Методы измерения твердости

2-е издание, переработанное и дополненное

УДК 669.539 ББК 30.3 М54

Рецензенты: докт. техн. наук Воробьев Н.А. (ВИЛС), проф. Мухин Г.Г. (МГТУ им. Н.Э. Баумана)

Колмаков и др.

Методы измерения твердости: справ. изд./А.Г. Колмаков, В.Ф. Те-М54 рентьев, М.Б. Бакиров. — 2-е изд., перераб. и доп. — М.: Интермет Инжиниринг, 2005. —150 с.: ил.

ISBN 5-89594-111-7

Изложены наиболее часто используемые на практике стандартизированные методы определения твердости металлических материалов, дана их классификация и описаны сущность каждого метода, требования к образцам и особенности проведения испытаний.

Даны таблицы примерного взаимного перевода чисел твердости, полученных разными методами, и их соотношение с механическими свойствами для сталей, а также приведена таблица соответствия отечественных и международных стандартов по методам измерения твердости.

Представлены сведения о современны методах кинетического определения твердости, а также даны примеры комбинации методов измерения твердости с другими современными методами исследования поверхностей металлических материалов рентгеновскими, акустическими, фрактальными. Для наиболее распространенных методов определения твердости в Приложениях приведены таблицы определения чисел твердости по размерам отпечатков.

Для инженерно-технических и научных работников, преподавателей вузов, а также для студентов и аспирантов, обучающихся по специальностям, связанным с металлургией и науками о материалах.

УДК 669.539 ББК 30.3

- © Колмаков А.Г., Терентьев В.Ф., Бакиров М. Б., 2005
- © Оформление. «Интермет Инжиниринг», 2005

СОДЕРЖАНИЕ

Предисловие	4
1. Статические методы определения твердости	7
1.1. Твердость по Бринеллю	
1.2. Твердость по Бринеллю, измеренная переносными	
твердомерами статического действия	10
1.3. Метод измерения твердости на пределе текучести	
вдавливанием шара	13
1.4. Твердость по Виккерсу	18
1.5. Микротвердость	20
1.6. Твердость по Роквеллу	25
1.7. Твердость по Роквеллу при малых нагрузках	
(по Супер-Роквеллу)	28
1.8. Соотношение значений твердости, полученных	
различными статическими методами, между собой	
и с механическими свойствами материалов	32
2. Динамические методы определения твердости	37
2.1. Измерение твердости методом ударного отпечатка	
2.2. Твердость по Шору (метод упругого отскока бойка)	
2.3. Проба на твердость падающим индентором	
(твердость при ударе)	43
2.4. Проба на твердость царапанием	44
3. Кинетический метод определения твердости	
4. Комбинирование измерения твердости с другими видами	
физических методов исследования поверхности	
металлических материалов	58
4.1. Комбинирование измерения твердости с методами	
акустической эмиссии и контролем магнитной	
проницаемости	58
4.2. Кинетическое акустическое склероскопирование	63
4.3. Динамическое кинетическое индентирование	
4.4. Комбинирование измеренля твердости с методами	
рентгенографии и электронной микроскопии	66
4.5. Комбинирование измерения твердости с методом	
мультифрактальной параметризации структур	70
5. Таблица соответствия отечественных и международных	
стандартов по методам измерения твердости	76
6. Обзор приборов для измерения твердости	79
6.1. Твердомеры для измерения по методу Роквелла	
6.2. Твердомеры для измерения по методу Виккерса	
и Бринелля	84
6.3. Переносные портативные твердомеры	87
7. Приложения	89
	146

ПРЕДИСЛОВИЕ

Под *твердостью* понимается свойство материала сопротивляться упругой и пластической деформации или разрушению при внедрении в него другого, более твердого и не получающего остаточной деформации тела — индентора.

Испытания материалов на твердость человеческая цивилизация в той или иной форме использует уже очень давно. Так, проба металлических монет «на зуб» с целью отличить настоящие монеты от фальшивых известна по археологическим и литературным источникам по крайней мере с античных времен. Однако научные лабораторные испытания материалов на твердость были проведены впервые в 1722 г. Ремюром, а общее признание как метод определения механических свойств материалов испытания на твердость получили только в 1901 г. после опубликования работы Бринелля.

Применение методов механических испытаний на твердость в настоящее время получило чрезвычайно широкое распространение. Они позволяют:

- 1) легко и быстро испытывать ограниченно малые объемы металла;
- 2) проводить механические испытания тогда, когда практически никакие другие способы по тем или иным причинам использовать нельзя;
- 3) испытывать материалы практически без повреждаемости (другие методы механических испытаний сопровождаются безвозвратным повреждением испытуемого образца материала);
- 4) использовать образцы с предварительной обработкой только малого участка поверхности материала;
- 5) определять твердость в микросечениях и микрообъемах, например в структурных составляющих, отдельных фазах или слоях материала;

- 6) использовать компактные приборы, измерять твердость непосредственно на работающем оборудовании, с применением автоматизации и интеграции с цифровой вычислительной техникой;
- 7) легко устанавливать эмпирическую или аналитическую связь получаемых результатов с данными других испытаний.

Способы определения твердости в зависимости от временного характера приложения нагрузки и измерения сопротивления вдавливанию индентора подразделяют на *статические, динамические и кинетические*. Наиболее распространенными являются *статические методы*, при которых нагрузку к индентору прикладывают плавно и постепенно, а время выдержки под нагрузкой регламентируется стандартами на соответствующие методы.

При динамических методах определения твердости испытательный индентор воздействует на образец с определенной кинетической энергией, затрачиваемой на упругую отдачу и/или формирование отпечатка, а также на различные потери (вибрация, тепловыделение, трение и т. п.). Твердость при этом определяется, по существу, на основе оценки расходования кинетической энергии индентора. Динамическую твердость часто называют также твердостью материала при ударе. Твердость при ударе характеризует сопротивление внедрению не только на поверхности образца, но и в некотором объеме материала. К динамическим методам можно также условно отнести метод царапания.

Кинетические методы определения твердости основываются на непрерывной регистрации процесса вдавливания индентора с записью диаграммы «нагрузка на индентор – глубина внедрения индентора». Перспективность такого подхода заключается в регистрации всей кинетики процесса упругопластического деформирования материала при вдавливании индентора, а не только конечного результата испытаний, как при других методах.

По принципу приложения нагрузки способы определения твердости можно подразделить на способы вдавливания, отскока, царапания и резания.

Способы вдавливания являются наиболее распространенными. Твердость в этом случае определяется как сопротивление, которое оказывает испытуемое тело внедрению более твердого индентора и отражает преимущественно сопротивление материала пластической деформации. Способы *отскока* основаны на измерении

твердости по высоте отскока бойка, падающего на испытуемую поверхность. Твердость при этом отражает преимущественно сопротивление упругой деформации. Измерение твердости способом отскока широко применяют для контроля больших изделий и конструкций с использованием переносных приборов ввиду оперативности, удобства и легкости автоматизации и компьютеризации.

При способах *царапания* и *резания* твердость определяется соответственно как сопротивление материала царапанию или резанию.

При всех методах испытания на твердость очень важно правильно подготовить поверхность образца. Чем меньше глубина вдавливания индентора, тем выше требуется чистота поверхности и тем более внимательно надо следить, чтобы свойства поверхностного слоя не изменились вследствие нагрева или наклепа при шлифовании и полировке.

Результаты испытаний на твердость для наиболее распространенных статических методов зависят от продолжительности приложения нагрузки к индентору. При постоянной нагрузке P линейный размер отпечатка $d = b \, \tau^n$, где τ — время выдержки индентора под нагрузкой, b и n — коэффициенты, зависящие от свойств материала и величины P. Обычно $\tau = 10 - 30$ с.

При определении твердости всеми методами (кроме микротвердости) измеряют интегральное значение твердости материала (усредненное для всех структурных составляющих). Поэтому получающийся после снятия нагрузки отпечаток должен быть по размеру значительно больше размеров зерен и других структурных составляющих тестируемого материала.

Значения твердости нельзя непосредственно использовать для расчетов деталей и однозначно переводить в значения механических свойств материала. Однако определение твердости является эффективным способом сравнения друг с другом однотипных материалов и способом контроля качества. Весьма перспективным является комбинирование измерения твердости с другими видами физических методов исследования поверхности металлических материалов. В этом случае относительные значения величин твердости позволяют подтвердить (верифицировать) и дополнить результаты, получаемые с помощью более сложных методов.

1. СТАТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТВЕРДОСТИ

1.1. Твердость по Бринеллю

Сущность метода

Метод измерения твердости по Бринеллю регламентирован Γ OCT 9012—59.

При определении твердости этим методом стальной шарик определенного диаметра D (мм) вдавливают в тестируемый образец (полуфабрикат или готовое изделие) под действием нагрузки P, приложенной перпендикулярно поверхности образца, в течение определенного времени (рис. 1.1). После снятия нагрузки измеряют диаметр отпечатка d (мм). Число твердости по Бринеллю обозначается буквами НВ, и его определяют путем деления нагрузки P на площадь поверхности сферического отпечатка F (мм²). При этом используют следующие формулы:

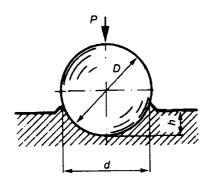


Рис. 1.1. Схема измерения твердости по Бринеллю

если нагрузка Р определяется в килограммах (кгс)

HB =
$$\frac{2P}{\pi \times D(D - \sqrt{D^2 - d^2})}$$
, (1.1, a)

если нагрузка Р определяется в ньтонах (Н)

HB =
$$\frac{0,102 \times 2P}{\pi \times D(D - \sqrt{D^2 - d^2})}$$
 (1.1, 6)

Для удобства имеются таблицы чисел твердости по Бринеллю в зависимости от диаметра шарика D, диаметра отпечатка d и нагрузки P (большая их часть приведена в Приложении 1).

Индентор

При испытании используют полированные ($Ra \le 0,040 \,\text{мкм}$) шарики из стали ШХ15 с номинальными диаметрами $D=1;\,2;\,2,5;\,5$ и 10 мм, последние считаются более предпочтительными как обеспечивающие большую точность измерения твердости (особенно при измерении твердости чугуна или крупнозернистых материалов). Отклонения диаметров шариков должны быть не более $0,0025 \,\text{мм}$ при $D=1;\,2;\,2,5 \,\text{мм}$ и $0,004 \,\text{мм}$ при $D=5 \,\text{и}$ 10 мм.

Требования, предъявляемые к образцам для испытаний

1. Минимально допустимая толщина образца s (мм) для корректного измерения твердости НВ должна быть не менее десятикратной глубины отпечатка h (мм) и определяется по формулам: если нагрузка P определяется g кгс

$$s \ge 10 \times \frac{P}{\pi \times D \times HB} , \qquad (1.2, a)$$

если нагрузка Р определяется в Н

$$s \ge 10 \times \frac{0{,}102P}{\pi \times D \times HB}, \qquad (1.2, 6)$$

- 2. Не допускается наличия следов деформации на противоположной стороне образцов.
- 3. Поверхность образца должна быть ровной, свободной от оксидов и обработанной шлифовкой или мелким напильником, а для D=1 мм должна быть отполированной.

Особенности проведения испытаний

Испытания проводят при температурах около 20 °C (от 10 до 35 °C) в отсутствие вибраций и ударов. Время выдержки под нагрузкой τ для черных металлов составляет 10–15 с, а для цветных металлов и сплавов от 10 до 180 с. Расстояние между центрами двух соседних отпечатков должно быть $\geq 4d$, а от центра отпечатка до края образца $\geq 2,5d$ (для мягких материалов с $HB \leq 35$ — соответственно 6d и 3d). Нагрузку на индентор выбирают с учетом соотношения $K = P/D^2$ (см. табл. 1.1 и 1.2). Диаметр отпечатка измеряют с точностью не ниже 0,25 % от D и определяют как среднее арифметическое значение двух измерений во взаимно перпендикулярных направлениях. Корректным считается испытание, когда диаметры полученных отпечатков находятся в пределах 0,2D < d < 0,6D.

Таблица 1.1 Величина нагрузки P в зависимости от $K = P/D^2$ ($K = 0,102P/D^2$)

Диаметр шарика <i>D</i> , мм	P, кгс (H), при значении K									
-	30	30 10 5 2,5 1								
1	30 (294)	10 (98)	5(49)	2,5 (24,5)	1 (9,8)					
2	120(1176)	40 (392)	20 (196)	10 (98)	4 (39,2)					
2,5	187,5 (1840)	62,5 (613)	31,2 (306,5)	15,5 (153,2)	6,2 (61,5)					
5	750 (7355)	250 (2450)	125 (1225)	62,2 (613)	25 (245)					
10	3000 (19430)	1000 (9800)	500 (4900)	250 (2450)	100 (980)					

Таблица 1.2 Выбор величины K для разных материалов, кг/мм² (Н/мм²)

Металлы и сплавы	К, кгс/мм ² (H/мм ²)	НВ
Железо, сталь, чугун и другие высокопрочные сплавы	30 (294)	96–450
Медь, никель и их сплавы	10 (98)	32-200
Алюминий, магний и их сплавы	5(49)	16-100
Подшипниковые сплавы	2,5 (24,5)	8-50
Олово, свинец	1 (9,8)	3,2-20

Обозначения

При диаметре шарика D=10 мм нагрузка должна быть 3000 кг, а время выдержки под нагрузкой 10–15 с. Число твердости в этом случае обозначается цифрами со стоящим после них символом НВ (например, 250 НВ). При других условиях испытаний после букв НВ указываются условия испытаний – НВ $D/P/\tau$, например: 250 НВ 5/750/25 — твердость по Бринеллю 250, полученная при диаметре шарика D=5 мм, нагрузке P=750 кгс и времени выдержки под нагрузкой $\tau=25$ с.

1.2. Твердость по Бринеллю, измеренная переносными твердомерами статического действия

Сущность метода

Метод измерения твердости регламентирован ГОСТ 22761–77 и предназначен для измерения твердости по Бринеллю в интервале от 78,5 до 5884 МПа (от 8 до 600 кгс/мм²).

При данном методе твердость по Бринеллю характеризуется средним напряжением в лунке при вдавливании шара нагрузкой P, пропорциональной квадрату диаметра шара D. Схема испытаний аналогична схеме при обычном измерении твердости по Бринеллю (см. рис. 1.1). Твердость определяется по формулам:

если нагрузка Р определяется в кгс

HB =
$$\frac{2P}{\pi \times D(D - \sqrt{D^2 - d^2})}$$
, (1.3, a)

если нагрузка Р определяется в Н

HB =
$$\frac{0,102 \times 2P}{\pi \times D(D - \sqrt{D^2 - d^2})}$$
, (1.3, 6)

или по таблицам для шариков с D = 2,5 и 1 мм (см. Приложение 2): P — приложенная нагрузка; D — диаметр шарика, мм; d — диаметр отпечатка, мм.

Индентор

Используют полированные шарики ($Ra \le 0,040$ мкм) с номинальными диаметрами D=1 и 2,5 мм. Допускается также применять шарики с D=5 и 10 мм. В качестве материала инденторов используют сталь с твердостью по Виккерсу не менее 850 единиц (для измерения твердости материалов с $HB \le 4410$ МПа (450 кгс/мм²)) и карбид вольфрама (для измерения твердости материалов с 4410 МПа (450 кгс/мм²) $\le HB \le 5884$ МПа (600 кгс/мм²)). Отклонения диаметров шариков должны быть не более 0,0025 мм для стали и 0,0035 мм для карбида вольфрама; при D=5 и 10 мм — не более 0,0040 и 0,0045 мм соответственно. Если после испытаний размеры шарика изменились и вышли из указанных предельных отклонений, то его заменяют, а измеренное значение твердости считают недействительным.

Требования, предъявляемые к образцам для испытаний

- 1. Шероховатость образцов или изделий в месте испытания должна быть $Ra \le 0,32$ мкм.
- 2. Изделие или образец не должны смещаться при проведении испытаний.
- 3. Минимальная толщина изделия (образца) должна составлять не менее 8-кратной глубины отпечатка.

Таблица 1.3

Выбор минимально допускаемой толщины изделия h, диаметра шарика D, нагрузки P и времени выдержки под нагрузкой τ при определении твердости по Бринеллю переносным твердомером статического действия

Me-	Интервал	Минималь-	Соотношение	Диа-	Нагрузка	Продол-
таллы	твердости	ная толщи-	между нагруз-	метр	<i>P</i> , H	житель-
	по Бринел-	на изделия	кой Р, Н (кгс), и	шара	(кгс)	ность вы-
	лю, МПа	(образца)	диаметром шара	D, mm		держки
	(кгс/мм ²)	<i>h</i> , мм	<i>D</i> , мм			τ, c
Чер-	1373-5884	1,4–0,3	$P = 294,2 D^2$	2,5	1838,7	10
ные	(140–600)	0,5-0,1	$(P = 30 D^2)$		(187,5)	
			$P = 294,2 D^2$	1,0	294,2	10
			$(P=30 D^2)$		(30,0)	

См. продолжение

Продолжение табл. 1.3.

Me-	Интервал	Минималь-	Соотношение	Диа-	Нагрузка	Продол-
таллы	твердости	ная толщи-	между нагруз-	метр	<i>P</i> , H	житель-
	по Бринел-	на изделия	кой Р, Н (кгс),	шара	(кгс)	ность вы-
	лю, МПа	(образца)	и диаметром	<i>D</i> , мм		держки
	(кгс/мм ²)	<i>h</i> , мм	шара <i>D</i> , мм			τ, c
Чер-	78,5–1373	0,8–0,5	$P = 98,1 D^2$	2,5	612,9	10
ные	(80–140)	0,3-0,2	$(P = 10 D^2)$		(62,5)	
			$P = 98,1 D^2$	1,0	98,1	10
			$(P=10 D^2)$		(10,0)	
Цвет-	>1275	От 1,5	$P = 294,2 D^2$	2,5	1838,7	30
ные	(>130)		$(P=30 D^2)$		(187,5)	
		От 0,6	$P = 294,2 D^2$	1,0	204,2	30
			$(P=30 D^2)$		(30,0)	
	343-1275	1,8-0,5	$P = 98,1 D^2$	2,5	612,9	30
	(35–130)		$(P=10\ D^2)$		(62,5)	
		0,7–0,2	$P = 98,1 D^2$	1,0	98,1	30
ļ			$(P=10\ D^2)$		(10,0)	
	78–343	2,0-0,5	$P = 24,5 D^2$	2,5	153,1	60
	(7,9–34,3)		$(P = 2,5 D^2)$		(15,6)	
		0,8–0,2	$P = 24,5 D^2$	1,0	24,5	60
			$(P=2,5 D^2)$		(2,5)	

Особенности проведения испытаний

Испытания проводят при температурах от 0 до 40 °C. Минимально допускаемую толщину изделия h, диаметр шарика D, нагрузку P и время выдержки под нагрузкой τ выбираются в соответствии с табл. 1.3. Для металлов с HB>343 МПа (35 кгс/мм²) расстояние между центрами двух соседних отпечатков должно быть $\geq 4d$; от центра отпечатка до края образца $\geq 2,5d$; для металлов с HB<343 МПа (35 кгс/мм²) — соответственно 6d и 3d. Допускается проводить испытания на цилиндрических поверхностях, если радиус кривизны образца (изделия) > 5D. Диаметр отпечатка измеряют с точностью не ниже 0,25% от D и определяют как среднее арифметическое значение двух измерений во взаимно пер-

пендикулярных направлениях. Корректным считается испытание, когда диаметры полученных отпечатков находятся в пределах 0.2D < d < 0.6D. Разность измерений диаметров отпечатков не должна превышать 2 % от меньшего из них.

Обозначения

Число твердости обозначается цифрами со стоящим после них символом НВ. После букв НВ указываются условия испытаний — НВ $D/P/\tau$, например: 2500 НВ 2,5/1838,7/10 — твердость по Бринеллю 2500 МПа, полученная при диаметре шарика D=2,5 мм, нагрузке P=1838,7 Н и времени выдержки под нагрузкой $\tau=10$ с. При испытаниях с индентором из карбида вольфрама символ НВ дополняется буквой W. Нагрузка P может быть указана в МПа или кгс/мм².

1.3. Метод измерения твердости на пределе текучести вдавливанием шара

Сущность метода

Метод измерения твердости на пределе текучести вдавливанием шара регламентирован ГОСТ 22762—77 и предназначен для испытания металлических материалов с пределами текучести от 78,5 до 3285 МПа (от 8 до 335 кгс/мм²).

Твердость на пределе текучести характеризуется средним напряжением в лунке при вдавливании шара, когда в ней появляется средняя остаточная деформация, близкая к 0,2%, возникающая при отношении d/D-0,09, где d- диаметр лунки (отпечатка), а D- диаметр шара. При данном методе индентор в виде шара с диаметром D (мм) вдавливают в поверхность испытуемого образца (изделия) с нагрузкой P_1 таким образом, чтобы измеренный диаметр отпечатка d был меньше 0,09D не более чем на 5 %. Время выдержки T_1 под нагрузкой P_1 составляет 10 с. После снятия нагрузки P_1 измеряют диаметр отпечатка d (мм) и производят последующее вдавливание с нагрузкой P_2 таким образом, чтобы измеренный после второго вдавливания диаметр отпечатка d был больше 0,09D не более чем на 5 %. Далее по значениям P_1 и P_2

методом интерполяции определяют нагрузку на пределе текучести $P_{0,2}$. Значение твердости на пределе текучести $H_{0,2}$ в МПа (или в кгс/мм²) определяют по формуле:

$$HB_{0,2} = \frac{2P}{\pi \times D(D - \sqrt{D^2 - d^2})} = 156.9 \frac{P_{0,2}}{D^2}$$
 (1.4)

или по таблицам, приведенным в ГОСТе (см. Приложение 3).

Индентор

Используют полированные шары ($Ra \le 0,040$ мкм) с номинальными диаметрами $D=10,\,20,\,30,\,40,\,50$ мм из термически обработанной стали с твердостью по Виккерсу не менее 850 единиц. Если после испытаний размеры шара изменились и вышли из допусков (группа В по ГОСТ 3722–60) или появился какой-либо поверхностный дефект, то его заменяют, а измеренное значение твердости считают недействительным.

Требования, предъявляемые к образцам для испытаний

- 1: Шероховатость образцов или изделий в месте испытания должна быть $Ra \le 0.32$ мкм.
- 2. Изделие или образец не должны смещаться при проведении испытаний.
- 3. Минимальная толщина изделия (образца) должна составлять не менее 8-кратной глубины отпечатка.

Особенности проведения испытаний

Испытания проводят при температурах от 0 до 40 °C на приборах статического действия или на испытательном оборудовании, обеспечивающем возможность плавного возрастания нагрузки, приостановки нагружения и постоянства приложенной нагрузки в течение требуемого времени с относительной погрешностью не более ± 1 %.

Расстояние между центрами двух соседних отпечатков должно быть $\geq 2d$, а от центра отпечатка до края образца $\geq 1,5d$. Допускается проводить испытания на цилиндрических поверхностях, если

радиус кривизны образца (изделия) больше 5D. Диаметр отпечатка d измеряют с точностью, указанной в табл. 1.4, и определяют как среднее арифметическое значение двух измерений во взаимно перпендикулярных направлениях.

Таблица 1.4 Допускаемая погрешность измерения диаметра отпечатка d в зависимости от применяемого диаметра шарового индентора D

D, mm	Погрешность, мм	<i>D</i> , мм	Погрешность, мм
10	± 0,0025	40	± 0,01
20	± 0,005	50	± 0,012
30	± 0,0075	_	-

Обозначения

Число твердости на пределе текучести обозначается цифрами со стоящим после них символом $H_{0,2}$ и с указанием размерности, например: 300 $H_{0,2}$ МПа.

