>
</tr>
<tr>
<td>Расчет газогенератора</td>
<td>185</td>
</tr>
<tr>
<td>Расчет газоохладителя</td>
<td>196</td>
</tr>
<tr>
<td>Расчет смесителя</td>
<td>199</td>
</tr>
<tr>
<td>Пример конструктивного расчета газогенератора для автомобиля ЭИС</td>
<td>200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава IX</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Мощность двигателя, работающего на генераторном газе, и способы ее повышения</td>
<td>208</td>
</tr>
<tr>
<td>Мощность двигателя, работающего на генераторном газе</td>
<td>208</td>
</tr>
<tr>
<td>Способы повышения мощности двигателя при работе его на генераторном газе</td>
<td>214</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава X</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Эксплуатация автомобилей и тракторов с газогенераторными установками</td>
<td>224</td>
</tr>
<tr>
<td>Осмотр и заправка газогенераторных машин</td>
<td>224</td>
</tr>
<tr>
<td>Розжиг газогенератора</td>
<td>225</td>
</tr>
<tr>
<td>Пуск двигателя и перевод его на питание генераторным газом</td>
<td>227</td>
</tr>
<tr>
<td>Особенности обслуживания машин при работе</td>
<td>228</td>
</tr>
<tr>
<td>Гаражный уход</td>
<td>232</td>
</tr>
<tr>
<td>Уход в зимнее время</td>
<td>233</td>
</tr>
<tr>
<td>Ненормативные газогенераторные машины и их устранение</td>
<td>233</td>
</tr>
<tr>
<td>Техника безопасности и противопожарные меры</td>
<td>237</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Глава XI</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Топливное хозяйство</td>
<td>239</td>
</tr>
<tr>
<td>Определение количества древесины, подлежащего заготовке</td>
<td>239</td>
</tr>
<tr>
<td>Заготовка древесины</td>
<td>240</td>
</tr>
<tr>
<td>Хранение и сушка заготовленной древесины</td>
<td>241</td>
</tr>
<tr>
<td>Разделка древесины на чурки</td>
<td>241</td>
</tr>
<tr>
<td>Хранение чурок</td>
<td>249</td>
</tr>
<tr>
<td>Сушка чурок</td>
<td>249</td>
</tr>
<tr>
<td>Учет приема и выдачи топлива</td>
<td>250</td>
</tr>
<tr>
<td>Организация линейных складов</td>
<td>250</td>
</tr>
<tr>
<td>Заготовка древесного угля</td>
<td>251</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Приложения</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Характеристики двигателей газогенераторных машин</td>
<td>253</td>
</tr>
<tr>
<td>2. Краткая характеристика авто-тракторных газогенераторных установок</td>
<td>254</td>
</tr>
<tr>
<td>3. Характеристика элементов газогенераторных установок</td>
<td>255</td>
</tr>
<tr>
<td>4. Сроки чистки элементов газогенераторных установок</td>
<td>258</td>
</tr>
</tbody>
</table>