Дополнительные возможности

По значениям твердости на пределе текучести Ного, МПа $(кгс/мм^2)$ можно примерно определить предел текучести $\sigma_{0.2}$ при растяжении в месте испытания. Для легированных сталей соотношение между нагрузкой на пределе текучести $P_{0,2}$, твердостью на пределе текучести Н_{0.2} и пределом текучести $\sigma_{0.2}$ при растяжении приведено в табл. 1.5. Для значений, приведенных в табл. 1.5, указывается погрешность ±7%. Однако необходимо отметить, что пользоваться таким эмпирическим переводом чисел твердости в предел текучести следует очень осторожно и преимущественно для предварительной оценки относительного изменения свойств материала. Физического смысла такой перевод лишен, так как твердость при вдавливании шара и предел текучести при растяжении определяются при совершенно разных напряженных состояниях. Кроме того, предел текучести является интегральной характеристикой испытуемого образца материала, отражающей, в частности, различие в протекании процессов структурной самоорганизации во внутренних и приповерхностных слоях материала. На его величину сильное влияние оказывает соотношение свойств и структур этих слоев, наличие поверхностной обработки, покрытий, топографическая структура поверхности и т. д. В зависимости от состояния поверхности предел текучести для одного и того же материала может различаться на 50 % и более. Естественно, что при локальном нагружении вдавливанием шара все это практически не учитывается.

Таблица 1.5

Соотношение между нагрузкой на пределе текучести $P_{0,2}$, твердостью на пределе текучести $H_{0,2}$ и пределом текучести $\sigma_{0,2}$ при растяжении для легированных сталей при диаметре вдавливаемого шара D=10 мм

$P_{0,2}$,	$H_{0,2}$, МПа	$\sigma_{0,2}$, МПа	$P_{0,2}$,	$H_{0,2}$, МПа	$\sigma_{0,2}$, МПа
Н (кгс)	(кгс/мм ²)	(кгс/мм ²)	Н (кгс)	(кгс/мм ²)	(кгс/мм ²)
451(46)	708(72,2)	201(20,5)	804(82)	1261(128,6)	373(38,0)
471(48)	738(76,3)	211(21,5)	824(84)	1293(131,8)	387(39,5)
490(50)	769(78,4)	221(22,5)	843(86)	1323(134,9)	397(40,5)
510(52)	800(81,6)	231(23,5)	863(88)	1354(138,1)	412(42,0)
530(54)	831(84,7)	237(24,2)	883(90)	1385(141,2)	422(43,0)
549(56)	862(87,9)	245(25,0)	902(92)	1415(144,3)	436(44,5)
569(58)	892(91,0)	250(25,5)	922(94)	1447(147,5)	451(46,0)
588(60)	923(94,1)	260(26,5)	941(96)	1477(150,6)	461(47,0)
608(62)	954(97,3)	270(27,5)	961(98)	1507(153,7)	476(48,5)
628(64)	985(100,4)	280(28,5)	981(100)	1539(156,9)	490(50,0)
647(66)	1015(103,5)	289(29,5)	1000(102)	1569(160,0)	505(51,5)
667(68)	1046(106,7)	299(30,5)	1020(104)	1600(163,2)	520(53,0)
687(70)	1077(109,8)	309(31,5)	1040(106)	1631(166,3)	535(54,5)
706(72)	1108(113,0)	319(32,5)	1059(108)	1661(169,4)	549(56,0)
726(74)	1139(116,1)	329(33,5)	1079(110)	1693(172,6)	559(57,0)
745(76)	1169(119,2)	338(34,5)	1098(112)	1723(175,7)	579(59,0)
765(78)	1200(122,4)	353(36,0)	1118(114)	1753(178,8)	593(60,5)
785(80)	1231(125,5)	363(37,0)	1138(116)	1785(182,0)	608(62,0)

Продолжение табл. 1.5

$P_{0,2}$,	$H_{0,2}$, МПа	$\sigma_{0,2}$, МПа	$P_{0,2}$,	$H_{0,2}$, МПа	σ _{0,2} , МПа
Н (кгс)	(кгс/мм ²)	(кгс/мм²)	Н (кгс)	(кгс/мм ²)	(кгс/мм ²)
1157(118)	1815(185,1)	623(63,5)	1628(166)	2554(260,4)	1040(106,0)
1177(120)	1847(188,3)	637(65,0)	1648(168)	2585(263,6)	1059(108,0)
1196(122)	1877(191,4)	652(66,5)	1667(170)	2615(266,7)	1079(110,0)
1216(124)	1907(194,5)	667(68,0)	1687(172)	2646(269,8)	1198(112,0)
1236(126)	1939(197,7)	682(69,5)	1706(174)	2677(273,0)	1118(114,0)
1255(128)	1969(200,8)	696(71,0)	1726(176)	2708(276,1)	1138(116,0)
1275(130)	2000(203,9)	711(72,5)	1746(178)	2738(279,2)	1157(118,0)
1295(132)	2031(207,1)	726(74,0)	1765(180)	2770(282,5)	1177(120,0)
1314(134)	2061(210,2)	745(76,0)	1785(182)	2780(285,5)	1196(122,0)
1334(136)	2093(213,4)	760(77,5)	1804(184)	2831(288,7)	1214(123,8)
1353(138)	2123(216,5)	775(79,0)	1824(186)	2862(291,8)	1232(125,6)
1373(140)	2154(219,6)	794(81,0)	1844(188)	2892(294,9)	1249(127,4)
1393(142)	2185(222,6)	809(82,5)	1863(190)	2993(298,1)	1267(129,2)
1412(144)	2215(225,9)	824(84,0)	1883(192)	2954(301,2)	1286(131,1)
1432(146)	2246(229,0)	843(86,0)	1902(194)	2984(304,3)	1302(132,8)
1451(148)	2277(232,2)	963(88,0)	1922(196)	3016(307,5)	1322(134,8)
1471(150)	2308(235,3)	883(90,0)	1942(198)	3046(310,6)	1341(136,7)
1491(152)	2339(238,5)	902(92,0)	1961 (200)	3077(313,8)	1359(138,6)
1510(154)	2369(241,6)	922(94,0)	1981 (202)	3108(316,9)	1378(140,5)
1530(156)	2400(244,7)	941(96,0)	2001(204)	3138(320,0)	1390(142,3)
1550(158)	2431(247,9)	961(98,0)	2020(206)	3170(323,2)	1414(144,2)
1569(160)	2462(251,0)	981(100,0)	2040(208)	3200(326,3)	1434(146,2)
1589(162)	2492(254,1)	1000(102,0)	2059(210)	3230(329,4)	1451(148,0)
1608(164)	2523(257,3)	1020(104,0)	2079(212)	3262(332,6)	1471(150,0)

Примечание. При вдавливании шара диаметром 20, 30, 40, 50 мм значение нагрузки $P_{0,2}$ следует разделить соответственно на 4; 9; 16; 25 и по полученному от деления результату определить искомое значение твердости. Например, если при вдавливании шара диаметром D=40 мм до диаметра отпечатка d=3,6 мм нагрузка на пределе текучести получилась $P_{0,2}=3200$ H, то для определения величины гвердости необходимо нагрузку, равную 3200 H, разделить на 16 (3200/16 = 200) и по таблице для значения нагрузки 200 H найти соответствующую величину гвердости на пределе текучести $H_{0,2}$, равную 314 МПа.

1.4. Твердость по Виккерсу

Сущность метода

Метод измерения твердости по Виккерсу регламентирован ГОСТ 2999–75.

При данном методе твердость измеряют путем вдавливания в образец (изделие) алмазного наконечника в форме правильной четырехгранной пирамиды под действием нагрузки P в течение времени выдержки τ (рис. 1.2). После снятия нагрузки измеряют диагонали оставшегося на поверхности материала отпечатка $-d_1$, d_2 и вычисляют среднее арифметическое значение длин обеих диагоналей -d, мм.

Твердость определяется по формулам: если нагрузка P определяется в кгс

$$HV = \frac{2P \times \sin\frac{\alpha}{2}}{d^2} = 1,854 \frac{P}{d^2},$$
 (1.5, a)

если нагрузка Р определяется в Н

$$HV = \frac{0{,}102 \times 2P \times \sin\frac{\alpha}{2}}{d^2} = 0{,}189\frac{P}{d^2},$$
 (1.5, 6)

где α — угол между противоположными гранями пирамиды при вершине, равный 136°.

Значения твердости по Виккерсу при стандартных значениях нагрузки в зависимости от длины диагонали d, мм, приведены в таблицах Приложения 4.

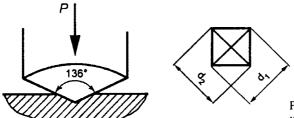


Рис. 1.2. Схема измерения твердости по Виккерсу

Индентор

При испытании используют алмазный наконечник в форме правильной четырехгранной пирамиды с углом между противоположными гранями пирамиды при вершине 136°, который должен соответствовать требованиям ГОСТ 9377–81.

Требования, предъявляемые к образцам для испытаний

- 1. Шероховатость образцов или изделий в месте испытания должна соответствовать $Ra \le 0,16$ мкм, поверхность должна быть свободной от оксидной пленки.
- 2. Изделие или образец должны быть жестко закреплены для устойчивости.
- 3. Минимальная толщина изделия (образца) должна быть больше диагонали отпечатка: для черных металлов в 1,2 раза, для цветных металлов в 1,5 раза.
- 4. При измерении твердости на криволинейных поверхностях радиус кривизны поверхности должен быть не менее 5 мм. В этом случае для чисел твердости используют поправочные коэффициснты, имеющиеся в ГОСТ 2999–75.

Особенности проведения испытаний

При испытаниях применяют следующие нагрузки P, кгс (H): 1 (9,807); 2 (19,61); 2,5 (24,52); 3 (29,42); 5 (49,03); 10 (98,07); 20 (196,1); 30 (294,2); 50 (490,3); 100 (980,7). Испытания обычно проводят при температурах от 10 до 35 °С и плавном возрастании нагрузки до необходимого значения. Если имеются разногласия в определении твердости, то в зоне умеренного климата испытания проводят в интервале 18–22 °С. Продолжительность времени выдержки под нагрузкой составляет 10–15 с. Расстояние от центра отпечатка до края образца или до края соседнего отпечатка должно быть $\geq 2,5d$ (d – длина диагонали отпечатка). Если определяют твердость слоя материала неизвестной толщины, то проводят несколько последовательных измерений с уменьшающейся величиной нагрузки. При изменении твердости нагрузку следует уменьшать до тех пор, пока при двух смежных нагрузках значения твердости будут близки или совпадать. Диагонали отпечатка измеряют

с погрешностью не более: $\pm 0,001$ мм (если $d \le 0,2$ мм) и $\pm 0,5$ % (если d > 0,2 мм). Разность диагоналей одного отпечатка не должна превышать 2 % от меньшей из них. Для анизотропных материалов различие в величине диагоналей допускается устанавливать в соответствии со стандартами на конкретный материал.

Обозначения

Число твердости по Виккерсу при нагрузке $P=294~{\rm H}$ (30 кгс) и времени выдержки под нагрузкой $\tau=10$ –15 с обозначают цифрами, характеризующими величину твердости со стоящим после них символом HV (например, 400 HV). При других условиях испытаний после символа HV указывается нагрузка и время выдержки, например: 330 HV 10/40 — твердость по Виккерсу, полученная при нагрузке $P=98,07~{\rm H}$ (10 кгс) и времени выдержки под нагрузкой $\tau=40~{\rm c}$.

В ГОСТе указывается, что точного перевода чисел твердости по Виккерсу на числа твердости, полученные другими методами, или на механические свойства при растяжении не существует и таких переводов (за исключением особенных частных случаев) следует избегать.

1.5. Микротвердость

Сущность метода

Метод измерения микротвердости регламентирован ГОСТ 9450-76.

При данном методе твердость измеряют путем вдавливания в образец (изделие) алмазного индентора под действием статической нагрузки P в течение времени выдержки τ (см. рис. 1.2). Число твердости определяют делением приложенной нагрузки в Н или кгс на условную площадь боковой поверхности полученного отпечатка в мм². Основным вариантом испытания является так называемый метод восстановленного отпечатка, когда размеры отпечатков определяются после снятия нагрузки. Для случая, когда требуется определение дополнительных характеристик материала (упругое восстановление, релаксация, ползучесть при комнатной температуре и т. п.)

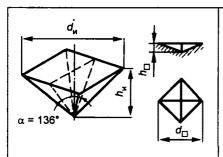
Таблица 1.6

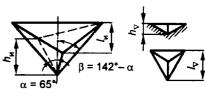
допускается проводить испытание по методу невосстановленного отпечатка. При этом размеры отпечатка определяют по глубине вдавливания индентора в процессе приложения нагрузки.

Твердость определяют по формулам, приведенным в табл. 1.6, или по стандартным таблицам в зависимости от формы индентора, нагрузки P и размеров диагоналей отпечатка.

Формулы для определения величины микротвердости в зависимости от формы индентора

Форма алмаз- ного индентора	Метод восстановленного отпечатка	Метод невосстанов- ленного отпечатка (индекс <i>h</i>)
Четырехгранная пирамида с ква-дратным основанием. Обозначается индексом «□» или «кв»	$H_{\kappa_B} = \frac{P}{S} = \frac{2P\sin^{\alpha}/2}{d^2} \approx \frac{1,854P}{d^2}$	$H_{\kappa_B(h)} = \frac{P}{S} \approx \frac{0,03784P}{\left(h_{\kappa_B}\right)^2}$
Трехгранная пирамида с основанием в виде равностороннего треугольника. Обозначается индексом «V» или «тр»	$H_{\tau p} = \frac{P}{S} = \frac{3P \sin \alpha}{\sqrt{3}(l_{\tau p})^2} \approx \frac{1,570P}{(l_{\tau p})^2}$	$H_{\tau_p(h)} = \frac{P}{S} \approx \frac{0,03797P}{(h_{\tau_p})^2}$
Четырехгранная пирамида с ром- бическим основанием. Обозначается индексом «◊» или «рб»	$H_{p6} = \frac{P}{S} = \frac{2P \operatorname{tg}^{\alpha} / 2 \cos^{\beta} / 2}{(l_{p6})^{2}} \approx \frac{12,89 P}{(l_{p6})^{2}}$	$H_{p6(h)} = \frac{P}{S} \approx \frac{0.01385P}{(h_{p6})^2}$
Бицилиндричес- кий наконечник. Обозначается индексом «①» или «ц»	$H_{u} = \frac{P}{S} = \frac{3PR\sin\alpha}{(l_{u})^{3}} \approx \frac{4,168P}{(l_{u})^{3}}$	$H_{u(h)} = \frac{P}{S} \approx \frac{0,07292P}{(h_u)^{\frac{3}{2}}}$


Примечание. P — нормальная нагрузка, приложенная к алмазному индентору, H или кгс; S — условная площадь боковой поверхности полученного отпечатка, мм²; d — среднее арифметическое длины обеих диагоналей квадратного отпечатка, мм; l — размер отпечатка, мм (l_{тр} — высота треугольника, l_{р6} — большая диагональ ромба, l_ц — длина линий сопряжения цилиндров); R — радиус цилиндра (R = 2 мм); α и β — углы разных заострений алмазных инденторов, град; h — глубина отпечатка, мм.


Индентор

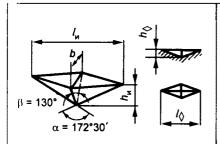
В качестве инденторов используют алмазные наконечники, форма, размер и предназначение которых приведены в табл. 1.7. Основным и наиболее распространенным наконечником является четырехгранная алмазная пирамида с квадратным основанием (по форме подобна индентору, применяющемуся при определении твердости по Виккерсу).

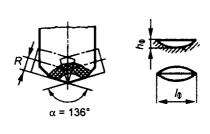
Таблица 1.7

Наименование используемых для определения микротвердости инденторов, их форма, вид получающихся отпечатков и область применения

Четырехгранная пирамида с квадратным основанием (индекс « □ » или «кв»)

Наконечник является рекомендуемым и используется для определения микротвердости при достаточно большом значении *d* при микротвердости менее 10000 H/мм² (1020 кгс/мм²).


 $h_{\rm H} = 0.5 \, \text{MKM}; \ d_{\rm H} = 3.5 \, \text{MKM}$


Трехгранная пирамида с основанием в виде равностороннего треугольника (индекс « ∨ » или «тр»)

Используется при микротвердости более 10000 Н/мм² (1020 кгс/мм²) и при малых значениях нагрузки P, а также при измерении твердости в нанодиапазоне с нагрузками менее 10 г. По боковой поверхности и высоте эта пирамида равновелика четырехгранной пирамиде с квадратным основанием, но отличается более совершенным заострением (без перемычки).

 $h_{\rm H} = 0.5$ MKM; $d_{\rm H} = 3.2$ MKM

Продолжение табл. 1.7

Четырехгранная пирамида с ромбическим основанием (индекс «◊» или «рб»)

Бицилиндрический наконечник (индекс « () » или «ц»)

Используется для материалов с малой толщиной или для определения микротвердости тонких покрытий, когда для других наконечников не выполняются требования по минимальному расстоянию центра отсчета от поверхности и для контроля поверхностной анизотропии.

Используется для определения микротвердости субтонких слоев и покрытий толщиной < 3 мкм, а также для контроля поверхностной анизотропии, например при оценке степени наклепа в разных направлениях прокатанного листа.

 $h_{\rm H} = 0.5 \, \text{MKM}; \ d_{\rm H} = 15.3 \, \text{MKM}$

R = 2 мм – радиус цилиндра; $h_{\mu} = 0.5$ мкм; $d_{\mu} = 86.1$ мкм

Требования, предъявляемые к образцам лля испытаний

- 1. Шероховатость образцов или изделий в месте испытания должна быть $Ra \le 0.32$ мкм.
- 2. Изделие или образец не должны смещаться, прогибаться и проворачиваться при проведении испытаний.
- 3. Поверхность изделия должна быть установлена перпендикулярно к оси алмазного наконечника.
- 4. Минимальная толщина изделия (образца) должна быть не менее 10-кратной глубины отпечатка.
- 5. Не допускается наличие смазки или влаги на поверхности испытуемого материала и индентора.

Особенности проведения испытаний

Испытания проводят при температурах от 15 до 25 °C при нагрузках 0,049; 0,098; 0,196; 0,490; 0,981; 1,962; 4,905 Н (гири массой 5; 10; 20; 50; 100; 200; 500 г). Продолжительность времени выдержки под нагрузкой должна составлять не менее 3 с, а нагружение должно осуществляться плавно, без толчков. Для получения наиболее точного результата рекомендуется проводить испытания при как можно большей нагрузке Р, однако необходимо соблюдать ограничения по толщине материала и следить за тем, чтобы на стороне образца (изделия), противоположной испытуемой, не было визуально заметных следов деформации. Если определяют твердость слоя материала неизвестной толщины, то проводят несколько последовательных измерений с уменьшающейся величиной нагрузки. При изменении твердости нагрузку следует уменьшать до тех пор, пока при двух смежных нагрузках значения твердости будут близки или совпадать. Размеры d или $l_{\rm TD}$ одного отпечатка не должны различаться более чем на 3 %. Расстояние от центра отпечатка до края образца должно быть более двойного размера отпечатка, а расстояние между центрами соседних отпечатков - более тройного размера отпечатка. Размеры отпечатков измеряют на микроскопе с погрешностью отсчитывания ±0,5 % от наименьшего деления шкалы при объективе увеличения 30-40. Если изделие имеет радиус кривизны на один-два порядка больше размера отпечатка, то числа микротвердости носят условные значения.

Обозначения

Число микротвердости обозначают цифрами, характеризующими величину твердости со стоящим перед ними символом H с указанием индекса формы наконечника (например, $H_{\nabla}=3000$). Допускается указывать после индекса формы наконечника величину прилагаемой нагрузки, например: $H_{\nabla 0,196}=3000$ — число микротвердости 3000 H/мм², полученное при испытании с трехгранной пирамидой при нагрузке 0,196 H. Размерность микротвердости (H/мм² или кгс/мм²) обычно не указывают. Если микротвердость определяли по методу невосстановленного отпечатка, то к индексу формы наконечника добавляют букву h, например: H_{-h} или $H_{\nabla h}$.

1.6. Твердость по Роквеллу

Сущность метода

Метод измерения твердости по Роквеллу регламентирован I OCT 9013-59.

При определении твердости этим методом в тестируемый образец (изделие) под действием двух последовательно прилагаемых нагрузок — предварительной P_0 (обычно P_0 = 10 кгс) и общей P — вдавливают индентор (алмазный конус или стальной шарик). При этом общая нагрузка равна сумме предварительной P_0 и основной P_1 нагрузок:

$$P = P_0 + P_1. {1.6}$$

После выдержки под приложенной общей нагрузкой P в течение 3–5 с основную нагрузку P_1 снимают и измеряют глубину проникновения индентора в материал h под действием общей нагрузки P; затем снимают оставшуюся предварительную нагрузку P_0 . Твердость по Роквеллу измеряют в условных единицах. За единицу твердости принята величина, соответствующая осевому перемещению индентора на 0,002 мм. Число твердости определяется по шкале индикатора (как правило, часового типа). Индикатор показывает результат вычитания разности глубин h-h0, на которые вдавливается индентор под действием двух последовательно приложенных нагрузок, из некоторой константы. Все размеры и константа измеряются в миллиметрах, h0 – глубина внедрения индентора в испытуемый образец под действием предварительной нагрузки P0 (рис. 1.3).

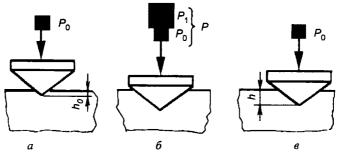


Рис. 1.3. Схема измерения твердости по Роквеллу

В зависимости от формы индентора и прилагаемой нагрузки введены три измерительные шкалы: А, В, С (табл. 1.8). Наиболее часто используемыми шкалами являются А и С.

Таблица 1.8 Шкалы, использующиеся при измерении твердости по Роквеллу

Шка- ла	Применяемый индентор	Наг	рузка	, кгс	Области применения	Цвет шкалы на обычных
		Р – общая	P_0 – предва- рительная	P_1 – основ- ная		индекаторах часового типа
A	Алмазный конус	60	10	50	Материалы с твер- достью HRA 70–85	Черный
В	Стальной шарик	100	10	90	Низко- и среднеуглеродистые стали, латуни бронзы и другие материалы с твердостью HRB 25-100	Красный
С	Алмазный конус	150	10	140	Стали и сплавы с твердостью HRC 20-67	Черный

Число твердости по Роквеллу при измерении по шкалам А и С определяют по формуле:

$$HRA = HRC_3 = 100 - (h - h_0)/0,002,$$
 (1.7)

где h_0 – глубина внедрения индентора в испытуемый образец под действием предварительной нагрузки P_0 ; h – глубина внедрения индентора в испытуемый образец под действием общей нагрузки P (измеряется после снятия основной нагрузки P_1 , но при оставленной приложенной нагрузке P_0).

Число твердости при измерении по шкале В вычисляется по формуле:

HRB =
$$130 - (h - h_0)/0,002$$
, (1.8)

обозначения те же, что и в формуле (1.7).

В соответствии с ГОСТ 8.064—79 введена скорректированная шкала С и уточнены переводные числа твердости НКС в числа пердости НКС_Э шкалы С Роквелла, воспроизводимой государственным специальным эталоном (табл. 1.9).

Таблица 1.9 Соотношение чисел твердости HRC_3 и HRC шкалы C Роквелла

HRCэ	HRC	HRСэ	HRC	HRСэ	HRC	HRСэ	HRC	HRСэ	HRC
20,0	17,8	29,5	27,6	39,5	37,9	49,5	48,2	59,0	58,0
20,5	18,3	30,0	28,1	40,0	38,4	50,0	48,7	59,5	58,5
21,0	18,8	30,5	28,6	40,5	38,9	50,5	49,2	60,0	59,0
21,5	19,3	31,0	29,1	41,0	39,4	51,0	49,7	60,5	59,0
22,0	19,9	31,5	29,6	41,5	39,9	51,5	50,2	60,5	59,5
22,5	20,4	32,0	30,2	42,0	40,5	52,0	50,7	61,0	60,0
23,0	20,9	32,5	30,7	42,5	41,0	52,5	51,3	61,5	60,5
23,5	21,4	33,0	31,2	43,0	41,5	53,0	51,8	62,0	61,0
24,0	21,9	33,5	31,7	43,5	42,0	53,5	52,3	62,5	61,6
24,5	22,4	34,0	32,7	44,0	42,5	54,0	52,8	63,0	62,1
25,0	23,0	35,0	33,2	44,5	43,0	54,5	53,3	63,5	62,6
25,5	23,5	35,5	33,8	45,0	43,5	55,0	53,8	64,0	63,1
26,0	24,0	36,0	34,3	45,5	44,1	55,5	54,3	64,5	63,6
26,5	24,5	36,5	34,8	46,5	45,1	56,6	54,9	65,0	64,1
27,0	25,0	37,0	35,3	47,0	45,6	56,5	55,4	65,5	64,6
27,5	25,5	37,5	35,8	47,5	46,1	57,0	55,9	66,5	65,7
28,0	26,0	38,0	36,3	48,0	46,6	57,5	56,4	67,0	66,2
28,5	26,6	38,5	36,8	48,5	47,1	58,0	56,9	67,5	66,7
29,0	27,1	39,0	37,4	49,0	47,7	58,5	57,4		

Индентор

Используют инденторы двух типов:

- а) стальной закаленный шарик диаметром D = 1,588 мм;
- б) алмазный конус с углом при вершине 120° и радиусом закругления при вершине 0,2 мм.

Требования, предъявляемые к образцам для испытаний

1. Шероховатость образцов или изделий в месте испытания должна быть $Ra \le 2,5$ мкм.

- 2. Образец или изделие при проведении испытаний не должны смещаться и прогибаться.
- 3. Минимальная толщина образца или изделия должна быть не менее 8-кратной глубины отпечатка.

Особенности проведения испытаний

Испытания обычно проводят при температурах от 10 до 35 °C и плавном возрастании нагрузки до необходимого значения. Продолжительность времени выдержки под общей нагрузкой P составляет 3–5 с; расстояние от центра отпечатка до края образца или до центра соседнего отпечатка \geq 3 мм.

Измерение твердости по Роквеллу производится достаточно быстро и просто, поскольку фиксация числа твердости осуществляется непосредственно на шкале испытательного прибора, а размер отпечатка на образце (изделии) достаточно мал. В связи с этим, несмотря на условный характер чисел твердости, данный метод получил достаточно широкое распространение как метод контроля штучных деталей в массовом и крупносерийном производстве.

Обозначения

Число твердости по Роквеллу обозначается цифрами, характеризующими величину твердости, со стоящим после них символом HRA, HRB или HRC (в зависимости от используемой шкалы измерения), например: 25,5 HRC. Для чисел твердости HRC, переведенных в числа твердости шкалы С Роквелла, воспроизводимой государственным специальным эталоном, используется символ HRC_э.

1.7. Твердость по Роквеллу при малых нагрузках (по Супер-Роквеллу)

Сущность метода

Метод измерения твердости по Супер-Роквеллу регламентирован ГОСТ 22975–78.

При определении твердости этим методом в тестируемый образец (изделие) под действием последовательно прилагаемых пред-

парительной P_0 и основной P_1 нагрузок вдавливают индентор — алмазный конус (шкала N) или стальной шарик (шкала T). Величина общей нагрузки $P = P_0 + P_1$ лежит в диапазоне 147—441 Н (15—45 кгс), а время выдержки при общей нагрузке составляет 2—8 с. После снятия основной нагрузки P_1 , но при сохранении предварительной нагрузки P_0 измеряют остаточное увеличение глубин проникновения индентора e (рис. 1.4). Величина e выражается в условных единицах шкалы индикатора испытательного прибора с ценой деления 0,001 мм (вся шкала соответствует 0,1 мм). Число твердости в соответствии с используемой шкалой определяется по формуле:

$$HRN = 100 - e$$
 или $HRT = 100 - e$. (1.9)

Число твердости определяется обычно непосредственно по шкале индикатора. Величину твердости округляют до 0,5 деления шкалы.

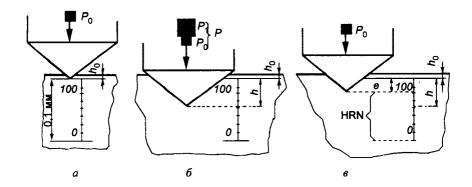


Рис. 1.4. Схема измерения твердости по Супер-Роквеллу при использовании шкалы N (схема при использовании шкалы T аналогична за исключением того, что индентор имеет форму шарика):

 h_0 , мм — глубина внедрения индентора в испытуемый образец под действием предварительной нагрузки P_0 ;

h, мм – глубина внедрения индентора в испытуемый образец под действием основной нагрузки P_1 ,

c — остаточное увеличение глубины внедрения индентора (измеряют после снятия основной нагрузки P_1 , но при оставленной приложенной нагрузке P_0), выражается в условных единицах шкалы индикатора испытательного прибора с ценой деления 0,001 мм (вся шкала соответствует 0,1 мм)

Индентор

При испытании используют инденторы двух типов, в целом аналогичные инденторам, применяющимся при измерении твердости по Роквеллу:

- а) стальной закаленный шарик диаметром D=1,588 мм с отклонением от номинального диаметра не более $\pm 0,001$ мм для шкалы N (табл. 1.10);
- б) алмазный конус с углом при вершине 120° и радиусом закругления при вершине 0,2 мм для шкалы Т (табл. 1.11).

Таблица 1.10 Величина общей нагрузки *P* при определении твердости по Супер-Роквеллу по шкале N в зависимости от толщины испытуемого образца и ожидаемой твердости

Толщина	Твердость по Роквеллу								
образца, мм, не менее	HRN15	HRC	HRN30	HRC	HRN45	HRC			
0,15	92	65	_	-	_				
0,20	90	60		-	_	-			
0,25	88	55	_	-	_	_			
0,30	83	45	82	65	77	69,5			
0,36	76	32	78,5	61	74	67			
0,41	68	18	74	56	72	65			
0,46	_	_	66	47	68	61			
0,51	-		57	37	63	57			
0,56	_	_	47	26	58	52,5			
0,61	_	_	_	_	51	47			
0,66		·	_	-	37	35			
0,71	_	_	-	-	20	20,5			

Требования, предъявляемые к образцам для испытаний

- 1. Шероховатость образцов или изделий в месте испытания по ГОСТ 2789-73 должна быть ≤ 2.5 мкм.
- 2. Изделие или образец при проведении испытаний не должны смещаться или прогибаться.

- 3. После проведения испытаний на обратной стороне образца не должно быть визуальных следов деформации.
- 1. Толщину образца и величину общей нагрузки *Р* выбирают в инисимости от ожидаемой твердости по табл. 1.10 и табл. 1.11.

Таблица 1.11 Поличина общей нагрузки P при определении твердости по Супер-Роквеллу по шкале ${\bf T}$

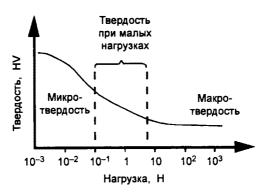
Голщина образца, мм, не менее	Твердость по Роквеллу									
	HRN15	HRB	HRN30	HRB	HRN45	HRB				
0,25	91	93	-		_					
0,30	86	78	_	_	_	_				
0,36	81	62	79	95	_	-				
0,41	75	44	73	84	71	99				
0,46	68	24	64	71	62	90				
0,51	_	_	55	58	53	80				
0,56	_	_	45	43	43	70				
0,61	_		34	28	31	58				
0,66	_	-	_	_	18	45				
0,71	_	_	_	-	4	32				

Примечание. Приведенные величины твердости служат для выбора соответствующей нагрузки, а не для перевода в другие величины твердости или их сопоставления.

Особенности проведения испытаний

Испытания обычно проводят при температурах от 10 до 35 °С и плавном возрастании нагрузки до необходимого значения. Если имеются разногласия в определении твердости, то в зоне умеренного климата испытания проводят в интервале 18–22 °С. Величина предварительной нагрузки P_0 составляет 29,4±0,59 H (3±0,06 кгс). Продолжительность времени выдержки под общей нагрузкой P (табл. 1.10 и 1.11) составляет 2–8 с. Расстояние от центра отпечатка до края образца или до центра соседнего отпечатка обычно должно составлять \geq 2,5 мм. Столик (подставка) для образцов должен

быть выполнен из закаленной стали с твердостью более 60 HRC. При использовании шкалы Т допускается проводить испытания при значениях толщины и твердости, меньших указанных табл. 1.10 и табл. 1.11. Однако в этом случае в столике (подставке) в месте, соответствующем центру приложения нагрузки, должно быть вмонтировано алмазное зерно диаметром 4,5 мм, и это должно быть обязательно отражено в протоколе испытаний.


Обозначения

Число твердости по Супер-Роквеллу обозначается цифрами, характеризующими величину твердости со стоящим после них символом HRN или HRT (в зависимости от используемой шкалы измерения) и значением приложенной общей нагрузки P, например 71 HRN 15: твердость 71 по шкале N при P=15 кгс (147 H) или 45 HRT 30: твердость 45 по шкале T при P=30 кгс (294 H).

1.8. Соотношение значений твердости, полученных различными статическими методами, между собой и с механическими свойствами материалов

При сопоставлении значений твердости, полученных различными методами, между собой и с механическими свойствами материалов необходимо всегда помнить, что приводимые в литературных источниках таблицы или зависимости для такого сопоставительного перевода являются чисто эмпирическими. Физического смысла такой перевод лишен, так как при вдавливании различных по форме и размерам инденторов и с разной нагрузкой твердость определяется при совершенно различных напряженных состояниях материала. По литературным данным [9] даже при одном и том же способе измерения твердости ее значение сильно зависит от нагрузки: при меньших нагрузках значения твердости получаются более высокими (см. рис. 1.5).

То же самое справедливо и для сопоставления значений твердости с механическими свойствами материала, определяемыми при растяжении или других формах нагружения. Кроме того, традиционные механические характеристики материала (предел пропорциональности, предел текучести, предел прочности, относительное

Гис. 1.5. Зависимость твердости по Виккерсу HV от испытательной нагрузки [9]

удлинение и т. д.) являются интегральными характеристиками всего испытуемого образца материала и зависят от формы образца и условий испытаний [19]. Они, в частности, отражают различие в протекании процессов структурной самоорганизации во внутренних и приповерхностных слоях материала, поэтому на них оказывают сильное влияние состояние и структура поверхностных слоев материала, в том числе поверхностная обработка, наличие покрытий, топографическая структура поверхности и т. д. Например, в зависимости от состояния поверхности предел текучести для одного и того же материала может различаться на 50 % и более [19]. Значения же твердости, напротив, отражают свойства материала при локальном нагружении вдавливанием индентора. Естественно, что интегральные свойства материала в принципе нельзя полностью вывести из локальных.

В связи с вышеуказанным пользоваться переводом чисел твердости, полученных разными методами, следует очень осторожно и преимущественно для предварительной оценки относительного изменения свойств материала. Тем не менее, в ряде конкретных случаев и для одного и того же или очень близких по свойствам и структуре материалов такой перевод может оказаться достаточно точным и может служить основой оперативных методов неразрушающего контроля. Ориентировочный перевод значений твердости, определяемых различными методами, для углеродистых конструкционных сталей приведен в табл. 1.12 (по данным [1]), а примерное соотношение между значениями твердости по Бринеллю и пределом прочности при растяжении для некоторых классов сталей — в табл. 1.11 (по данным [1]). В работах [7, 8] приведены фор-

мулы примерной оценки значений предела текучести $\sigma_{0.2}$ и предела прочности $\sigma_{\rm s}$ (МПа) по величине НВ для углеродистых и перлитных низколегированных сталей: для НВ ≥ 1500 МПа предложено $\sigma_{0.2}=0,367$ НВ -240, $\sigma_{\rm s}=0,345$ НВ; для НВ <1500 МПа $-\sigma_{0.2}=0,2$ НВ и $\sigma_{\rm s}=0,35$ НВ. В работах [7, 8] для аустенитных сталей при НВ = 1400-3400 МПа приведена формула: $\sigma_{\rm s}=0,3$ НВ +140. Для трубных сталей имеются также сведения [8] о связи твердости НВ с коэффициентом интенсивности напряжений $-K_{\rm 1c}^{300}=0$ 0 н $-K_{\rm 1c}^{300}=0$ 1 н $-K_{\rm 1c}^{300}=0$ 2 н $-K_{\rm 1c}^{300}=0$ 3 н $-K_{\rm 1c$

Таблица 1.12 Ориентировочный перевод значений твердости, определяемых различными методами (для стали) [1]

Твердость по Бринел- лю НВ при испытании шариком			Твердость по Роквеллу			ль по зу НV	Твердость по Бринел- лю НВ при испытании шариком		Твердость по Роквеллу		
Твердость Виккерсу	стандартным стальным	из карбида вольфрама	HRC	HRA	HRB	Твердость по Виккерсу НV	стандартным стальным	из карбида вольфрама	нкс	HRA	HRB
1234	780	872	72	84	_	228	229	-	20	61	100
1116	745	840	70	83	-	222	223	-	19	60	99
1022	712	812	68	82	-	217	217	-	17	60	98
941	682	794	66	81	-	213	212	-	15	59	97
868	673	760	64)	80	-	208	207	-	14	59	95
804	627	724	62	79	-	201	201		13	58	94
746	601	682	60	78	-	197	197	-	12	58	93
694	578	646	58	78	-	192	192	-	11	57	92
650	555	614	56	77	-	186	187	-	9	57	92
606	534	578	54	76	-	183	183	-	8	56	90
687	514	555	52	75	-	178	179		7	56	90

См. продолжение

Продолжение табл. 1.12

BHINEPS NO	по Бр лю Н испы	дость оинел- В при тании иком	Твердость по Роквеллу			сть по	Твердость по Бринел- лю НВ при испытании шариком		Твердость по Роквеллу		
	стандартным стальным	из карбида вольфрама	нкс	HRA	HRB	Твердость по Виккерсу HV	стандартным стальным	из карбида вольфрама	нкс	HRA	HRB
151	495	525	50	74	_	174	174	-	6	55	89
534	477	514	49	74	_	171	170	-	4	55	88
502	461	477	48	73	-	166	167	-	3	54	87
474	444	460	46	73	-	162	163	-	2	53	86
460	429	432	45	72	-	159	159	-	1	53	85
435	415	418	43	72	-	155	156	-	-	-	84
423	401	401	42	71	-	152	152	-	-	_	83
401	388	388	41	71	-	149	149	-	-	-	82
190	375	375	40	70	_	148	146	-	_	-	81
186	363	364	39	70	-	143	143	-	-	_	80
361	352	352	38	69	-	140	140	-	-	<u> </u>	79
144	341	341	36	68	-	138	137		-	-	76
334	331	330	35	67	-	134	134	-	_	-	77
320	321	321	33	67	_	131	131	-	-	-	76
311	311	311	32	66	_	129	128	-	-	_	75
303	302	302	31	66	-	127	126	-	-	-	74
292	293	_	30	65	-	123	123	-	_	-	73
285	285	-	29	65	-	121	121	-	-	_	72
278	277	-	28	64	_	118	118	-	_	-	71
270	269	_	27	64	_	116	116	-	_	-	70
261	262	_	26	63	-	115	114	-	_	-	66
255	255	_	25	63	-	113	111	-	_	-	67
249	248	_	24	62	-	110	110	-	-	-	66
240	241	-	23	62	102	109	109	-	-	-	66
235	235	- 1	21	61	101	108	107	-	_	-	64

Таблица 1.13 Примерное соотношение между значениями твердос ги по Бринеллю и пределом прочности при растяжении $\sigma_{\rm B}$, кгс/мм², для некоторых классов сталей [1]

В		Сталь	m			Сталь					
Твердость НВ	углеродистая	хромансиль	хромонике- левая	хромомолиб- деновая	хромистая	Твердость НВ	углеродистая	хромансиль	хромонике- левая	хромомолиб- деновая	хромистая
601	216	_	204	198	_	223	80	76	76	74	_
578	207	206	195	187	_	217	78	74	74	72	76
555	202	202	190	185	-	212	76	70	72	70	_
534	192	192	182	176	187	207	74,5	68	70,5	68	72,5
514	185	185	175	170	180	201	72	66	68	66	- 1
495	180	180	170	165	175	197	71	65	67	65	69
488,5	170	170	160,5	155,5	165	192	69	63	65	63	- 1
461	165	166	156	152,1	-	187	67,5	62,0	63,5	62	65
444	160	160	151	146	156	183	66	60	62	60	-
429	154	154	146	141	150	179,5	64	59	61	59	-
415	149	149	141	137	145	174	62,5	57	59	57	61
401	145	_	137,5	-	141	170	61	56	58	56	59,5
388	139,5	140	132	128	136	167	60	55	57	55	58,5
375	135	135	127	124	-	163	59	54	55	54	-
363	131	131,0	123,5	120	127	159	57	52	54	52	- 1
352	127	123	120	116	-	156	56	52	53	52	54,5
341	122,5	119	116	112	119	152	55	50	52	50	-
331	119	115	112	109	-	149	54	49	51	49	-
321	115,5	112	109	106	112	146	53	48	50	48	-
311	112	109	106	102	-	143	51	47	48,5	47	49,5
302	108,5	106	102,5	100	105,5	140	50	46	47,5	46	49
293	105	102	100	97	-	137	49	45	47	45	-
285	102,5	100	97	94	100	134	48	44	46	44	-
277	100	97	94	91	-	131	47	43	44,5	43	4
269	97,5	94	91,5	89	94	128	46,0	42	44	42	-
262	94	89	89	86	-	126	45,0	42	43	42	-
255	92	87	86,5	84	89	121	43,5	40	41	40,0	42,5
248	89	84	84	82	-	118	43	39	40	39	-
241	87	82	82	80	84,5	116	42	38	39	38	-
235	85	80	80	78	-	112,5	40	37	38	37	-
229	82,5	78	77,5	76	80	109	39	36	37	36	

2. ДИНАМИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТВЕРДОСТИ

2.1. Измерение твердости методом ударного отпечатка

Сущность метода

Данный метод измерения твердости регламентирован ГОСТ 18661-73.

При определении твердости этим методом в поверхности контрольного бруска и испытуемого образца (изделия) ударным способом впедряется индентор (для сталей с твердостью \leq HV 850 — твердосплавный конический, а для сталей с твердостью \leq HV 350 — стальной шарик). Начальная скорость удара составляет 1—5 и 0,75—2 м/с, а энергия удара — 0,03—2,5 и 0,03—0,7 кгм соответственно для конического и шарового индентора. После снятия индентора измеряют диаметры полученных отпечатков индентора на поверхности испытуемого образца (изделия) $d_{\rm o}$ и на поверхности контрольного бруска $d_{\rm o}$. Схема проведения испытаний показана на рис. 2.1. Числа сравнительной твердости испытуемого образца (изделия) определяют по формулам, приведенным в табл. 2.1. Некоторые числа твердости HV_c и HB_c , вычисленные по указанным формулам, приведены в Приложении 6. В ряде литературных источников указывается, что по степени точности данный метод уступает статическим.

Индентор

Применяются два вида инденторов:

а) двусторонний конус из твердого сплава с образующими углами при вершинах $\phi = 136^{\circ} \pm 10$ и радиусом закругления вершин ≤ 2 мм. Поверхность конуса на протяжении 0,3 мм от вершины

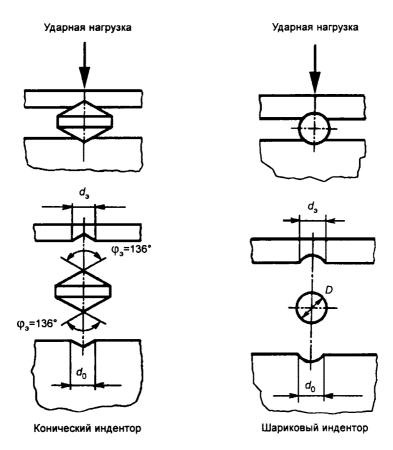


Рис. 2.1. Схема проведения испытаний при определении твердости методом ударного отпечатка

должна быть тщательно отполирована и не иметь дефектов, визуально различимых при 30-кратном увеличении (при статических испытаниях определенная с помощью такого конуса твердость HK_{136} равна твердости по Виккерсу HV, измеренной посредством четырехгранной пирамиды с углами между противоположными гранями 136°);

б) шарик из термообработанной стали с твердостью не менее HV 850 и диаметром D=5 или 10 мм. Поверхность шарика должна иметь шероховатость $Ra \leq 0,040$ мкм и не иметь дефектов, визуально различимых при 5-кратном увеличении.

Таблица 2.1 Формулы для определения чисел сравнительной твердости испытуемого образца (изделия) при испытаниях

по методу ударного отпечатка

Индентор	Сравнительная твердость	Формула $HV_c = HV_3 \times \left(\frac{d_3}{d_0}\right)^2 \times \frac{\eta_{10}}{\eta_{10}}$			
Конус	По Виккерсу				
Шарик	По Бринеллю	$HB_{c} = HB_{s} \times \frac{D - \sqrt{D^{2} - d^{2}_{s}}}{D - \sqrt{D^{2} - d^{2}_{o}}} \times \frac{\eta_{us}}{\eta_{uo}}$			

Примечание. HV₃ и HB₃ – средние значения твердости контрольного (эталонного) оруска соответственно по Виккерсу (ГОСТ 2999–75) и по Бринеллю (ГОСТ 9012–59); d_1 и d_0 – диаметры ударных отпечатков, соответственно на поверхности контрольного бруска и на поверхности испытуемого образца (изделия); $\eta_{\text{кг}}$, $\eta_{\text{ко}}$ и $\eta_{\text{шо}}$, $\eta_{\text{но}}$ — динамические коэффициенты твердости материалов стального оруска и испытуемого образца (изделия) соответственно при ударном внедрении конуса со скоростью 1–5 м/с и шарика со скоростью 0,75–2 м/с.

Требования, предъявляемые к образцам для испытаний

- 1. Шероховатость образцов (изделий) в месте испытания должна быть $Ra \le 1,25$ мкм при испытании коническим индентором и $Rz \le 40$ мкм при испытании шариковым индентором.
- 2. В качестве контрольных брусков используют: при конусном инденторе — стальные бруски размером 4,5х4,5 мм с любой твердостью в интервале HV 100—320; при шариковом инденторе — стальные бруски размером 10х10 мм с любой твердостью в интервале HB 120—200.
- 3. Шероховатость контрольных брусков в месте испытания должна быть $Ra \le 0,32$ мкм при испытании коническим индентором и $Rz \le 10$ мкм при испытании шариковым индентором.
- 4. Поверхность должна быть свободна от окалины и других посторонних веществ.
- 5. Минимальная толщина изделия (образца) должна быть не менее 10-кратной глубины отпечатка.
- 6. Изделие или образец не должны смещаться при проведении испытаний.

Особенности проведения испытаний

Испытания проводят при температурах от -10 до +50 °C с использованием переносных твердомеров ударного действия. Кратковременная динамическая нагрузка создается ударным механизмом. Отпечатки на образце (изделии) и контрольном бруске измеряют с помощью оптического микроскопа с погрешностью на одно деление шкалы: для отпечатка конического индентора — не более $\pm 0,01$ мм и для отпечатка шарикового индентора — не более $\pm 0,05$ мм. Диаметр определяют как среднее арифметическое значение двух измерений во взаимно перпендикулярных направлениях. Минимальная толщина образца или слоя должна быть больше диаметра отпечатка в 1,2 раза. Расстояние между центром отпечатка и краем соседнего отпечатка или краем образца (изделия) и контрольного бруска должно быть не менее 2,5d отпечатка.

Обозначения

Число твердости, определенное при испытании методом ударного отпечатка обозначается цифрами, характеризующими величину твердости, со стоящим перед ними символом: при испытании коническим индентором — HV_c и при испытании шариковым индентором — HB_c (например, HV_c 760 или HB_c 330).

2.2. Твердость по Шору (метод упругого отскока бойка)

Сущность метода

Данный метод измерения твердости регламентирован ГОСТ 23273-78.

При измерении твердости по Шору боек определенной массы с алмазным индентором на конце свободно падает по вертикали с определенной высоты $h_2 = 19.0 \pm 0.5$ мм на испытуемую поверхность материала. За характеристику твердости принимается высота отскока бойка h, измеряемая в условных единицах (см. рис. 2.2). Масса бойка вместе с алмазным индентором составляет $36.0_{-0.5}$ г. За 100 единиц твердости по Шору принимается определенная величина отскока бойка $h_{100} = 13.6 \pm 0.5$ мм. Такая твердость соот-

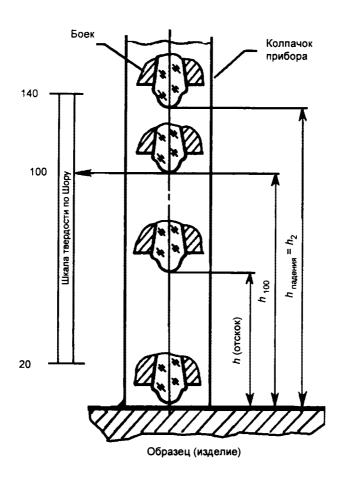


Рис. 2.2. Схема испытания твердости по Шору

ветствует максимальной твердости стабилизированной после закалки на мартенсит углеродистой эвтектоидной инструментальной стали по ГОСТ 1435–74. Согласно стандарту твердость по Шору измеряют в диапазоне от 20 до 140 единиц (HSD). Число твердости материала определяется как среднее арифметическое результатов не менее 5 измерений и при условии, что эти результаты отличаются друг от друга не более чем на 5 единиц HSD (в противном случае испытание повторяется с удвоенным числом отпечатков).

Индентор

В качестве индентора применяют алмазный наконечник в виде тела вращения с радиусом закругления рабочего конца $R=1,0\pm \pm 0,1$ мм. Размеры и форма наконечника показаны на рис. 2.3.

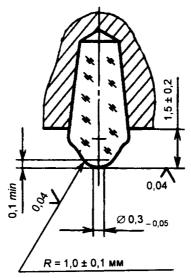


Рис. 2.3. Размеры и форма наконечника бойка при испытании твердости по Шору

Требования, предъявляемые к образцам для испытаний

- 1. В качестве тестируемых материалов для образцов можно использовать металлы и сплавы и изделия из них.
- 2. При использовании твердомеров, устанавливаемых непосредственно на образцы (изделия), масса последних должна быты не менее 5 кг. При установке образцов (изделий) на столик твердомера масса последних должна быть не менее 0,1 кг, а толщина не менее 10 мм.
- 3. Шероховатость образцов (изделий) в месте испытания должна быть $Ra \le 2,5$ мкм.
- 4. Изделие или образец не должны смещаться при проведении испытаний.
- 5. Форма образцов (изделий) в месте испытания может быть как плоской, так и цилиндрической.

Особенности проведения испытаний

Испытания проводят при температурах от 10 до 35 °C с испольованием твердомеров, имеющих цену деления шкалы не более 1 единицы твердости по Шору (HSD). Прибор и образцы (изделия) устанавливают друг относительно друга строго под углом 90° с использованием уровней с плотным прижатием колпачка прибора к испытуемой поверхности. Скорость проведения испытаний должна составлять не более 5 ударов в 10 с. Расстояние между двумя соседними отпечатками или от края образца (изделия) — не менее 2 мм. Не допускается более одного удара бойка в одну и ту же точку испытуемой поверхности.

Обозначения

Число твердости по Шору обозначается цифрами, характеризующими величину твердости, со стоящим после них символом HSD, например 95 HSD. Число твердости указывается с округлением до пелого числа.

Величина твердости по Шору не имеет точного перевода на другие величины твердостей или на прочностные свойства, получаемые при механических испытаниях.

2.3. Проба на твердость падающим индентором (твердость при ударе)

При этом методе твердость определяют по отпечатку индентора, вдавленного в поверхность образца (изделия) под действием ударной нагрузки H_y , величина которой задается массой падающего тела и высотой падения. В качестве индентора применяют шар или конус [4–6]. Первый используют наиболее часто. За величину твердости принимают отношение работы A, затрачиваемой на внедрение индентора, к вытесненному объему материала V:

$$H_{v} = A/V. (2.1)$$

Для падающего шара диаметра D величина твердости будет выражаться формулой:

По литературным данным [6] величина внедрения индентора *А* может быть оценена с помощью выражения:

$$A = (a_0 D^3 / 2(n+2)) x (d/D)^{n-2}, (2.3)$$

где a_0 и n — константы испытуемого материала, зависящие от скорости нагружения (для сталей обычно $n\approx 2$). Имеются варианты этого метода, когда ударная нагрузка задается пружинным устройством [7, 8].

2.4. Проба на твердость царапанием

Существующие методы испытания твердости царапанием

При измерении твердости методом царапания в поверхность образца (изделия) под действием нормально приложенной постоянной нагрузки P вдавливается конусный индентор, и кроме этого производится одновременная подача острия индентора параллельно тестируемой поверхности материала. В результате на поверхности образца (изделия) остается царапина, глубина и ширина которой зависит от сопротивления металла царапанию. Последнее взаимосвязано не только с твердостью, но и с истинным сопротивлением металла разрыву (особенно для пластичных металлов) [5, 7–11]. Стандартизированного обозначения твердости, определенной методом царапания, нет. В работах [6, 10] предлагается эту величину обозначать $H_{\rm u}$.

В качестве индентора наиболее часто используется алмазный конус с углом у вершины 90° или алмазный конус с углом 120° (аналогичен применяемому при определении твердости по Роквеллу), но иногда применяют также алмазную сферу радиусом 1,25 мм или резцы из твердого сплава ВК8 [7]. Рекомендуемая скорость перемещения индентора при царапании составляет 100...1500 мм/мин, а величина шероховатости поверхности испытуемого материала $Ra \le 0,63$ [7].

Известно несколько вариантов метода, в том числе:

Вариант 1. Мерой твердости $H_{\rm u}$ принимают осевую нагрузку на индентор P в [гс], при которой получается царапина заданной ширины b=10 мкм.

Вариант 2. Мерой твердости H_u принимают величину обратную ширине царапины b в [мм] при заданной постоянной нагрузке на конусный индентор.

Наибольшее распространение как более оперативный получил иприант 2. При его использовании можно также оценивать величину истинного сопротивления металла разрыву S_{κ} при растяжении. Предлагаются, в частности, две формулы [6]:

с)ля 90°-конусного индентора

$$S_{k} = 4,02 (H_{H} - 22,5), \text{ krc/mm}^{2},$$
 (2.4)

где $H_u = 1/b_{50}$, b_{50} – ширина царапины при нагрузке P = 50 г;

для 120°-конусного индентора

$$S_{\kappa} = 86/b - 136, \, \kappa \Gamma c / M M^2,$$
 (2.5)

пле b — ширина царапины, мм, измеряемая при увеличении х100 при P = 8 кг.

Более точные результаты получаются при измерении ширины парапины на уровне тестируемой поверхности, а не на уровне валика, образующегося возле царапины.

В [10] предложена универсальная формула для определения пвердости при царапании алмазной четырехгранной пирамидой (136°):

$$H_{\rm u} = 4P/b^2, \, \kappa \Gamma c/MM^2 \,, \tag{2.6}$$

где P – вертикальная нагрузка, кг; b – ширина царапины.

Формула действительна для случая ориентировки пирамиды ребром вперед (доминирует пластическое выдавливание материала) и гранью вперед (преобладает диспергирование материала вследствие хрупкого разрушения).

Метод испытания материалов царапанием с регистрацией диаграмм деформирования получил название *склерометрии* [12–14]. Суть этого метода состоит в следующем: в испытуемый материал предварительно заглубляют индентор на заданную постоянную глубину, а затем перемещают вдоль поверхности. При этом непрерывно регистрируют диаграмму деформирования в координатах «сила царапания — длина царапины». Сила царапания включает усилия деформации и трения, которые можно при необходимости численно разделить друг от друга.

В России выпускают автоматизированные приборы-склерометры в МЭИ [12]. Так, прибор МЭИ-С2 с массой 7 кг регистрирует диаграмму царапания и состоит из блоков нагружения и горизон-

тального перемещения индентора. Прибор наносит царапины глубиной до 30 мкм максимальным усилием царапания 100 Н [12].

Измерение микротвердости царапанием алмазными наконечниками

Данный вариант метода регламентирован ГОСТ 213118–75 и измеряет микротвердость царапанием поверхностного слоя (нанесением канавки) четырехгранной или трехгранной алмазной пирамидой под действием нормальной нагрузки 0,049–1,962 Н (0,005–0,2 кгс). Данным методом можно измерять твердость любых материалов кроме алмаза и его производных или материалов, не обеспечивающих четкие контуры наносимых канавок при температурах окружающей среды 20±5 °C.

Испытание на микротвердость царапанием проводится следующим образом:

- В материал с плавным возрастанием нагрузки до заданной величины внедряют индентор.
- Нагрузка сохраняется на постоянном уровне до окончания процесса царапания.
- Канавку длиной не менее 0,25 мм наносят равномерным непрерывным вращением рукоятки микрометрического винта предметного столика примерно на пол-оборота за 10–12 с. Царапанье осуществляют ребром четырехгранной пирамиды и ребром или гранью трехгранной пирамиды.

После снятия нагрузки измеряют ширину канавки b, мм.

Значения микротвердости царапанием при царапании ребром рассчитывают по формулам:

для четырехгранной пирамиды

$$H_{\perp P} = 3,708F/b^2$$
 (для F в кгс) или $H_{\square P} = 0,3782F/b^2$ (для F в H); (2.7)

для трехгранной пирамиды

$$H_{\nabla P} = 3,138F/b^2$$
 (для F в кгс) или $H_{\nabla P} = 0,3201F/b^2$ (для F в H); (2.8)

где F — нормальная нагрузка в H или кгс; b — ширина канавки в мм. Наплывы по бокам царапины при измерении ее ширины не учитывают.

Применяют следующие величины нагрузок F: 0,049; 0,098; 0,196; 0,490; 0,981; 1,962 H (0,005; 0,01; 0,02; 0,05; 0,1; 0,2 кгс).

Число микротвердости при испытании по ГОСТ 213118-75 вы-

- 1. Непосредственно числом микротвердости при царапании ребрюм, полученным из формул (2.7 и 2.8) $H_{\square P}$, $H_{\nabla P}$ (H/мм² или міс/мм²). При этом микротвердости царапанием обозначают $H_{\square P}$ или $\Pi_{\nabla P}$ с указанием величины нагрузки в кгс (например, $H_{\square P0,2}$ микротвердость, определенная царапанием ребром четырехгранной пиримиды при нагрузке F=0,2 кгс (1,962 H)).
- 2. В так называемых числах микротвердости по Мартенсу $H_{\square M}$, H_{NM} , представляющих значение нагрузки F (H или кгс) для получения канавки заданной ширины b=5,10 или 20 мкм. В последнем случае указывают способ царапания (ребром или гранью). При ном микротвердости царапанием обозначают $H_{\square M}$ или H_{NM} с указываем ширины канавки b в мкм (например, $H_{\square M10}$ микротвердость по Мартенсу при царапании ребром четырехгранной пирамиды для ширины канавки b=10 мкм). Если царапание проводинось гранью, то это обязательно указывают после обозначения.

Основные требования к образцам и приборам

Используются приборы с алмазными инденторами, соответстмующем требованиям к твердомерам и инденторам для измерения микротвердости или твердости по Виккерсу (ГОСТ 10717–75, 1377–74, 213118–75), например ТЗ, ПМТ-3 и ПМТ-5.

Шероховатость поверхности образцов должна быть не ниже Ra=0.32 мкм.

Поверхность испытуемого материала должна быть установлена строго перпендикулярно к оси индентора, а изделие не должно во время царапания смещаться и деформироваться.

Минимальная толщина испытуемого материала должна быть \cdot 10 глубин канавки (царапины), расстояние между царапиной и краем поверхности должно быть не меньше 2b, а между двумя царапинами -3b.

3. КИНЕТИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ТВЕРДОСТИ

Метод кинетической твердости основан на непрерывной регистрации параметров процесса вдавливания индентора. При испытаниях на кинетическую твердость можно довольно точно оценивать прочностные и пластические свойства материалов, модуль упругости, степень пористости, прочность сцепления покрытия с основой [10–17]. По сравнению со статическими и динамическими методами измерения твердости имеются следующие основные преимущества: возможность определения твердости при малых и сверхмалых нагрузках для исследования свойств тонких поверхностных слоев, пленок, покрытий толщиной ≥ 1 мкм, микрочастиц и микропрослоек; выявлять кинетические и структурные закономерности микропластической деформации на участке активного нагружения; регистрировать скорость внедрения индентора в материал; оценивать упругие свойства материала по относительному упругому восстановлению глубины отпечатка; испытывать материалы с плохой отражающей способностью и сильными изменениями размеров отпечатка после снятия нагрузки (резины, полимеры, полупроводники, карбиды, нитриды); оценивать анизотропию [10, 11].

Следует отметить, что напряженно-деформированное состояние при испытании на растяжение и при вдавливании индентора (зона деформации под индентором — неравномерное гидростатическое сжатие) сильно отличаются и строго не могут сравниваться. Однако основное преимущество метода состоит в том, что сделан переход от регистрации лишь конечного результата испытания к изучению всей кинетики процесса упругопластического деформирования вдавливанием индентора. В направлении использования метода кинетического индентирования для безобразцовой неразрушающей оценки механических свойств материалов плодотворно

работают специалисты различных школ твердости. В России — по школа М.П. Марковца (В.М. Матюнин, В.Г. Борисов, М.Б. Бакиров, В.М. Шабанов и др.), школа института металлургии и митериаловедения РАН (С.И. Булычев, В.П. Алехин), в США — Окриджекая национальная лаборатория (F.M. Haggag, R.K. Nanstad), в также специалисты из Англии, Германии, Японии и Швейцарии.

Основы метода определения механических свойств материанов по диаграмме вдавливания заложены Д. Тейбором [18], который впервые показал возможность получения не только значения пердости рассматриваемого материала, а также кривой деформирования при вдавливании шарового индентора. На работах Д. Тейпора созданы методики определения механических свойств материала по результатам испытаний на вдавливание, причем, их можпо разделить на два сложившихся направления.

Первое направление связано с измерением геометрических параметров отпечатков, восстановленных после снятия нагрузки. Оно подразумевает проведение серии последовательных вдавливаний с регистрацией прилагаемого к индентору максимального усилия и поперечного размера лунки на каждом шаге вдавливания [7, 18]. Это паправление наиболее близкое к методу Бринелля. Оно легче поддастся стандартизации, но в то же время процедура многократной напрузки — разгрузки весьма трудоемка. Второе направление основано на непрерывной регистрации нагрузки на индентор и глубины вдавливания индентора [15, 16, 19, 20]. Преимущества направления — простота осуществления, значительная экономия времени, возможность пытоматизации. Перечисленные достоинства второго направления особенно важны при решении задачи проведения натурного контроля состояния металла, например на атомных электростанциях (АЭС).

Разумеется, оба способа не прямые методы определения механических свойств. Для определения механических свойств по парамеграм диаграммы вдавливания требуются многочисленные корреляционные зависимости, которые хотя и будут работать лучше, чем корреляции по твердости, все же отличаются для разных материалов.

Сущность метода

Безобразцовое определение механических свойств методом кинетической твердости регламентируется инструкцией РД ЭО 0027–94 (согласована с Госатомнадзором РФ, утверждена концерном Рос-

энергоатом и введена в эксплуатацию на АЭС РФ) и Европейским стандартом VDI/VDE 2616.

Метод кинетической твердости [16—20] заключается в непрерывной регистрации процесса вдавливания индентора в координатах: «нагрузка на индентор P — глубина внедрения индентора h в поверхность исследуемого материала» (рис. 3.1). Основное преимущество метода состоит в том, что сделан переход от регистрации лишь конечного результата испытания к изучению всей кинетики процесса упругопластического деформирования вдавливанием индентора.

Для макроиспытаний методом кинетической твердости наиболее перспективным при изучении процессов локального деформирования является использование шарового индентора [16, 22–27]. Исследование напряженно-деформированного состояния материала в процессе индентирования требует построения кривой твердости из первичной диаграммы вдавливания. При построении кривых твердости в качестве среднего текущего напряжения выбирают твердость по площади отпечатка (твердость по Бринеллю) или твердость по площади его проекции (твердость по Майеру). Твердости по Майеру НМ, которая представляет среднее давление на

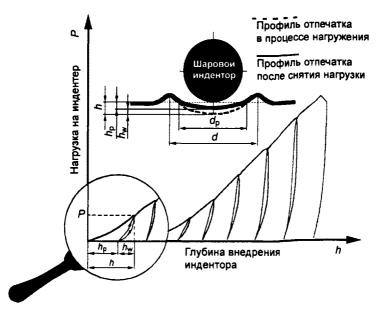


Рис. 3.1. Диаграмма вдавливания шарового индентора при измерении твердости кинетическим методом

поверхность отпечатка, обычно отдают предпочтение с теоретическоїї точки зрения [16, 23–27]. На кривых кинетической твердости откладывают степень деформации при вдавливании.

В настоящее время разработана рассчетно-экспериментальная методика [16, 19, 20], позволяющая получать из кинетической диаграммы вдавливания шарового индентора стандартную диаграмму одноосного растяжения с последующим определением механических характеристик материала. Метод получения кривой деформирования материала по результатам испытаний на непрерывное локальное деформирование заключается в следующем. Численным решением метода конечных элементов осесимметричной упругопластической контактной задачи с переменной границей контакта паходится такой конкретный вид связи между интенсивностями напряжений S и деформаций ε , чтобы решение удовлетворяло экспериментальной диаграмме вдавливания P - h (рис. 3.2). Искомое соотношение связи между напряжениями и деформацией, в отличие от постановки прямой задачи механики деформируемого твердого тела, заранее не задается. Это соотношение определяется методом последовательных приближений путем удовлетворения граничного условия, найденного из экспериментальной нагрузки на индентор при заданной глубине вдавливания по следующей схеме:

- 1. Для инициализации начала счета конечно-элементной задачи вадается начальное уравнение связи между напряжениями и деформациями для первого шага нагружения. Для первичной аппроксимации кривой одноосного деформирования используется феноменологический подход, основанный на выделении и последующем сопоставлении сходственных коэффициентов в формулах, описывающих степенные зависимости интенсивности напряжений от интенсивности деформаций в процессах растяжения и вдавливания на базе предварительно полученного и обработанного массива экспериментальных данных для определенного класса сталей.
- 2. Для выбранного уравнения решается методом конечных элементов задача вдавливания шарового индентора в упругопластическую упрочняющуюся среду на расчетный шаг нагружения. По расчетным значениям глубины вдавливания и нагрузки на экспериментальной диаграмме находят соотношения между расчетной и экспериментальной нагрузками. В качестве расчетного параметра вместо нагрузки на индентор может использоваться глубина вдавливания при заданной нагрузке.

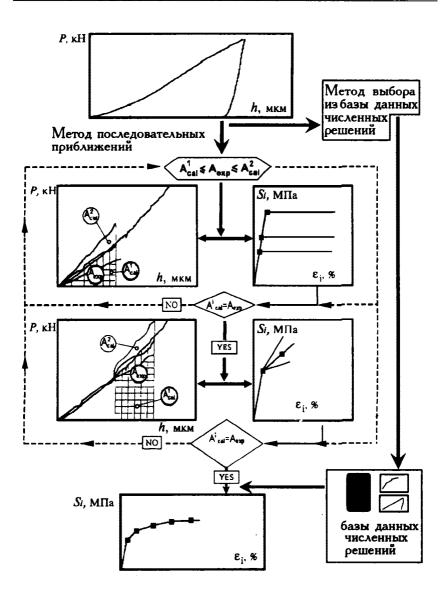


Рис. 3.2. Блок-схема восстановления диаграммы одноосного растяжения по диаграмме вдавливания шарового индентора при измерении твердости кинетическим методом

3. Если это соотношение не удовлетворяет заранее выбранному приближению, то выбранные аппроксимационные уравнения связи между напряжениями и деформациями (см. п. 1) меняются и производить расчет следует по п. 2. В противном случае решение задачи для данной ступени нагружения завершается. Расчеты продолжаются до тех пор, пока условие схождения эксперименняльных и расчетных значений нагрузки процесса вдавливания индентора не будет выполнено с некоторой допустимой погрешноснью для всего диапазона нагружения.

Определение зависимости между напряжениями и деформациями в материалах по представленному алгоритму позволяет идентифицировать механические характеристики как в упругой области, так и за пределами области упругости, с учетом реальном упрочнения материала в процессе деформации, не прибегая к построению корреляционных зависимостей.

Рассмотренный выше алгоритм требует значительных затрат машинного времени. Для ускорения процесса нахождения решения предварительно насчитывается база решений, из которой набирают значения параметров кривой растяжения, покрывающие всю область изменения параметров для выбранного класса материалов. Выбор наилучшего схождения кривых вдавливания производится поле, полученном экстраполяцией значений, полученных в узлах расчетной сетки.

Процесс формирования базы данных решений контактной задачи индентирования шара выглядит следующим образом:

- 1. Задается вид параметризации диаграммы одноосного растяжения и ограничения на область изменения параметров кривых. Вид этих ограничений может варьироваться в зависимости от выбранного материала.
- 2. Непрерывная область изменения параметров аппроксимируется массивом реперных точек.
- 3. Для каждого набора параметров из заданного массива реперных точек производится численное моделирование процесса индентирования, результатом которого является расчетная диаграмма вдавливания.
- 4. После проведения сглаживания расчетной кривой вдавливания вычисляются значения силы и деформации в ключевых точках и заносятся в базу расчетов.

После того как база расчетов наработана, можно переходить к решению задачи восстановления диаграммы растяжения по экспе-

риментальной диаграмме вдавливания. Производится это в следующей последовательности:

- 1. Сглаживание экспериментальной кривой.
- 2. Вычисление значения сглаженной кривой в ключевых точках.
- 3. Поиск параметров расчетной кривой из базы, для которых мера близости экспериментальной и расчетной кривых достигает минимума.

Восстановление кривой одноосного растяжения по диаграмме вдавливания можно проиллюстрировать для деталей корпусов ядерных реакторов, изготовленных из сталей марок 15Х2МФА и 10ХМФТ после различных режимов термообработки и облучения (рис. 3.3). Опыт использования описанной выше процедуры восстановления диаграммы растяжения по диаграмме вдавливания для корпусных и аустенитных сталей показал, что расхождение с экспериментом при его использовании не превосходит 15%.

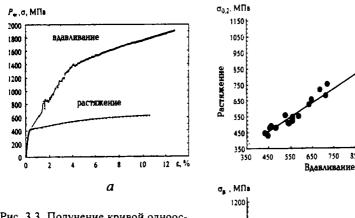


Рис. 3.3. Получение кривой одноосного растяжения по диаграмме вдавливания индентора при измерении твердости кинетическим методом: экспериментальные кривые деформирования при растяжении и вдавливании шарового индентора для стали 15Х2МФА, термообработанный по режиму закалка + отпуск 750 °C (a);

1100 1000 800 700 600 500 600 700 600 900 1000 g_B . МПа Вдавливание

350

950 G_{C 2} M∏a

корреляции значений $\sigma_{0,2}$ и $\sigma_{\rm b}$, полученных при одноосном растяжении и восстановлением диаграммы растяжения по диаграмме вдавливания шарового индентора для сталей $15X2M\Phi A$ и $10XM\Phi T$ (6) Главное достоинство численного подхода заключается в возможности получения близкой к реальной картины распределения инпряжений и деформаций под индентором на разных стадиях упруполнастического вдавливания, что важно для изучения процессов покального деформирования различных материалов.

Обозначения и формула расчета

В нашей стране обозначение твердости, определяемой кинетическим методом, не стандартизовано. По Европейскому стандарту VDI/VDE 2616 (DIN 60359-1; E ISO 14577-1) такая твердость нашавается универсальной, и число твердости обозначается цифрами, характеризующими величину твердости со стоящим после ших символом HU (например, 360 HU) [21]. При этом в качестве шидентора используется в основном пирамида Виккерса. В процессе внедрения индентора непрерывно измеряется сила вдавливания P и соответствующая ей глубина внедрения h вершины шидентора. Универсальная твердость HU вычисляется по формуле $IIII = P/26,43h^2$ (H/мм²).

В работе [25] проведен анализ связи значений универсальной пвердости HU с твердостью по Виккерсу HV. Показано, что для конструкционных сталей атомных станций соотношение между HV и HU зависит только от нормальной упругой деформации по периметру отпечатка и высоты наплыва Δh , а глубина h на диаграмме индентирования не реагирует на контактный модуль упрупости испытуемого материала. С учетом этого получена поправка на пересчет показаний универсальной твердости в твердость по Виккерсу: HV = 1,102 HU.

Испытательные приборы

Мини-твердомер «Computest» (конструкции ВНИИАЭС) представляет собой переносное универсальное измерительное устройство для измерения методом кинетической твердости с последующим определением значений твердости по Бринеллю и по Виккерсу, а гакже предела прочности $\sigma_{\rm B}$, предела текучести $\sigma_{\rm 0,2}$; однородной пластической деформации A. Конструкция мини-твердомера обеспечивает возможность его использования, как в лабораторных,

так и в промышленных условиях для контроля оборудования и трубопроводов. На рис. 3.4 показана блок-схема мини-твердомера «Сотритеят». Процесс испытаний состоит из ручного нагружения с параллельной автоматической записью диаграммы вдавливания индентора и последующей обработкой полученных экспериментальных данных по специальной программе на IBM PC совместимом персональном компьютере в соответствии с методикой, приведенной в РД ЭО 0027-94 [19] и VD1/VDE 266 [21]. Мини-твердомер «Сотритеят» включает в себя ручное нагружающее устройство с максимальной нагрузкой 100 H, переносной автономный микропроцессорный блок для предварительной обработки и хранения информации и соединительный кабель к компьютеру типа PC для передачи экспериментальных данных через последовательный порт RS-232. Мини-твердомер оснащен следующими съемными инденторами: шаровым индентором диаметром 0,7 мм из твердос-

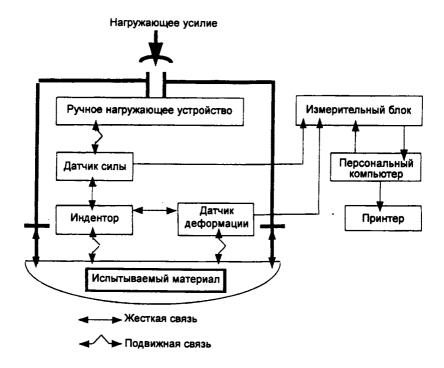


Рис. 3.4. Блок-схема мини-твердомера «Computest», реализующего метод кинетической твердости

шавного материала марки ВК8 и алмазным конусом с углом 90° (конус Людвика) и пирамидой Виккерса.

Приборный компьютеризированный комплекс для неразрушающего контроля механических свойств металла «ТЕСТ-5У» (конструкции ВНИИАЭС) позволяет наряду с измерением кинетической твердости и статической (НВ, НV, НКС) твердости производить оценку механических свойства материалов, в том числе труб и других деталей конструкций в работающем состоянии. Принципиальная схема его сходна с прибором «Computest», однако, дианазон нагрузок увеличен до 5000 Н. Комплекс оснащен как инденторами, аналогичными прибору «Сотритехт», так и стандартными пиденторами для определения твердости по Бринеллю, Роквеллу и Виккерсу.

Развитие метода кинетической микротвердости и компьютерных технологий послужило основой серийного выпуска фирмами «Фишер» (Германия) и «Шимадзу» (Япония) автоматизированных микротвердомеров с компьютерным управлением процесса испываний и обработки результатов в рамках международного стандарна VDI/VDE 2616 по определению универсальной твердости HU.

4. КОМБИНИРОВАНИЕ ИЗМЕРЕНИЯ ТВЕРДОСТИ С ДРУГИМИ ВИДАМИ ФИЗИЧЕСКИХ МЕТОДОВ ИССЛЕДОВАНИЯ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ

4.1. Комбинирование измерения твердости с методами акустической эмиссии и контролем магнитной проницаемости

Во ВНИИАЭС был разработан метод кинетической ферритометрии [16, 19, 20, 22]. Данный метод предназначен для оценки степени усталостного повреждения конструкций, выполненных из аустенитных сталей (например, корпуса реакторов и трубопроводы АЭС) после длительных сроков эксплуатации.

В процессе вдавливания индентора растет размер зоны распространения пластических деформаций от поверхности контакта в глубину металла изделия. Пластически деформированный металл в наклепанном слое под индентором характеризуется более высокой концентрацией микродефектов: дислокаций, вакансий, атомов внедрения, которые, взаимодействуя, ограничивают собственную подвижность, обеспечивая упрочнение металла при наклепе. Это увеличивает также магнитную вязкость ферромагнитных сталей, растет коэрцитивная сила H_c , уменьшается остаточная индукция и магнитная проницаемость. В аустенитных метастабильных сталях картина несколько иная: в результате наклепа происходит трансформация кристаллической γ -решетки аустенита в α и δ -феррит и увеличение магнитной проницаемости (см. рис. 4.1).

Используя вышеописанные изменения электромагнитных свойств в зависимости от механических напряжений, пластических деформаций и инициируемых ими структурных превращений, был разработан инденторный узел. В этом методе он выполнен или в форме феррозонда, или в форме постоянного магнита, сов-

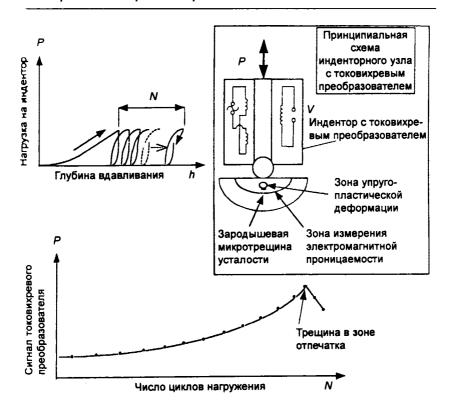


Рис. 4.1. Метод кинетической ферритометрии

мещенного с датчиками контроля напряженности магнитного поля в зоне отпечатка (рис. 4.1). Для определения текущей величины покальных напряжений и деформаций для каждой стали строятся гарировочные кривые, показывающие зависимость магнитных свойств от степени упругопластической деформации (рис. 4.2). С увеличением степени циклической повреждаемости кривые становятся более пологими. При этом, проводя вдавливание на тестобразце, прошедшем «накачку» критическим числом циклов нагружения в районе предела усталости, можно получить граничную кривую изменения магнитной проницаемости от приведенной отпосительной деформации (см. рис. 4.2. Обозначена ромбиками). С равнивая получаемые значения с граничной кривой, можно оцепить степень повреждения контролируемой зоны.

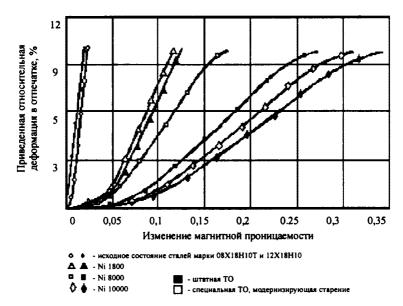


Рис. 4.2. Изменение магнитной проницаемости от приведенной относительной деформации в отпечатке после различного числа циклов нагружения N_i при малоцикловой усталости образцов из сталей 08X18H10T и 12X18H10

Эту методику можно рекомендовать для определения истинного предела упругости, степени наклепа, эквивалентной величины пластической деформации при вдавливании, обнаружения структурных изменений, происходящих при старении сталей. Методика хорошо зарекомендовала себя при контроле степени термоциклического старения металла аустенитных сварных соединений главных циркуляционных трубопроводов ВВЭР-440 первого поколения после 200 тысяч часов эксплуатации. В процессе индентирования записывалась текущая магнитная проницаемость как функция локального изменения объемного содержания магнитной α -фазы. Принцип изменения магнитной фазы основан на различии магнитных свойств парамагнитного аустенита и ферромагнитного феррита.

Дальнейшим развитием этого метода стал метод магнитного акустически-эмиссионного контроля физико-механических свойств материалов при непрерывном циклическом локальном деформировании шаровым индентором (рис. 4.3), при котором для оценки циклической повреждаемости исследуемого материала дополнительно используют акустический датчик.

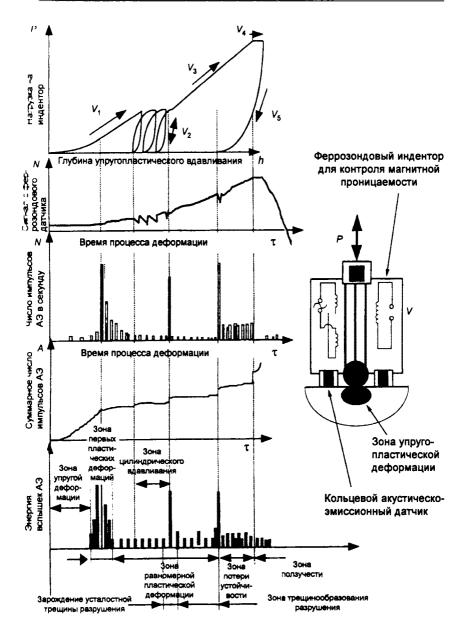


Рис. 4.3. Метод магнитного акустически-эмиссионного (АЭ) контроля физико-механических свойств материалов

Акустическая эмиссия проявляется при импульсном высвобождении упругой энергии, которая генерируется вследствие дискретного динамического перераспределения напряжений при упругопластическом деформировании материалов, либо при образовании в нем субмикро- и макродефектов. В результате протекания актов микро- и макропластической деформации или процесса разрушения в материале происходит приращение деформации, которое сопровождается излучением звука. Возникающий импульс напряжения движется со скоростью звуковой волны и при достижении поверхности образца может быть зафиксирован с помощью высокочувствительного пьезопреобразователя в виде электрического сигнала. Таким образом, акустическая эмиссия несет информацию о кинетике процессов, определяющих пластическую деформацию, и может дать дополнительную информацию при вдавливании индентора. Этот факт послужил основой для разработки работы методики акустико-эмиссионного кинетического индентирования [16, 19, 20, 22, 25, 26].

С целью унификации процесса измерения датчик-преобразователь должен быть помещен непосредственно на индентор особой формы, изготовленный из материала с низким акустическим сопротивлением, что существенно снижает энергетические потери при записи сигналов АЭ (рис. 4.3). В качестве регистрируемых параметров акустической эмиссии при вдавливании индентора используют: частотный спектр, форму сигнала, амплитуду, амплитудное распределение, интенсивность сигналов и распределение импульсов от степени упругопластической деформации в отпечатке. Перспективно использовать метод при определении начала текучести, изучение процессов упрочнения, степени повреждения металла при циклическом нагружении и трещинообразования при упругопластическом внедрении. На рис. 4.4 показаны диаграммы растяжения и вдавливания шарового индентора совместно с графиками интенсивности сигналов акустической эмиссии для стали 15Х2МФА. Экстремумы на графиках интенсивности сигналов определяют начало текучести, а момент исчерпания эмуляции сигналов оценивает степень деформации, на которой заканчивается интенсивное упрочнение.

Рассматривались возможности и перспективы объединения акустико-эмиссионной диагностики и метода кинетического индентирования для оценки структурного состояния конструкционной

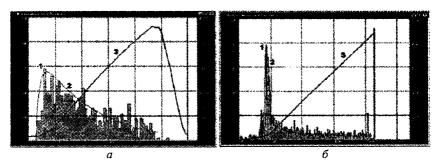


Рис. 4.4. Изменение сигналов акустической эмиссии при испытаниях на кинетическое индентирование (a) и растяжение (δ) от испытательной нагрузки во времени для стали $15X2M\Phi A$

лопаточной стали 20Х13 на разных стадиях пластической деформации и разрушения в условиях статического и циклического деформирования. Обнаружено, что изменение параметров акустической эмиссии коррелирует с основными стадиями деформации на диаграмме растяжения (М.Б. Бакиров, А.Г. Пенкин, В.Ф. Терентьев). Первый максимум интенсивности акустической эмиссии регистрируется в районе предела текучести. Интенсивная акустическая эмиссия на этой стадии обусловлена резким увеличением плотности подвижных дислокаций при переходе от стадии упругой деформации (стадия микротекучести) к стадиям текучести и деформационного упрочнения. С позиций синергетики эту пороговую деформацию можно рассматривать как точку бифуркации, а переход от макроупругой к пластической деформации - как аналог неравновесного фазового перехода ІІ рода. Выявлено также, что кинетика изменения структуры материала на стадии деформационного упрочнения и ее исходное состояние коррелируют с кинетикой изменения и уровнем параметров АЭ, что особенно важно при оценке остаточного ресурса посредством оценки уровня предварительной эксплуатационной нагрузки (например, предварительного циклического деформирования).

4.2. Кинетическое акустическое склероскопирование

Для совершенствования метода кинетического индентирования предложен новый метод на основе испытания склероскопировани-

ем (царапанием). Метод заключается в последовательном внедрении в испытуемую поверхность индентора силой F_N до выбранного максимального значения нагрузки с последующим перемещением с постоянной скоростью силой F_T , возрастающей от нуля до некоторого граничного усилия, определяемого по показаниям датчика акустической эмиссии, закрепленного на инденторе. В процессе измерения контролируют сумму двух нагрузок на индентор $\overline{F_N}$ и $\overline{F_T}$, а также измеряют длину и глубину царапины.

Процессы деформирования и разрушения при таком нагружении можно разделить на три стадии. Первая стадия упругопластического вдавливания индентора наклепывает материал вокруг отпечатка. Вторая стадия связана непосредственно с царапанием и еще больше упрочняет металл при боковом смещении индентора. При этом результирующая сила F растет до максимального значения, когда в зоне металла перед индентором образовывающийся наплыв достигает максимальных размеров, что соответствует $F = \max$. В этот момент происходят исчерпание пластичности и локальное разрушение, сопровождающиеся снижением нагрузки F, что можно определить как третью стадию процесса.

Таким образом, методом возможно моделировать процессы не только упругопластического деформирования, но и разрушения поверхностного слоя материала при указанных условиях испытания. На рис. 4.5 изображен процесс и соответствующая ему диаграмма царапания. Контролируемой характеристикой, наряду с на-

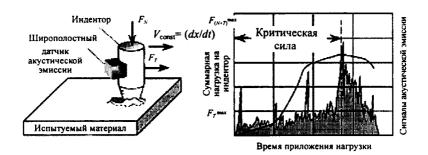


Рис. 4.5. Проведение измерений методом кинетического акустического склероскопирования

грузкой и параметрами акустической эмиссии, является удельная работа упругопластической деформации, определяемая площадью под графиком царапания и деленная на объем материала, вытесненного царапиной. Значение энергии в момент разрушения оценивает величину удельной энергии разрушения и использует ее для оценки предельных прочностных характеристик. В качестве контролируемой величины удобно применять удельную энергию деформирования и разрушения, определяемую делением работы деформирования (площадь ограничения диаграммы царапания) на объем материала, вытесненного из-под индентора.

При индентировании и царапании важным информационным параметром является форма и величина наплыва как параметр, характеризующий упрочнение и пластичность материала, особенно при оценке стадии исчерпания пластичности. Для его определения во ВНИИАЭС были разработаны и запатентованы два подхода с использованием инфракрасного и лазерного излучения.

Метод кинетической акустической склероскопии можно использовать не только для изучения процессов упругопластической деформации и разрушения на макроструктурном уровне, но также процессов микропластического деформирования при снижении действующих нагрузок на индентор. В частности, для оценки энергии активации пластической деформации на основе кинетической модели долговечности механических связей в поле действующих нагрузок.

4.3. Динамическое кинетическое индентирование

Для унификации и расширения информативных возможностей механических методов твердости в динамическом диапазоне скоростей нагружения индентора ВНИИАЭС разработана методика получения и анализа диаграмм вдавливания в процессе динамического ударного вдавливания [27]. Сущность метода заключается в нанесении свободного удара жестким индентором по испытуемому материалу с регистрацией скорости движения индентора в процессе его контактного взаимодействия. Предложена модель взаимодействия жесткого индентора с вязкоупругим материалом в процессе динамического индентирования, позволяющая получать аналитические зависимости, связывающие параметры кривой ударного

нагружения индентора с основными механическими характеристиками (коэффициент жесткости, вязкость) эластомеров (резины, поливинилхлориды, пенополиуританы и т. п.). Методика построена на использовании магнитоиндуктивного метода, позволяющего очень просто ударным вдавливанием определить скорость перемещения индентора при вдавливании. В этом методе индентор, закрепленный в теле постоянного магнита, разгоняется пружиной, гравитационным или электромагнитным полем и движется в зоне контакта с поверхностью контролируемого материала относительно измерительной катушки индуктивности, наводимая ЭДС в которой прямо пропорциональна скорости движения индентора. Особенно перспективно использование этого метода для оценки свойств пластмасс и эластомеров. Для описания процесса деформации используется модель Кельвина - Фойгта, представляющая параллельно соединенные упругий элемент – пружину жесткости К и вязкий демпфер с коэффициентом вязкости μ , а также последовательно соединенный с ними инерционный элемент т, равный массе индентора.

4.4. Комбинирование измерения твердости с методами рентгенографии и электронной микроскопии

Процессы самоорганизации дефектной структуры материала в процессе деформирования можно в ряде случаев изучать с применением метода измерения микротвердости. При этом относительное изменение микротвердости используется как интегральная характеристика оценки изменения плотности дислокаций в исследуемом объеме материала. Однако для выявления более полной картины структурных изменений дает комбинация методов измерения микротвердости растровой электронной микроскопии (РЭМ) и современного рентгеновского метода – метода скользящего пучка рентгеновских лучей (разработан Л.М. Рыбаковой и Л.И. Куксеновой [28–31]).

Последний является модернизированным вариантом рентгеносъемки поликристаллических веществ, проводимой от плоской поверхности. При данном методе узкий пучок практически параллельных рентгеновских лучей падает под контролируемыми угла-

ми на поверхность исследуемого материала с фиксацией дифракционной картины от его поверхностных слоев толщиной порядка $0.1-10\,$ мкм. В зависимости от конкретного состояния кристаллической структуры и угла падения лучей вид рентгеновских линий существенно отличается. Характеризующими параметрами, получаемыми методом скользящего пучка рентгеновских лучей являются количество n и размеры пятен на интерференционных линиях (дебаевских кольцах): ширина β (радиальный размер пятна в [мкм]) и высота γ (азимутальный размер в [мкм]) [28–31]. Изменение параметров n, β и γ связано соответственно с пластической деформацией и ее ротационной модой; изменением плотности дислокаций в зернах; с размером зерна и углом разориентировки субзерен. Угол разориентировки субзерен характеризует плотность дислокаций в межблочных (малоугловых границах).

В частности, с применением комбинации методов измерения микротвердости, РЭМ и скользящего пучка рентгеновских лучей исследовались процессы самоорганизации дислокационной и субзеренной структуры в приповерхностных слоях и внутренних объемах технически чистого рекристаллизованного Мо при статическом растяжении и влияние магнетронного покрытия Mo-45,8Re-0,017C на особенности протекания этих процессов вблизи поверхности [32]. Проведение таких исследований связано с тем, что в соответствии с современными представлениями материал, испытывающий внешнее воздействие, в том числе механическое нагружение, можно рассматривать как открытую систему, свойства которой определяются процессами самоорганизации диссипативных структур, имеющих сложную мультифрактальную природу [33-35]. В связи с этим, можно рассматривать приповерхностные слои как подсистему, входящую в общую систему деформируемого материала. При таком подходе подсистема внутренних объемов материала отвечает за внутренние свойства системы, а подсистема приповерхностных слоев отвечает за обмен системой энергией, веществом и информацией с окружающей средой и определяет внешние свойства системы в данной окружающей среде [36-38]. Исследования проводились на образцах, растянутых до деформаций, соответствующих пределу пропорциональности σ_{nu} , нижнему пределу текучести от и пределу прочности от Эволюция дислокационной структуры изучалась для слоя молибдена толщиной порядка 0,8 мкм, лежащего на глубине 3 мкм от поверхности (приповерхностный слой) и на глубине примерно 400 мкм (внутренние объемы материала). На рентгенограммах исследовались интерференционные линии от кристаллографических плоскостей (211) и (310).

Микротвердость измеряли на приборе ПМТ-3 при нагрузке на индентор 0,196 Н (20 гс) в соответствии с ГОСТ 9450-76. Для образцов без покрытий, нагруженных до σ_{nu} , микротвердость внутренних слоев (на рис. 4.6 обозначена цифрой 1) остается на том же уровне, что и у ненагруженных образцов, микротвердость же приповерхностных слоев (обозначена цифрой 2) значительно увеличивается. При последующем деформировании микротвердость как внутренних, так и приповерхностных слоев возрастает, но разница между микротвердостью материала внутренних и приповерхностных слоев сохраняется, причем с увеличением степени деформации эта разница уменьшается. Для образцов с покрытиями микротвердость внутренних слоев при нагружении изменяется так же, как и у образцов без покрытий, микротвердость же приповерхностных слоев образцов с покрытиями (обозначена цифрой 3) ниже, чем у приповерхностных слоев, деформированных до соответствующих нагрузок образцов без покрытия. Эта разница возникает на участке микропластической деформации и при дальнейшей деформации сохраняется примерно на одном уровне, причем при деформации, соответствующей нагрузкам в интервале σ_{r} - σ_{s} , микротвердость приповерхностных слоев образцов с покрытиями вплотную приближается к микротвердости внутренних слоев. Характер изменения микротвердости позволяет сделать вывод, что покрытие уменьшает плотность дислокации в приповерхностном слое деформируемых образцов и что покрытие, таким образом, оказывает замедляющее воздействие на эволюцию дислокационной структуры приповерхностных слоев. Характер изменения микротвердости от степени деформации молибденовых образцов хорошо коррелирует с полученными на основе данных рентгенографического исследования выводами по эволюции дислокационной структуры.

Результаты обработки рентгенограмм представлены в табл. 4.1. Электронно-микроскопические исследования структуры деформированных и недеформированных образцов показали, что размер зерна у молибдена в процессе деформации не изменяется и, следовательно, изменение характеристик рентгенограмм n, β и γ вызывается изменениями дислокационной и субзеренной структуры. Исследования РЭМ позволили также дополнительно подтвердить

выявляемые методом скользящего пучка рентгеновских лучей особенности протекания процессов фрагментации в зернах молибдена на разных стадиях деформации.

Комбинация методов измерения микротвердости, скользящего пучка рентгеновских лучей и РЭМ позволила установить [32], что возникающее на участке макроупругого деформирования опережение в темпах самоорганизации структуры приповерхностных слоев Мо по сравнению с внутренними объемами связано с процессами измельчения субзеренной структуры, увеличения угла разориентировки блоков и ростом плотности дислокаций в малоугловых границах. При дальнейшем деформировании вплоть до разрушающих нагрузок опережение в темпах сохраняется, хотя и в несколько меньшей степени. Покрытие уменьшает указанное различие. На макроупругом участке деформирования оно подавляет в основном протекающие в приповерхностной зоне процессы измельчения субзеренной структуры и рост плотности дислокаций в малоугловых границах, а при дальнейшем макропластическом деформировании - в основном рост плотности дислокаций в зернах приповерхностного слоя. Возможными причинами замедляющего воздействия покрытия на темпы самоорганизации структуры

Рис. 4.6. Зависимость микротвердости приповерхностных и внутренних слоев молибденовых образцов от степени деформации:

^{1 –} внутренние слои; 2 – приповерхностные слои образцов без покрытий;

^{3 -} приповерхностные слои образцов с покрытиями

приповерхностного слоя являются: барьерное воздействие на движение дислокаций и их скоплений из внутренних объемов Мо к поверхности покрытия из материала, обладающего лучшим комплексом механических свойств, чем материал основы, и дополнительной границы раздела; снижение интенсивности приповерхностных источников дислокаций за счет смещения зоны эффективного протекания приповерхностных процессов из приповерхностного слоя основы в материал покрытия; более эффективная диссипация энергии образцом с покрытием.

4.5. Комбинирование измерения твердости с методом мультифрактальной параметризации структур

Анализ изменений свойств материала в локальных объемах можно оценивать с помощью измерения микротвердости. Для установления взаимосвязи между свойствами и зеренной структурой материала необходимо проводить количественную параметризацию последней. В случае, когда зерна в структуре сильно отличаются по размерам, форме и ориентации, наиболее эффективным является использование фрактальных представлений [33-35]. Привлечение концепции мультифракталов (МФ), основанной на общем понятии меры, позволяет давать количественную оценку конфигурации исследуемой структуры в целом, что невозможно достигнуть обычными методами [33-36]. Концепция мультифракталов является одним из перспективных направлений развития системного подхода в материаловедении [36-38]. В частности, с использованием комбинации методов измерения микротвердости и мультифрактальной параметризации исследовались структурные изменения при ударном воздействие стальной дроби Ø5 мм при скорости 15 м/с на поверхность алюминиевого сплава АВТ-1 после прокатки и термообработки (закалка 520 °C+ старение 160 °C) [39]. Формирующаяся в зоне удара зеренная структура локально неоднородна, что обуславливает соответствующее локальное изменение механических свойств, которое оценивали путем измерения микротвердости Н на приборе ПМТ-3 при нагрузке на индентор 0,196 Н (20 гс) в соответствии с ГОСТ 9450-76. Мультифрактальную параметризацию зеренных структур проводили с использова-

жа	Исследуемые		Характеристики ренттенограмм			нограмм		Основные процессы самоорганизации		
Нагрузка		еста вцов Мо	п (211), шт.	<i>n</i> (310), шт.	ү (310), мкм	β (310), мкм		структуры		
0	Весь объем		30	33	432	50		(Ненагруженный образец)		
	Внутренние слои		30	33	433	50		Нет пластической деформации		
G _{nu}	Припо- верх- ност- ный слой	Без по- крытия	42	40	515	50	0 < \(\sigma\)	Процессы пластической деформации протекают преимущественно за счет зарождения и ухода дислокаций в субграницы с увеличиением разориентировки субзерен и заканчиваются формированием приповерхностного барьера для движения дислокаций из внутренних объемов		
		С покры- тием	30	33	433	50		Начало протекания пластической деформации сдерживается покрытием		
	Внутренние слои		34	34	480	56		Прорыв дислокациями сформированного ранее барьера, пластическая деформация		
Ω;*	Приповерхностный слой	Без по- крытия	45	43	596	78	ά,	протекает по всему сечению (в приповер ностных слоях несколько интенсивнее) счет генерации внутризеренных дислок ций, измельчения субзеренной структур и увеличения разориентировки субзерен		
		С покры- тием	44	42	546	59	∠Ω~ <Ω<	То же, что и без покрытий, но интенсивность процессов пластической деформации ниже. за счет подавления покрытием увеличения плотности дислокаций в зернах		

_
Z
Œ.
3
8
2
χ.
Z
¥
ê
ä
6
=
8
_
3
æ
ä
Ō
ŏ
3
3

зка	Исследуемые места образцов Мо		Характеристики рентгенограмм			нограмм			
Нагрузка			<i>n</i> (211), шт.	<i>n</i> (310), шт.	ү (310), мкм	β (310), мкм		Основные процессы самоорганизации структуры	
0,8	Внутренние слои		Пятна в основном слиты в линию, но отдельные пятна и их группы еще имеются		-	700 (для линии)		Пластическая деформация идет за счет существенного дробления элементов субструктуры и увеличения плотности дислокаций до критического значения с переходом на ротационные механизмы. В приповерхностных слоях эти процессы выражены интенсивнее	
	Припо- верх- ност- ный слой	Без по- крытия	Пятна сливаются в линию; отдельных пятен или их групп нет		_	ооо (для линии)	σ _r * < σ ≤ σ <u>.</u>		
		С по- крытием	Имен отдел пятна групп есть уч где сливам лин	ьные и их ы, но іастки, они отся в	785	414 (для пятен); 700 (для линии)		Темпы самоорганизации дислокационной и субзеренной структур ниже по сравнению с приповерхностными слоями образцов без покрытий и даже с внутренними объемами	

нием программы MFRDrom99 [34]. Фотоизображения зеренной структуры в зоне образовавшегося кратера, полученные на сканирующем электронном микроскопе, путем сканирования переводили в черно-белые графические файлы формата ВМР, имеющие размер 128x128 пикселов (элементарных ячеек) (рис. 4.7). Размер изучаемых участков структуры составлял 64x64 мкм. Черными пикселами выделялись границы зерен (I). Расчет мультифрактальных характеристик проводился параллельно двумя способами метода генерации округленных разбиений (МГМОР) [33, 34] с проверкой спектров на корректность для всех поддиапазонов шкал. Использовался набор масштабов разбиения (I_k =2,4,8,16,32,64; k = 1,...,6; N = [$128/I_k$] 2) при параметре q ∈ [-100;100]. Мультифрактальные характеристики (табл. 4.2) вычислялись как средние величины по всем корректным спектрам [34].

Совместное использование методов измерения микротвердости и мультифрактального подхода к описанию зеренных структур сплава ABT-1 позволило выявить ряд новых закономерностей формирования структур в зоне удара высокоскоростной частицы и сформулировать рекомендации по оптимизации технологий упрочнения поверхности деталей из алюминиевых сплавов дробью [39]. В частности, установлено, что при внедрении частицы в материал совместное действие распространяющихся полей деформаций и температур вызывает активизацию рекристаллизационных процессов. В центре основания образующегося кратера в тонком приповерхностном слое процессы динамической рекристаллизации приводят к формированию зеренной структуры, обладающей лучшими свойствами, чем исходная. По мере удаления от центра удара процессы динамической рекристаллизации постепенно переходят в процессы обычной рекристаллизации, и механические свойства структуры снижаются по сравнению с исходной. В слоях, расположенных на еще большей глубине и расстоянии от центра удара, интенсивность поля деформаций и теплового поля падает, удара, интенсивность поля деформации и теплового поля падает, процессы деформации и рекристаллизации затухают, и зеренная структура приближается к исходной. Обнаружен эффект кластеризации зерен по размерам и форме на начальном этапе процессов собирательной рекристаллизации как простой, так и динамической. Также установлено, что при ударном воздействии наиболее вероятным местом локализации процессов образования критических микродефектов является зона валика вокруг кратера. Исходя

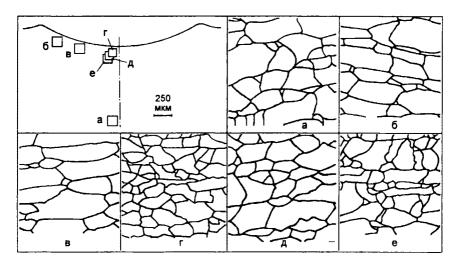


Рис. 4.7. Характерный вид кратера, образовавшегося от удара дроби и изображения участков зеренной структуры (64х64 мкм)

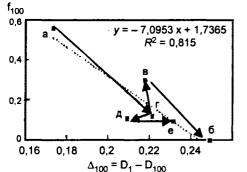


Рис. 4.8. Характер изменения мультифрактальных параметров, характеризующих однородность (f_{100}), упорядоченность (Δ_{100}) зеренных структур. Стрелками показано изменение характеристик по направлению удаления от центра основания кратера (a) и корреляция относительного изменения значений микротвердости H_{\square} для изучаемых участков с мультифрактальной характеристикой D_{100} зеренных структур на этих участках (δ)

из этого были сделаны конкретные рекомендации по оптимизации технологии поверхностного упрочнения алюминиевых сплавов дробью [39]. Обнаружена линейная взаимосвязь (рис. 4.8) значений микротвердости H_{\square} и характеристик D_q и α_q (при q>0), которые несут некоторую количественную информацию о термодинамических условиях формирования структур. Причем, с увеличением индекса q от 0 до 100 коэффициенты корреляции возрастают от 0,913 до 0,968. Примечательно, что в данном случае количественную взаимосвязь между H_{\square} и традиционными параметрами зеренных структур установить невозможно из-за сильных различий в размерах, форме и расположении зерен. Прямой взаимосвязи между H_{\square} и значениями f_{100} и Δ'_{100} не наблюдается, так как в данном случае аналогичные структурные изменения при динамической и обычной рекристаллизации оказывают различное влияние на уровень H_{\square} .

Таблица 4.2 Мультифрактальные характеристики зеренных структур и соответствующие им значения микротвердости (H_{\square}) (обозначения a-e см. рис. 4.8)

Участок зеренной	H _□ , МПа	Мультифрактальные характеристики									
структуры	i	D_0	D_1	D_2	D ₁₀₀	α_{100}	f 100	Δ 100			
a	1250	1,668	1,623	1,599	1,450	1,441	0,553	0,173			
б	750	1,609	1,568	1,544	1,319	1,306	0,001	0,249			
в	730	1,592	1,544	1,517	1,326	1,316	0,299	0,218			
г	1800	1,912	1,867	1,838	1,646	1,630	0,122	0,221			
ð	1600	1,941	1,886	1,854	1,676	1,661	0,109	0,209			
e	1450	1,875	1,820	1,786	1,588	1,573	0,096	0,232			

Отечественные	Международные ст	гандарты
ГОСТы	Европейские ISO, DIN	Американские ASTM
ГОСТ 9012-59 «Металлы и сплавы. Метод измерения твердости по Бринеллю »	ISO 6506 (1981 r.) «Hardness test – Brinell test» DIN 50351 (1985 r.) «Härteprüfung nach Brinell»	ASTM E 10-98 «Brinell Hardness of Metallic Materials»
ГОСТ 2999-75 «Металлы и сплавы. Метод измерения твердости по Виккерсу»	ISO 6507 «Hardness test – Vickers test». – Part 1: HV5 to HV100; Part 2: HV0,2 to less than HV5 (1983 r.). DIN 50133 (1984 r.) «Harteprufung nach Vickers»	ASTM E 92-82 (1997) «Vickers Hardness of Metallic Materials»
ГОСТ 9013-59 «Металлы и сплавы. Метод измерения твердости по Роквеллу»	ISO 6508 (1986 r.) «Hardness test – Rockwell test – scales A, B, C, D, E, F, G, H, K» DIN 50103/1 (1984 r.) «Härteprüfung nach Rockwell – Verfahren C, A, B, F»	ASTM E 18-98 «Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials»

Отечественные	Международные	стандарты
ГОСТы	Европейские ISO, DIN	Американские ASTM
ГОСТ 22975-78 «Металлы и сплавы. Метод измерения твердости по Роквеллу при малых нагрузках (по Супер-Роквеллу)»	ISO 1024 (1989 r.) «Hardness test – Rockwell superficial test – scales 15N, 30N, 45N, 15T, 30T, 45T» DIN 50103/2 (1984 r.) «Härteprüfung nach Rockwell – Verfahren N und T»	ASTM E 18-98 «Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials»
ГОСТ 9450—76 «Измерение микротвердости вдавливанием алмазных наконечников»	ISO 6507 «Hardness test – Vickers test». – Part 3: to less than HV0,2 (1989 г.). DIN 50133 (1984 г.) «Härteprüfung nach Vickers»	ASTM E 384-89 (1997) «Microhardness of Materials»

Измерению микротвердости вдавливанием алмазных наконечников в форме ромба по ГОСТ 9450–76 в целом соответствует метод измерения твердости по Кнупу, регламентированный американским стандартом ASTM 1474 (Knoop hardness). Формы и размеры индентора одинаковы. Значение твердости по Кнупу обозначается цифрой со стоящим после нее символом НК и величиной прикладываемой нагрузки в кг, например 760 НК 1. Величина нагрузки для измерения твердости по методу Кнупа составляет обычно от 1 г до 1 кг.

Измерению твердости по Бринеллю переносными твердомерами статического действия по ГОСТ 22761—77 примерно соответствует американский стандарт ASTM E 110-82 (1997) «Indentation Hardness of Metallic Materials by Portable Hardness Testers».

Отечественным методам испытаний на царапание, в том числе по ГОСТ 21318-75, примерно соответствует американский стандарт ASTM E 448-82 (1997) «Sclerockope Hardness Testing of Metallic Materials».

Следует отметить, что имеющиеся различия в стандартах ГОСТ, ISO и ASTM достаточно существенны и устранение этих различий при очередных пересмотрах отечественных стандартов является весьма актуальной задачей [41].

6. ОБЗОР ПРИБОРОВ ДЛЯ ИЗМЕРЕНИЯ ТВЕРДОСТИ*

Выпуском твердомеров занимается достаточно много фирм развитых стран. Однако в настоящее время в России имеются представительства всего нескольких фирм, имеющих достаточно хорошую многолетнюю репутацию поставщиков качественного оборудования для измерения твердости. Это представительства фирм INSTRON, Zwick и LECO, которые обеспечивают своевременное гарантийное и сервисное обслуживание приборов и их производство. Следует отметить, что такие фирмы, как Zwick и особенно INSTRON, в последнее время поглотили ряд производителей известных ранее марок твердомеров. Качественные приборы для кинетического метода определения твердости и приборов переносного типа, пользующихся заслуженным спросом не только у нас в стране, но и в других индустриально развитых государствах, производятся в ВНИИАЭС (г. Москва). Производство приборов для измерения твердости методами Роквелла, Виккерса и Бринелля осуществляет также ОАО ТОЧПРИБОР (г. Иваново). Следует отметить, что по точности последние уступают твердомерам фирмы INSTRON до 5-10 раз и отличаются более грубым исполнением корпуса.

Приборы для измерения твердости выпускаются в аналоговом исполнении (измеряемый параметр выдается без дополнительной обработки), оснащенные микропроцессором (частичная или полная автоматизация процесса измерений, цифровые выходные шины для выдачи данных на принтер или компьютер). Некоторые модели имеют встроенный минипринтер (возможности по обработке измеряемой величины, в том числе выдача значений твердости, статистическая обработка данных, пересчет числе твердости в другие шкалы) с компьютерным управлением (управление процессом

^{*} Данный раздел книги написан совместно с канд. техн. наук В.В. Геровым.

измерения и обработки экспериментальных данных производится посредством персонального компьютера).

Выпускаются модели твердомеров, специализированные как под конкретный метод измерения твердости, так и универсальные. Последние могут проводить измерения несколькими методами, причем чаще всего комбинируются методы Виккерса и Бринелля, как сходные по физическому смыслу. Следует также отметить, что приборы для измерения микротвердости очень часто обозначаются как приборы для измерения твердости по методу Виккерса при малых нагрузках, кроме того, ряд приборов позволяет измерять твердость по Виккерсу в достаточно большом диапазоне нагрузок, в том числе и в области микротвердости.

Ниже представлен обзор оборудования, представляющего наибольший интерес для лабораторий, обслуживающих производства и научно-исследовательские учреждения.

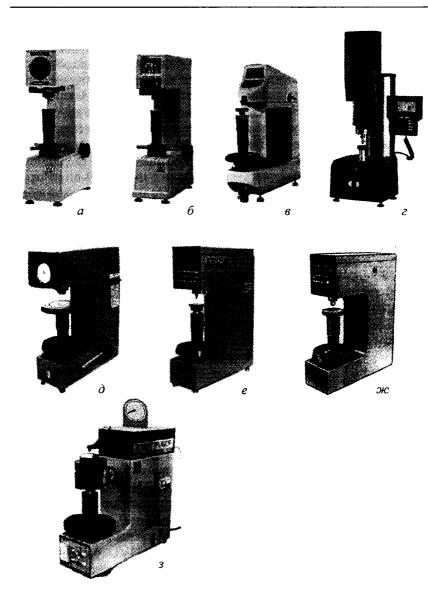
6.1. Твердомеры для измерения по методу Роквелла

Фирма LECO выпускает твердомеры серии LR для измерения твердости по Роквеллу с нагрузками от 15 до 150 кгс.

Фирма INSTRON (подразделение Wilson&Wolpert) выпускает аналоговый твердомер модели 500MRA для измерения твердости по шкалам Роквелла A, B, C и F с нагрузками 60, 100 и 150 кгс (рис. 6.1, а). Погрешность измерения твердости не превышает 0,5 единиц. Отличительная особенность данной модели — наличие микропроцессора, отвечающего за регулировку времени приложения нагрузки, учитывая при этом время на опускание и подъем грузов. Эта опция позволяет существенно упростить работу оператора и исключает вероятность ошибочной оценки времени нагружения. Данная модель может применяться в научных лабораториях и в цеховых лабораториях контроля качества. Твердомер имеет прочную конструкцию, простой формы, легко калибруется и обслуживается персоналом.

Отечественным аналогом описанного выше прибора может служить модель ТР 5006М, обеспечивающая измерения твердости по шкалам Роквелла А, В и С с нагрузками 60, 100 и 150 кгс (рис. 6.1, д), но отличающаяся более неудобной эксплуатацией, худшими точностными показателями (погрешность измерения 1–2 единицы) и чрезмерными массогабаритными характеристиками. В качестве

дополнительно заказываемой опции ОАО ТОЧПРИБОР поставляет комплект дооборудования этого прибора для измерения твердости по Бринеллю.


Цифровым твердомером от фирмы INSTRON модели 600MRD измеряют твердость по шкалам Роквелла: A, B, C, D, E, F, от G до R, S и V с нагрузками 60, 100 и 150 кгс и предварительной нагрузкой 10 кгс (рис.6.1, δ). Прибором проводят измерения твердости по всем разновидностям метода Роквелла, включая метод Супер-Роквелла. Погрешность измерения твердости 0,1 единицы. Отличительная особенность данной модели - наличие микропроцессора, отвечающего за полностью автоматический процесс измерения твердости. Оператор должен только подвести индентор к образцу, дальнейший процесс испытания идет без участия пользователя, причем имеется возможность скорректировать значения твердости для цилиндрических образцов, можно производить отбор годных образцов, предварительно введя в прибор критерии отбора по допустимой твердости. Прибор может предоставлять отчет со статистикой, используя встроенный мини-принтер. Также существует возможность перевода величин твердости в другие шкалы Бринелля, Виккерса и т. д. Использование такой модели позволяет существенно ускорить процесс испытания на потоке, значительно снизить утомляемость оператора, а также возможность его влияния на корректность процедуры проведения испытания. Твердомер имеет прочную конструкцию, простой формы, легко калибруется и обслуживается персоналом.

Отдаленными аналогами данного прибора могут служить отечественные приборы TP5014-01 (рис. 6.1, e) и 2143TPC-М (рис. 6.1, κ), выпускаемые ОАО ТОЧПРИБОР. Первая модель обеспечивает измерения твердости по шкалам Роквелла А, В и С с нагрузками 60, 100 и 150 кгс при погрешности измерения твердости 1—2 единицы. Электронный блок обеспечивает только автоматическое приложение основной нагрузки (но не предварительной) с ограниченной математической обработкой результатов измерений (например, разбраковку). Прибором 2143TPC-М (рис. 6.1, κ) измеряют твердости по шкалам Роквелла N и T (метод Супер-Роквелла) с нагрузками 15, 30 и 45 кгс при погрешности измерения твердости 2—3 единицы. Электронный блок обеспечивает частичную автоматизацию процесса измерения, проведение разбраковки и простой статистической обработки серии результатов измерений.

Для измерения твердости на внутренних поверхностях изделий, например труб, или на деталях сложной конфигурации выпускаются специальные твердомеры с выступающим индентором. Так, фирма INSTRON предлагает цифровой твердомер с выступающим индентором, модель ТН-300. Данная модель предназначена для измерения твердости по шкалам Роквелла: A, B, C, D, E, F, G......R, S и V с нагрузками 60, 100 и 150 кгс и предварительной нагрузкой 10 кгс. Погрешность измерения твердости 0,1 единицы. Наличие разнообразных сменных инденторов позволяет измерять твердость особых участков детали: в канавке, в отверстии, на цилиндрической поверхности. Микропроцессор обеспечивает полностью автоматический процесс измерения твердости, а также значительно улучшает качество процесса измерения твердости деталей. Пользователь имеет возможность производить отбор годных образцов, предварительно введя в машину критерии отбора по допустимой твердости. Существует опция, позволяющая переводить величины твердости в другие шкалы, например Бринелля, Виккерса и т. д. Использование такой модели существенно ускоряет процесс испытания на потоке и снижает утомляемость оператора.

Близким по внешнему виду и решаемым задачам является прибор ТР5043, выпускаемый ОАО ТОЧПРИБОР (рис. 6.1, 3). Прибором проводят измерения твердости по шкалам Роквелла: A, B, C, D, E, F, H, K, L, R, S и V с нагрузками 60, 100 и 150 кгс и предварительной нагрузкой 10 кгс. Погрешность измерения твердости 2–3 единицы.

Последней новинкой на рынке оборудования для измерения твердости является цифровой твердомер с датчиком нагрузки, модель Роквелл-2000, предлагаемый фирмой INSTRON (рис. 6.1, г). Твердомер позволяет проводить измерения твердости по всем шкалам Роквелла, Супер-Роквелла и Микро-Роквелла при нагрузках от 3 до 150 кгс с погрешностью не более 0,5% от измеряемой величины. Отличительная особенность данной модели — отсутствие стандартного набора грузов. Нагрузка прикладывается посредством электродвигателя. Твердость измеряется высокочувствительным стандартным тензодатчиком нагрузки. Причем индентор крепится непосредственно к датчику нагрузки, соответственно исключаются погрешности, связанные с работой систем рычажного механизма, как это бывает у классических твердомеров с системой грузов. Встроенный микропроцессор руководит процедурой про-

ведения испытания, пользователь должен лишь подвести индентор к образцу путем простого включения привода нажатием кнопки на пульте управления. Встроенная система защиты образца автоматически остановит машину точно в момент касания индентором образца, так что на образце даже не останется отпечатка. Исключается и причинение ущерба пользователю, если вдруг случайно его рука попадет в рабочую зону машины. После подвода индентора машина выдаст сообщение о готовности к проведению испытания - останется лишь нажать кнопку старт! Для данного типа твердомеров сохраняются все преимущества аппаратов с цифровой обработкой результатов испытаний, а именно: наличие статистической обработки данных, возможность перевода величин твердости в другие шкалы, возможность отбраковки негодных образцов, наличие цифрового выхода для подключения принтера и вывода результатов измерения на печать. Имеется возможность задания и сохранения 20 различных методов испытаний, а также сохранения 20 000 значений измеренной твердости. Также присутствует опция построения гистограмм распределения величин твердости для заданной выборки. Данный прибор подходит как для исследовательских лабораторий, так и для промышленности, в том числе для поточного контроля качества изделий.

6.2. Твердомеры для измерения по методу Виккерса и Бринелля

Фирмой LECO выпускаются комбинированные приборы серии LR для измерения твердости по методу Виккерса с нагрузками от 0,3 до 30 кг и по методу Бринелля, а также приборы серии LM для измерения микротвердости с нагрузками от 0,01 до 1 кгс.

Фирма INSTRON предлагает цифровой твердомер для измерения микротвердости по Виккерсу модели 401MVD, работающий в диапазоне нагрузок от 0,01 до 1 кгс (рис. 6.2, а). Микропроцессорное оборудование прибора полностью автоматизирует процессы приложения нагрузки на образец и проведения процесса измерения твердости, включая измерение диагоналей отпечатков и расчет твердости. Время выдержки регулируется и контролируется электроникой от 5 до 99 с. Эргономичный экран пользователя и удоб-

ная панель управления позволяет просто производить перевод величин твердости в другие шкалы, проводить статистический анализ и отбор годных образцов. Встроенный мини-принтер позволяет распечатывать отчеты по серии испытаний. Существует возможность заказать данный прибор в варианте с компьютерным управлением, что позволит исключить из процесса рутинных испытаний оператора. Прибор с таким управлением может, например, автоматически получать распределение твердости на образце с градиентным слоем при задании направления движения индентора и требуемого расстояние между отпечатками. По результатам измерений формируется отчет со сводной таблицей данных, статистической обработкой и необходимыми графиками.

Данная модель твердомера с опцией компьютерного управления очень подходит для производства, где количество испытаний твердости за смену очень велико. Прибор может быть также интересен и для исследователей, которые смогут программировать процедуру измерений твердости на образцах, задавая различные нагрузки, сложные перемещения индентора по образцу и создавая индивидуальный вариант отчетности и статистической обработки результатов.

Более сложным, но зато и обеспечивающим более широкие возможности, является полностью автоматический твердомер с датчиком нагрузки модели Tukon-2100, предлагаемый фирмой INSTRON (рис. 6.2, б). Прибор предназначен для измерения твердости по шкалам Микро-Виккерса и Виккерса при нагрузках в двух диапазонах (от 0,005 до 1 кгс и от 0,3 до 50 кгс) с точностью измерения не менее 1%. В комплект входит также шесть различных объективов от х4 до х100. По уровню автоматизации модель аналогична описанной выше модели 401MVD с опцией компьютерного управления. Главное отличие и преимущество данной модели – величина твердости измеряется посредством стандартного тензодатчика нагрузки с высокой чувствительностью. Нагрузка прикладывается посредством электродвигателя. Так как индентор крепится непосредственно к датчику нагрузки, то исключаются погрешности, связанные с работой систем рычажного механизма, как это бывает у классических твердомеров с системой грузов. Встроенная система защиты образца автоматически остановит машину точно в момент касания индентором образца, так что на образце даже не останется отпечатка. Исключается и причинение ущерба пользователю, если вдруг случайно его рука попадет в рабочую зону ма-

Один из самых современных на настоящий момент универсальных твердомеров в этом сегменте предлагается той же фирмой INSTRON. Полностью цифровой универсальный твердомер, модели «ZOOM-TESTOR» 1000 (рис. 6.2, в) производит измерения твердости по шкалам Роквелла, Бринелля и Виккерса. Машина работает в диапазоне нагрузок от 1 до 3000 кгс. Для измерения нагрузки используется тензодатчик. Встроенная цифровая видеокамера позволяет производить точную оценку изображений отпечатков, а программное обеспечение позволит произвести точное измерение размеров отпечатка и рассчитает значение твердости. Панель

Рис. 6.2. Твердомеры для измерения по методу Виккерса и Бринелля: INSTRON (a-e), ОАО ТОЧПРИБОР $(\partial-e)$

управления имеет множество различных опций для стандартных процедур испытания, также имеется возможность создания собственных процедур, позволяющих повысить производительность процесса испытания и максимально адаптировать испытания под требования пользователя. Данная модель интересна для лабораторий контроля качества, занимающихся измерением твердости широкой номенклатуры изделий.

Отечественный производитель ОАО ТОЧПРИБОР предлагает прибор для измерения твердости по Бринеллю модели ТБ5004 (рис. 6.2, г). Прибор работает с нагрузками от 100 до 3000 кгс и оп-. ределяет твердость в пределах от 4 до 450 НВ, а при использовании твердосплавного шарика от 4 до 650 HBW. Модификация прибора ТБ5004-03 оснащается электронным блоком, обеспечивающим простейшую математическую обработку результатов. Прибор позволяет также проводить измерение твердости по методу восстановленного отпечатка. Выпускается также универсальный прибор ИТ5010 для измерения твердости по методам Виккерса и Бринелля (рис. 6.2, д). Он работает с нагрузками от 5 до 250 кгс и обеспечивает измерение в диапазонах 8-2000 HV и 5-450 HB. Модификация прибора ИТ5010-01М оснащается электронным блоком, обеспечивающим простейшую математическую обработку результатов, и имеет цифровой выход для вывода данных на принтер или компьютер.

Среди приборов, предлагаемых фирмой Zwick, можно отметить достаточно простой прибор модели 3212, измеряющий твердость по Микро-Виккерсу (рис. 6.2, e).

6.3. Переносные портативные твердомеры

Такие приборы, хотя и имеют меньшую точность по сравнению со стационарными, однако незаменимы для измерения твердости прямо на изделиях или на крупных заготовках, которые трудно поместить на стандартный стационарный твердомер. Малый размер и масса позволяет специалистам всегда легко перемещать прибор.

Типичным для этого сегмента твердомеров является предлагаемый фирмой INSTRON портативный универсальный твердомер

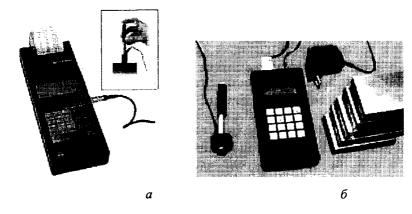


Рис. 6.3. Переносные твердомеры: a – TH-140A (INSTRON), θ – ИТ5160 (ОАО ТОЧПРИБОР)

модели ТН-140A (рис. 6.3, а). В данном приборе используется принцип ударного нагружения для измерения твердости материала за счет измерения величины изменения индукционного тока при отскоке индентера. Твердомер позволяет проводить экспрессанализ величин твердости по шкалам Роквелла, Бринелля и Виккерса с точностью 0,5%. Можно производить измерения под различными углами, даже снизу вверх. У твердомера есть возможность перевода величин твердости в другие шкалы, также можно проводить статистическую обработку полученных данных, а встроенный принтер позволит быстро получить достоверный отчет.

Построенный на тех же принципах портативный универсальный твердомер выпускается ВНИИАЭС (г. Москва). Прибор отличается хорошим дизайном и удобством в работе, имеется возможность перевода величин твердости в другие шкалы.

На ОАО ТОЧПРИБОР выпускается переносной твердомер ИТ5160 для измерения твердости методом Виккерса. Прибор обеспечивает измерение твердости в диапазоне от 80 до 940 HV, позволяет проводить математическую обработку результатов измерений, в том числе разбраковку, и переводить числа твердости HV в числа твердости по Роквеллу, Супер-Роквеллу, Бринеллю и Шору. Однако прибор не является портативным, так как отличается немалыми размерами с массой более 1 кг.

7. ПРИЛОЖЕНИЯ

Приложение 1
Таблицы величин твердости по Бринеллю (по ГОСТ 90012—59)

D = 10 mm, P = 29430 H (3000 krc) H K = 30

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2,90	444	441	438	435	432	429	426	423	420	417
3,00	415	412	409	406	404	401	398	395	393	390
3,10	388	385	383	380	378	375	373	370	368	366
3,20	363	361	359	356	354	352	350	347	345	343
3,30	341	339	337	335	333	331	329	326	325	323
3,40	321	319	317	315	313	311	309	307	306	304
3,50	302	300	298	297	295	293	292	290	288	286
3,60	285	283	282	280	278	277	275	274	272	271
3,70	269	268	266	265	263	262	260	259	257	256
3,80	255	253	252	250	249	218	246	245	244	242
3,90	241	240	239	237	236	235	234	232	231	230
4,00	229	228	226	225	224	223	222	221	219	218
4,10	217	216	215	214	213	212	211	210	209	208
4,20	207	205	204	203	202	201	200	199	198	198
4,30	197	196	195	194	193	192	191	190	189	188
4,40	187	186	185	185	181	183	182	181	180	179
4,50	179	178	177	170	175	171	174	173	172	171
4,60	170	170	169	168	167	167	166	165	164	164

Продолжение приложения 1

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4,70	163	162	161	161	160	159	158	158	157	156
4,80	156	155	154	154	153	152	152	151	150	150
4,90	149	148	148	147	146	146	145	144	144	143
5,00	143	142	141	141	140	140	139	138	138	137
5,10	137	136	135	135	134	134	133	133	132	132
5,20	131	130	130	129	129	128	128	127	127	126
5,30	126	125	125	124	124	123	123	122	122	121
5,40	121	120	120	119	119	118	118	117	117	116
5,50	116	115	115	114	114	114	113	113	112	112
5,60	111	111	110	110	110	109	109	108	108	107
5,70	107	107	106	106	105	105	105	104	104	103
5,80	103	103	102	102	101	101	101	100	99,9	99,5
5,90	99,2	98,8	98,4	98,0	97,7	97,3	96,9	96,6	96,2	95,9
6,00	95,5	-	-	-	-	-	-	-	-	-

D = 10 mm, P = 9810 H (1000 krc) H K = 10

d, mm	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2,50	200	199	197	196	194	193	191	190	188	187
2,60	185	184	182	181	179	178	177	175	174	173
2,70	171	170	169	168	166	165	164	163	162	160
2,80	159	158	157	156	155	154	152	151	150	149
2,90	148	147	146	145	144	143	142	141	140	139
3,00	138	137	136	135	135	134	133	132	131	130
3,10	129	128	128	127	126	125	124	123	123	122
3,20	121	120	120	119	118	117	117	116	115	114
3,30	114	113	112	112	111	110	110	109	108	108
3,40	107	106	106	105	104	104	103	102	102	101
3,50	101	100	99,5	98,9	98,3	97,7	97,2	96,6	96,1	95,5
3,60	95,0	94,4	93,9	93,3	92,8	92,3	91,8	91,2	90,7	90,2
3,70	89,7	89,2	88,7	88,2	87,7	87,2	86,8	86,3	85,8	85,3
3,80	84,9	84,4	83,9	83,5	83,0	82,6	82,1	81,7	81,3	80,8
3,90	80,4	80,0	79,5	79,1	78,7	78,3	77,9	77,5	77,1	76,7
4,00	76,3	75,9	75,5	75,1	74,7	74,3	73,9	73,5	73,2	72,8
4,10	72,4	72,0	71,7	71,3	71,0	70,6	70,2	69,9	69,5	69,2
4,20	68,8	68,5	68,2	67,8	67,5	67,1	66,8	66,5	66,2	65,8

Продолжение приложения 1

d, mm	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4,30	65,5	65,2	64,9	64,6	64,2	63,9	63,6	63,3	63,0	62,7
4,40	62,4	62,1	61,8	61,5	61,2	60,9	60,6	60,4	60,1	59,8
4,50	59,5	59,2	59,0	58,7	58,4	58,1	57,8	57,6	57,3	57,1
4,60	56,8	56,5	56,3	56,0	55,8	55,5	55,3	55,0	54,8	54,5
4,70	54,3	54,0	53,8	53,5	53,3	53,0	52,8	52,6	52,3	52,1
4,80	51,9	51,6	51,4	51,2	51,0	50,7	50,5	50,3	50,1	49,8
4,90	49,6	41,4	49,2	49,0	48,8	48,6	48,3	48,1	47,9	47,7
5,00	47,5	47,3	47,1	46,9	46,7	46,5	46,3	46,1	45,9	45,7
5,10	45,5	45,3	45,1	45,0	44,8	44,6	44,4	44,2	44,0	43,8
5,20	43,7	43,5	43,3	43,1	42,9	42,8	42,6	42,4	42,2	42,1
5,30	41,9	41,7	41,5	41,4	41,2	41,0	40,9	40,7	40,5	40,4
5,40	40,2	40,0	39,9	39,7	39,6	39,4	39,2	39,1	38,9	38,8
5,50	38,6	38,5	38,3	38,2	38,0	37,9	37,7	37,6	37,4	37,3
5,60	37,1	37,0	36,8	36,7	36,5	36,4	36,3	36,1	36,0	35,8

D = 10 mm, P = 981 H (100 krc) w K = 1

d, MM 0,00 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 2,50 20,0 19,9 19,7 19,6 19,4 19,3 19,1 19,0 18,8 18,7 2,60 18,5 18,4 18,2 18,1 17,9 17,8 17,7 17,5 17,4 17,3 2,70 17,1 17,0 16,9 16,8 16,6 16,5 16,4 16,3 16,2 16,0 2,80 15,9 15,8 15,7 15,6 15,5 15,4 15,2 15,1 15,0 14,9 2,90 14,8 14,7 14,6 14,5 14,4 14,3 14,2 14,1 14,0 13,9 3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 <											
2,60 18,5 18,4 18,2 18,1 17,9 17,8 17,7 17,5 17,4 17,3 2,70 17,1 17,0 16,9 16,8 16,6 16,5 16,4 16,3 16,2 16,0 2,80 15,9 15,8 15,7 15,6 15,5 15,4 15,2 15,1 15,0 14,9 2,90 14,8 14,7 14,6 14,5 14,4 14,3 14,2 14,1 14,0 13,9 3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 11,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,	<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2,70 17,1 17,0 16,9 16,8 16,6 16,5 16,4 16,3 16,2 16,0 2,80 15,9 15,8 15,7 15,6 15,5 15,4 15,2 15,1 15,0 14,9 2,90 14,8 14,7 14,6 14,5 14,4 14,3 14,2 14,1 14,0 13,9 3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 11,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,8	2,50	20,0	19,9	19,7	19,6	19,4	19,3	19,1	19,0	18,8	18,7
2,80 15,9 15,8 15,7 15,6 15,5 15,4 15,2 15,1 15,0 14,9 2,90 14,8 14,7 14,6 14,5 14,4 14,3 14,2 14,1 14,0 13,9 3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 <t< td=""><td>2,60</td><td>18,5</td><td>18,4</td><td>18,2</td><td>18,1</td><td>17,9</td><td>17,8</td><td>17,7</td><td>17,5</td><td>17,4</td><td>17,3</td></t<>	2,60	18,5	18,4	18,2	18,1	17,9	17,8	17,7	17,5	17,4	17,3
2,90 14,8 14,7 14,6 14,5 14,4 14,3 14,2 14,1 14,0 13,9 3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 10,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,7	2,70	17,1	17,0	16,9	16,8	16,6	16,5	16,4	16,3	16,2	16,0
3,00 13,8 13,7 13,6 13,5 13,5 13,4 13,3 13,2 13,1 13,0 3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 10,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,3	2,80	15,9	15,8	15,7	15,6	15,5	15,4	15,2	15,1	15,0	14,9
3,10 12,9 12,8 12,8 12,7 12,6 12,5 12,4 12,3 12,3 12,2 3,20 12,1 12,0 11,9 11,8 11,7 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 10,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 <t< td=""><td>2,90</td><td>14,8</td><td>14,7</td><td>14,6</td><td>14,5</td><td>14,4</td><td></td><td>14,2</td><td>14,1</td><td>14,0</td><td>13,9</td></t<>	2,90	14,8	14,7	14,6	14,5	14,4		14,2	14,1	14,0	13,9
3,20 12,1 12,0 11,9 11,8 11,7 11,6 11,5 11,5 11,4 3,30 11,4 11,3 11,2 11,2 11,1 11,0 11,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 <t< td=""><td>3,00</td><td>13,8</td><td>13,7</td><td>13,6</td><td>13,5</td><td>13,5</td><td>13,4</td><td>13,3</td><td>13,2</td><td>13,1</td><td>13,0</td></t<>	3,00	13,8	13,7	13,6	13,5	13,5	13,4	13,3	13,2	13,1	13,0
3,30 11,4 11,3 11,2 11,2 11,1 11,0 11,0 10,9 10,8 10,8 3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,1	3,10	12,9	12,8	12,8	12,7	12,6	12,5	12,4	12,3	12,3	12,2
3,40 10,7 10,6 10,6 10,5 10,4 10,4 10,3 10,2 10,2 10,1 3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 <t< td=""><td>3,20</td><td>12,1</td><td>12,0</td><td>11,9</td><td>11,8</td><td>11,7</td><td>11,7</td><td>11,6</td><td>11,5</td><td>11,5</td><td>11,4</td></t<>	3,20	12,1	12,0	11,9	11,8	11,7	11,7	11,6	11,5	11,5	11,4
3,50 10,1 10,0 9,95 9,89 9,83 9,77 9,72 9,66 9,61 9,55 3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,30	11,4	11,3	11,2	11,2	11,1	11,0	11,0	10,9	10,8	10,8
3,60 9,50 9,44 9,39 9,33 9,28 9,23 9,18 9,12 9,07 9,02 3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,40	10,7	10,6	10,6	10,5	10,4	10,4	10,3	10,2	10,2	10,1
3,70 8,97 8,92 8,87 8,82 8,77 8,72 8,68 8,63 8,58 8,53 3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,50	10,1	10,0	9,95	9,89	9,83	9,77	9,72	9,66	9,61	9,55
3,80 8,49 8,44 8,39 8,35 8,30 8,26 8,21 8,17 8,13 8,08 3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,60	9,50	9,44	9,39	9,33	9,28	9,23	9,18	9,12	9,07	9,02
3,90 8,01 8,00 7,95 7,91 7,87 7,83 7,79 7,75 7,71 7,67 4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,70	8,97	8,92	8,87	8,82	8,77	8,72	8,68	8,63	8,58	8,53
4,00 7,63 7,59 7,55 7,51 7,47 7,43 7,39 7,35 7,32 7,28 4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,80	8,49	8,44	8,39	8,35	8,30	8,26	8,21	8,17	8,13	8,08
4,10 7,24 7,20 7,17 7,13 7,10 7,06 7,02 6,99 6,95 6,92	3,90	8,01	8,00	7,95	7,91	7,87	7,83	7,79	7,75	7,71	7,67
	4,00	7,63	7,59	7,55	7,51	7,47	7,43	7,39	7,35	7,32	7,28
4,20 6, 88 6,85 6,82 6,78 6,75 6,71 6,68 6,65 6,62 6,58	4,10	7,24	7,20	7,17	7,13	7,10	7,06	7,02	6,99	6,95	6,92
	4,20	6, 88	6,85	6,82	6,78	6,75	6,71	6,68	6,65	6,62	6,58

Продолжение приложения 1

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4,30	6,55	6,52	6,49	6,46	6,42	6,39	6,36	6,33	6,30	6,27
4,40	6,24	6,21	6,18	6,15	6,12	6,09	6,06	6,01	6,01	5,98
4,50	5,95	5,92	5,90	5,87	5,84	5,81	5,79	5,76	5,73	5,71
4,60	5,68	5,6	5,63	5,60	5,58	5,55	5,53	5,50	5,48	5,45
4,70	5,43	5,40	5,38	5,35	5,33	5,30	5,28	5,26	5,23	5,21
4,80	5,19	5,16	5,14	5,12	5,10	5,07	5,05	5,04	5,01	4,98
4,90	4,96	4,94	4,92	4,90	4,88	4,86	4,83	4,81	4,79	4,77
5,00	4,75	4,73	4,71	4,69	4,67	4,65	4,63	4,61	4,59	4,57
5,10	4,55	4,53	4,51	4,50	4,48	4,46	4,44	4,42	4,40	4,38
5,20	4,37	4,35	4,33	4,31	4,29	4,28	4,26	4,24	4,22	4,21
5,30	4,19	4,17	4,15	4,14	1,12	4,10	4,09	4,07	4,05	4,04
5,40	4,02	4,00	3,99	3,97	3,96	3,94	3,92	3,91	3,89	3,88
5,50	3,86	3,85	3,83	3,82	3,80	3,79	3,77	3,76	3,74	3,73
5,60	3,71	3,70	3,68	3,67	3,65	3,61	3,63	3,61	3,60	3,58
5,70	3,57	3,56	3,54	3,53	3,51	3,50	3,49	3,47	3,46	3,45
5,80	3,43	3,42	3,41	3,39	3,38	3,37	3,36	3,34	3,33	3,32
5,90	3,31	3,29	3,28	3,27	3,26	3,24	3,23	3,22	3,21	3,20

D = 10 mm, P = 4905 H (500 kgc) H K = 5

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
2,60	92,6	91,8	91,1	90,4	89,7	89,0	88,4	87,7	87,0	86,4
2,70	85,7	85,1	84,4	83,8	83,2	82,6	81,9	81,3	80,8	80,2
2,80	79,6	79,0	78,4	77,9	77,3	76,8	76,2	75,7	75,1	74,6
2,90	74,1	73,6	73,0	72,5	72,0	71,5	71,0	70,5	70,1	69,6
3,00	69,1	68,6	68,2	67,7	67,3	66,8	66,4	65,9	65,5	65,0
3,10	64,6	64,2	63,8	63,3	62,9	62,5	62,1	61,7	61,3	60,9
3,20	60,5	60,1	59,8	59,4	59,0	58,6	58,3	57,9	57,5	57,2
3,30	56,8	56,5	56,1	55,8	55,4	55,1	54,8	54,4	54,1	53,8
3,40	53,4	53,1	52,8	52,5	52,2	51,8	51,5	51,2	50,9	50,6
3,50	50,3	50,0	49,7	49,4	49,2	48,9	48,6	48,3	48,0	47,7
3,60	47,5	47,2	46,9	46,7	46,4	46,1	45,9	45,6	45,4	45,1
3,70	44,9	44,6	44,4	44,1	43,9	43,6	43,4	43,1	42,9	42,7
3,80	42,4	42,2	42,0	41,7	41,5	41,3	41,1	40,9	40,6	40,4
3,90	40,2	40,0	39,8	39,6	39,4	39,1	38,9	38,7	38,5	38,3
4,00	38,1	37,9	37,7	37,5	37,3	37,1	37,0	36,8	36,6	36,4
4,10	36,2	36,0	35,8	35,7	35,5	35,3	35,1	34,9	34,8	34,6

Продолжение приложения 1

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
4,20	34,4	34,2	34,1	33,9	33,7	33,6	33,4	33,2	33,1	32,9
4,30	32,8	32,6	32,4	32,3	32,1	32,0	31,8	31,7	31,5	31,4
4,40	31,2	31,1	30,9	30,8	30,6	30,5	30,3	30,2	30,0	29,9
4,50	29,8	29,6	29,5	29,3	29,2	29,1	28,9	28,8	28,7	28,5
4,60	28,4	28,3	28,1	28,0	27,9	27,8	27,6	27,5	27,4	27,3
4,70	27,1	27,0	26,9	26,8	26,6	26,5	26,4	26,3	26,2	26,1
4,80	25,9	25,8	25,7	25,6	25,5	25,4	25,3	25,1	25,0	24,9
4,90	24,8	24,7	24,6	24,5	24,4	24,3	24,2	24,1	24,0	23,9
5,00	23,8	23,7	23,6	23,5	23,4	23,3	23,2	23,1	23,0	22,9
5,10	22,8	22,7	22,6	22,5	22,4	22,3	22,2	22,1	22,0	21,9
5,20	21,8	21,7	21,6	21,6	21,5	21,4	21,3	21,2	21,1	21,0
5,30	20,9	20,9	20,8	20,7	20,6	20,5	20,4	20,3	20,3	20,2
5,40	20,1	20,0	19,9	19,9	19,8	19,7	19,6	19,5	19,5	19,4
5,50	19,3	19,2	19,2	19,1	19,0	18,9	18,9	18,8	18,7	18,6
5,60	18,6	18,5	18,4	18,3	18,3	18,2	18,1	18,1	18,0	17,9
5,70	17,8	17,8	17,7	17,6	17,6	17,5	17,4	17,4	17,3	17,2
5,80	17,2	17,1	17,0	17,0	16,9	16,8	16,8	16,7	16,7	16,6
5,90	16,5	16,5	16,4	16,3	16,3	16,2	16,2	16,1	16,0	16,0

D = 5 mm, P = 7857 H (750 kmc) H K = 30

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,50	415	409	404	398	393	388	383	378	373	368
1,60	363	359	354	350	345	341	337	333	329	325
1,70	321	317	313	309	306	302	298	295	292	288
1,80	285	282	278	275	272	269	266	263	260	257
1,90	255	252	249	246	244	241	239	236	234	231
2,00	229	226	224	222	219	217	215	213	211	209
2,10	207	204	202	200	193	197	195	193	191	189
2,20	187	185	184	182	180	179	177	175	174	172
2,30	170	169	167	166	164	163	161	160	158	157
2,40	156	154	152	152	150	149	148	146	145	144
2,50	143	141	140	139	138	137	135	134	133	132
2,60	131	130	129	128	127	126	125	124	123	122
2,70	121	120	119	118	117	116	115	114	113	112
2,80	111	110	110	109	108	107	106	105	105	104
2,90	103	102	101	101	99,9	99,2	98,4	97,7	96,9	96,2

Продолжение приложения 1

D = 5 mm, P = 2452 H (250 krc) H K = 10

d, mm	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,40	159	157	155	152	150	148	146	144	142	140
1,50	138	136	135	133	131	129	128	126	124	123
1,60	121	120	118	117	115	114	112	111	110	108
1,70	107	106	104	103	102	101	99,5	98,3	97,2	96,1
1,80	95,0	93,9	92,8	91,8	90,7	89,7	88,7	87,7	86,8	85,8
1,90	84,9	83,9	83,0	82,1	81,3	80,4	79,5	78,7	77,9	77,1
2,00	76,3	75,5	74,7	73,2	73,2	72,4	71,7	71,0	70,2	69,5
2,10	68,8	68,2	67,5	66,8	66,2	65,5	64,9	64,2	63,6	63,0
2,20	62,4	61,8	61,2	60,6	60,1	59,5	59,0	58,4	57,9	57,3
2,30	56,8	56,3	55,8	55,3	54,8	54,3	53,8	53,3	52,8	52,3
2,40	51,9	51,4	51,0	50,5	50,1	49,6	49,2	48,8	48,3	47,9
2,50	47,5	47,1	46,7	46,3	45,9	45,5	45,1	44,8	44,4	44,0
2,60	43,7	43,3	42,9	42,6	42,2	41,9	41,5	41,2	40,9	40,5
2,70	40,2	39,9	39,6	39,2	38,9	38,6	38,3	38,0	37,7	37,4
2,80	37,1	36,8	36,5	36,3	36,0	35,7	35,4	35,1	34,9	34,6

D = 5 mm, P = 1226 H (125 krc) H K = 5

<i>d</i> , мм	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,40	79,6	78,4	77,3	76,2	75,1	74,1	73,0	72,0	71,0	70,1
1,50	69,1	68,2	67,3	66,4	65,5	64,6	63,8	62,9	62,1	61,3
1,60	60,5	59,8	59,0	58,3	57,5	56,8	56,1	55,4	54,8	54,1
1,70	53,4	52,8	52,2	51,5	50,9	50,3	49,7	49,2	48,6	48,0
1,80	47,5	46,9	46,4	45,9	45,4	44,9	44,4	43,9	43,4	42,9
1,90	42,4	42,0	41,5	41,1	40,6	40,2	39,8	39,4	38,9	38,5
2,00	38,1	37,7	37,3	37,0	36,6	36,2	35,8	35,5	35,1	34,8
2,10	34,4	34,1	33,7	33,4	33,1	32,8	32,4	32,1	31,8	31,5
2,20	31,2	30,9	30,6	30,3	30,0	29,8	29,5	29,2	28,9	28,7
2,30	28,4	28,1	27,9	27,6	27,4	27,1	26,9	26,6	26,4	26,2
2,40	25,9	25,7	25,5	25,3	25,0	24,8	24,6	24,4	24,2	24,0
2,50	23,8	23,6	23,4	23,2	23,0	22,8	22,6	22,4	22,2	22,0
2,60	21,8	21,6	21,5	21,3	21,1	20,9	20,8	20,6	20,4	20,3
2,70	20,1	19,9	19,8	19,6	19,5	19,3	19,2	19,0	18,9	18,7
2,80	18,6	18,4	18,3	18,1	18,0	17,8	17,7	17,6	17,4	17,3
2,90	17,2	17,0	16,9	16,8	16,7	16,5	16,4	16,3	16,2	16,0

Продолжение приложения 1

D = 5 mm, P = 245 H (25 krc) H K = 1

d, mm	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
1,30	18,5	18,2	17,9	17,7	17,4	17,1	16,9	16,6	16,4	16,2
1,40	15,9	15,7	15,5	15,2	15,0	14,8	14,6	14,4	14,2	14,0
1,50	13,8	13,6	13,5	13,3	13,1	12,9	12,8	12,6	12,4	12,3
1,60	12,1	12,0	11,8	11,7	11,5	11,4	11,2	11,1	11,0	10,8
1,70	10,7	10,6	10,4	10,3	30,2	10,1	9,95	9,83	9,72	9,61
1,80	9,50	9,39	9,28	9,18	9,07	8,97	8,87	8,77	8,68	8,58
1,90	8,49	8,39	8,30	8,21	8,13	8,04	7,95	7,87	7,79	7,71
2,00	7,63	7,55	7,47	7,39	7,32	7,24	7,17	7,10	7,02	6,95
2,10	6,88	6,82	6,75	6,68	6,62	6,55	6,49	6,42	6,36	6,30
2,20	6,24	6,18	6,12	6,06	6,01	5,95	5,90	5,84	5,79	5,72
2,30	5,68	5,63	5,58	5,53	5,48	5,43	5,38	5,33	5,28	5,23
2,40	5,19	5,14	5,10	5,05	5,01	4,96	4,92	4,88	4,83	4,79
2,50	4,75	4,71	4,67	4,63	4,59	4,55	4,51	4,48	4,44	4,40
2,60	4,37	4,33	4,29	4,26	4,22	4,19	4,15	4,12	4,09	4,05
2,70	4,02	4,99	3,96	3,92	3,89	3,86	3,83	3,80	3,77	3,74
2,80	3,71	3,68	3,65	3,63	3,60	3,57	3,54	3,51	3,49	3,46

D = 2.5 mm, P = 1840 H (187,5 kgc) H K = 30

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,720	451	449	448	447	446	444	443	442	441	439
0,730	438	437	436	435	433	432	431	430	429	427
0,740	426	425	424	423	422	420	419	418	417	416
0,750	415	413	412	411	410	400	408	407	406	405
0,760	404	402	491	400	399	398	397	396	395	394
0,770	393	392	391	390	389	388	387	386	385	384
0,780	383	382	381	380	379	378	377	376	375	374
0,790	373	372	371	370	369	368.	367	366	365	364
0,800	363	362	361	360	359	359	358	357	356	355
0,810	354	353	352	351	350	350	349	348	347	346
0,820	345	344	344	343	342	341	340	339	333	338
0,830	337	336	335	334	333	333	332	331	330	329
0,840	328	328	327	326	325	324	321	323	322	321

Продолжение приложения 1

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,850	321	320	319	318	317	317	316	315	314	314
0,860	313	312	311	311	310	309	308	308	307	306
0,870	306	305	304	303	303	302	301	301	300	299
0,880	298	294	297	296	296	295	294	291	293	292
0,890	291	291	290	289	289	288	287	287	286	285
0,900	285	284	284	283	282	282	281	280	280	279
0,910	278	278	277	276	276	275	275	274	273	273
0,920	272	272	271	270	270	269	269	268	267	267
0,930	266	266	265	264	264	263	263	262	261	261
0,940	230	260	259	259	258	257	257	255	256	255
0,950	255	254	253	253	252	252	251	251	250	250
0,960	249	249	248	247	247	246	246	245	245	244
0,970	244	243	242	242	242	241	241	240	240	239
0,980	239	239	238	237	237	236	236	235	235	234
0,990	234	233	233	232	232	231	231	230	230	229
1,000	229	228	228	227	227	226	226	225	225	225
1,010	224	224	223	223	222	222	221	221	220	220
1,020	219	219	219	218	218	217	217	216	216	215
1,030	215	215	214	214	213	213	212	212	212	211

D = 2.5 mm, P = 613 H (62.5 kgc) μ K = 10

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,630	197	197	196	195	195	194	194	193	192	192
0,640	191	190	190	189	189	188	187	187	186	186
0,650	185	185	184	183	183	182	182	181	181	180
0,660	179	179	178	178	177	177	176	176	175	175
0,670	174	174	173	172	172	171	171	170	170	169
0,680	169	168	168	167	167	166	166	165	165	164
0,690	164	163	163	162	162	161	161	161	160	160
0,700	159	159	158	158	157	157	156	156	156	155
0,710	155	154	154	153	153	152	152	152	151	151
0,720	150	150	149	149	149	148	148	147	147	146
0,730	146	146	145	145	144	144	144	143	143	142

Продолжение приложения 1

							11pt	oonsien	ие прило	жения і
<i>d,</i> мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,740	142	142	141	141	141	140	140	139	139	139
0,750	138	138	137	137	137	136	136	136	135	135
0,760	135	134	134	133	133	133	132	132	132	131
0,770	131	131	130	130	130	129	129	129	128	128
0,780	128	127	127	127	126	126	126	125	125	125
0,790	124	124	124	123	123	123	122	122	122	121
0,800	121	121	125	120	120	120	119	119	119	119
0,810	118	118	117	117	117	117	116	116	116	116
0,820	115	115	115	114	114	114	113	113	113	113
0,830	112	112	112	111	111	111	111	110	110	110
0,840	109	109	109	109	108	108	108	108	107	107
0,850	107	107	106	106	106	106	105	105	105	105
0,860	104	104	104	104	103	103	103	103	102	102
0,870	102	102	101	101	101	101	100	100	99,9	99,7
0,880	99,5	99,2	99,0	98,8	98,5	98,3	98,1	97,9	97,6	97,4
0,890	97,2	96,9	96,7	96,5	96,3	96,1	95,8	95,6	95,4	95,2
0,900	94,9	94,7	94,5	94,3	94,1	93,9	93,6	93,4	93,2	93,0
0,910	92,8	92,6	92,4	92,2	92,0	91,7	91,5	91,3	91,1	90,9
0,920	90,7	90,5	90,3	90,1	89,9	89,7	89,5	89,3	89,1	88,9
0,930	88,7	88,5	88,3	88,1	87,9	87,7	87,5	87,3	87,1	86,9
0,940	86,8	86,6	86,4	86,2	86,0	85,8	85,6	85,4	85,2	85,1
0,950	84,9	84,7	84,5	81,3	84,1	83,9	83,8	83,6	83,4	83,2
0,960	83,0	82,9	82,7	82,5	82,3	82,1	82,0	81,8	81,6	81,4
0,970	81,3	81,1	80,9	80,7	80,6	80,4	80,2	80,0	79,9	79,7
0,980	79,5	79,4	79,2	79,0	78,9	78,7	78,5	78,4	78,2	78,0
0,990	77,9	77,7	77,5	77,4	77,2	77,1	76,9	76,7	76,6	76,4
1,000	76,3	76,1	75,9	75,8	75,6	75,5	75,3	75,2	75,0	74,8
1,010	74,7	74,5	74,4	74,2	74,1	73,9	73,8	73,6	73,5	73,3
1,020	73,2	73,0	72,9	72,7	72,6	72,4	72,3	72,1	72,0	71,8
1,030	71,7	71,5	71,4	71,2	71,1	71,0	70,8	70,7	70,5	70,4
1,040	70,2	70,1	70,0	69,8	69,7	69,5	69,4	69,3	69,1	69,0
1,050	68,8	68,7	68,6	68,4	68,3	68,2	68,0	67,9	67,8	67,6
1,060	67,5	67,3	67,2	67,1	66,9	66,8	66,7	66,6	66,4	66,3
		ı	1	t	1			ı	ı	1

Продолжение приложения 1

A, MM 0,000 0,001 0,002 0,003 0,004 0,005 0,006 0,007 0,008 0,009				1					1	ue ripuio	1
1,080 64,9 64,7 64,6 64,5 64,4 64,2 64,1 64,0 63,9 63,8 1,090 63,6 63,5 63,4 63,3 63,1 63,0 62,9 62,8 62,7 62,5 1,100 62,4 62,3 62,2 62,1 61,9 61,8 61,7 61,6 61,5 61,3 1,110 61,2 61,1 61,0 60,9 60,8 60,6 60,5 60,4 60,3 60,2 1,120 60,1 60,0 59,8 59,7 59,6 59,5 59,4 59,3 59,2 59,1 1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 55,5 55,4 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9	<i>d</i> , мм	0,000	_		0,003	0,004	0,005		0,007	0,008	0,009
1,090 63,6 63,5 63,4 63,3 63,1 63,0 62,9 62,8 62,7 62,5 1,100 62,4 62,3 62,2 62,1 61,9 61,8 61,7 61,6 61,5 61,3 1,110 61,2 61,1 61,0 60,9 60,8 60,6 60,5 60,4 60,3 60,2 1,120 60,1 60,0 59,8 59,7 59,6 59,5 59,4 59,3 59,2 59,1 1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1	1,070	66,2	66,0	65,9	65,8	65,6		65,4	65,3		
1,100 62,4 62,3 62,2 62,1 61,9 61,8 61,7 61,6 61,5 61,3 1,110 61,2 61,1 61,0 60,9 60,8 60,6 60,5 60,4 60,3 60,2 1,120 60,1 60,0 59,8 59,7 59,6 59,5 59,4 59,3 59,2 59,1 1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 55,0 55,5 55,5 55,3 55,2 55,1 55,0 55,5 56,9 1,10 50,0 50,3 50,2 50,2 52,1 52,0 52,1 52,0 52,1 52,0	1,080	64,9	64,7			64,4				63,9	63,8
1,110 61,2 61,1 61,0 60,9 60,8 60,6 60,5 60,4 60,3 60,2 1,120 60,1 60,0 59,8 59,7 59,6 59,5 59,4 59,3 59,2 59,1 1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,5 56,3 56,2 56,1 56,0 55,9 1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 56,0 55,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5	1,090	63,6	63,5	63,4	63,3	63,1	63,0	62,9	62,8	62,7	62,5
1,120 60,1 60,0 59,8 59,7 59,6 59,5 59,4 59,3 59,2 59,1 1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 80,7 50,6 50,5 50,4 50,3 50,2 52,1 52,0 1,220 50,1 50,0 49,9 49,8	1,100	62,4	62,3	62,2	62,1	61,9	61,8	61,7	61,6	61,5	61,3
1,130 59,0 58,8 58,7 58,6 58,5 58,4 58,3 58,2 58,1 58,0 1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 56,0 55,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2	1,110	61,2	61,1	61,0	60,9	60,8	60,6	60,5	60,4	60,3	60,2
1,140 57,9 57,8 57,6 57,5 57,4 57,3 57,2 57,1 57,0 56,9 1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 55,0 54,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9	1,120	60,1	60,0	59,8	59,7	59,6	59,5		.59,3	59,2	59,1
1,150 56,8 56,7 56,6 56,5 56,4 56,3 56,2 56,1 56,0 55,9 1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 55,0 54,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0	1,130	59,0	58,8	58,7	58,6	58,5	58,4	58,3	58,2	58,1	58,0
1,160 55,8 55,7 55,6 55,5 55,4 55,3 55,2 55,1 55,0 54,9 1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1	1,140	57,9	57,8	57,6	57,5	57,4	57,3	57,2	57,1	57,0	56,9
1,170 54,8 54,7 54,6 54,5 54,4 54,3 54,2 54,1 54,0 53,9 1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,5 45,5	1,150	56,8	56,7	56,6	56,5	56,4	56,3		56,1	56,0	55,9
1,180 53,8 53,7 53,6 53,5 53,4 53,3 53,2 53,1 53,0 52,9 1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5	1,160	55,8	55,7	55,6	55,5	55,4	55,3	55,2	55,1	55,0	54,9
1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,1 46,0	1,170	54,8	54,7		54,5	54,4	54,3		54,1		53,9
1,190 52,8 52,7 52,6 52,5 52,4 52,3 52,2 52,1 52,1 52,0 1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,1 46,0	1,180	53,8	53,7	53,6	53,5		53,3	53,2	53,1	53,0	52,9
1,200 51,9 51,8 51,7 51,6 51,5 51,4 51,3 51,2 51,1 51,0 1,210 51,0 50,9 50,8 50,7 50,6 50,5 50,4 50,3 50,2 50,2 1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2	1,190		52,7			52,4		52,2	52,1		52,0
1,220 50,1 50,0 49,9 49,8 49,7 49,6 49,5 49,5 49,4 49,3 1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,8 43,7 1,310 42,9 42,8 42,7 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7	1,200	51,9	51,8	51,7	51,6		51,4	51,3	51,2	51,1	51,0
1,230 49,2 49,1 49,0 48,9 48,9 48,8 48,7 48,6 48,5 48,4 1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7	1,210	51,0	50,9	50,8	50,7	50,6	50,5	50,4	50,3	50,2	50,2
1,240 48,3 48,3 48,2 48,1 48,0 47,9 47,8 47,8 47,7 47,6 1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,1 42,0 41,9 41,8	1,220	50,1	50,0	49,9	49,8		49,6	49,5			
1,250 47,5 47,4 47,4 47,3 47,2 47,1 47,0 46,9 46,9 46,8 1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,7 41,7 41,7 41,6 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,360 39,6 39,5 39,4 39,4	1,230	49,2	49,1		48,9	48,9		48,7	48,6		48,4
1,260 46,7 46,6 46,5 46,5 46,4 46,3 46,2 46,2 46,1 46,0 1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,360 39,6 39,5 39,4 39,4 39,3	1,240	48,3	48,3	48,2		48,0		47,8	47,8		
1,270 45,9 45,8 45,8 45,7 45,6 45,5 45,5 45,4 45,3 45,2 1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,370 38,9 38,9 38,8 38,7 38,7	1,250	47,5	47,4	47,4	47,3	47,2	47,1	47,0	46,9	46,9	46,8
1,280 45,1 45,1 45,0 44,9 44,8 44,8 44,7 44,6 44,5 44,5 1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,7 41,6 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,370 38,9 38,9 38,8 38,7 38,7 38,6 38,6 38,5 38,4 38,4 1,390 37,7 37,6 37,6 37,5	1,260		46,6	46,5	46,5	46,4	46,3	46,2	46,2	46,1	46,0
1,290 44,4 44,3 44,9 45,2 44,1 44,0 43,9 43,9 43,8 43,7 1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,8 38,7 38,7	1,270		45,8	45,8	45,7	45,6	45,5	45,5	45,4	45,3	45,2
1,300 43,7 43,6 43,5 43,4 43,4 43,3 43,2 43,1 43,1 43,0 1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,8 38,7 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4	1,280	45,1	45,1	45,0		44,8	44,8	44,7	44,6	44,5	44,5
1,310 42,9 42,9 42,8 42,7 42,6 42,6 42,5 42,1 42,4 42,3 1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,9 38,8 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 36,5 36,5 36,4 36,4 36,3 36,8 36,7 36,1 36,0	1,290	44,4		44,9		44,1	1 1		43,9	43,8	43,7
1,320 42,2 42,2 42,1 42,0 41,9 41,8 41,7 41,7 41,7 41,6 1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,9 38,8 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1	1 .	43,7	43,6						43,1		
1,330 40,5 41,5 41,4 41,3 41,3 41,2 41,1 41,1 41,0 40,9 1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,9 38,8 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,2 38,1 38,0 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0	1,310	42,9	42,9			42,6			42,1		
1,340 40,9 40,8 40,7 40,7 40,6 40,5 40,5 40,4 40,3 40,3 1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,8 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,3 38,2 38,1 38,0 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0		ľ	1	1		1					
1,350 40,2 40,1 40,1 40,0 39,9 39,9 39,8 39,8 39,7 39,6 1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,8 38,7 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0			1			1					
1,360 39,6 39,5 39,4 39,4 39,3 39,2 39,2 39,1 39,1 39,0 1,370 38,9 38,8 38,7 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0			1 '								
1,370 38,9 38,9 38,8 38,7 38,6 38,6 38,5 38,4 38,4 1,380 38,3 38,2 38,1 38,1 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0											
1,380 38,3 38,3 38,2 38,1 38,1 38,0 38,0 37,9 37,8 37,8 1,390 37,7 37,6 37,6 37,5 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0											
1,390 37,7 37,6 37,6 37,5 37,4 37,4 37,3 37,2 37,2 1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0					38,7						
1,400 37,1 37,1 37,0 36,9 36,9 36,8 36,8 36,7 36,7 36,6 1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0											
1,410 36,5 36,5 36,4 36,4 36,3 36,3 36,2 36,1 36,1 36,0		37,7	37,6								
	1	1									
1,420 36,0 35,9 35,9 35,9 35,7 35,7 35,6 35,6 35,5 35,5	1	1 '									
	1,420	36,0	35,9	35,9	35,9	35,7	35,7	35,6	35,6	35,5	35,5

Продолжение приложения 1

D = 2.5 mm, P = 306 H (31,25 krc) H K = 5

d, MM 0 ,	,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,650 9	2,5	92,3	92,0	91,7	91,4	91,1	90,8	90,6	90,3	90,0
0,660 8	9,7	89,4	89,2	88,9	88,6	88,3	88,1	87,8	87,5	87,3
0,670 8	7,0	86,8	86,5	86,2	86,0	85,7	85,5	85,2	84,9	84,7
0,680 8	4,4	84,2	83,9	83,7	83,4	83,2	82,9	82,7	82,4	82,2
0,690 8	2,0	81,7	81,5	81,2	81,0	80,7	80,5	80,3	80,0	79,8
0,700 7	9,6	79,3	79,4	78,9	78,7	78,4	78,2	78,0	77,8	77,5
0,710 7	7,3	77,1	76,8	76,6	76,4	76,2	76,0	75,8	75,6	75,3
0,720 7	5,1	74,9	74,7	74,5	74,3	74,1	73,9	73,6	73,4	73,2
0,730 7	3,0	72,8	72,6	72,4	72,2	72,0	71,8	71,6	71,4	71,2
0,740 7	1,0	70,8	70,6	70,4	70,3	70,1	69,9	69,7	69,5	69,3
0,750 6	9,1	68,9	68,7	68,5	68,4	68,2	68,0	67,8	67,5	67,4
0,760 6		67,1	66,9	66,7	66,5	66,4	66,2	66,0	65,8	65,6
		65,3	65,1	64,9	64,8	64,6	64,4	64,3	64,1	63,9
		63,6	63,4	63,3	63,1	62,9	62,8	62,6	62,4	62,3
0,790 6	2,1	62,0	61,8	61,1	61,5	61,3	61,2	61,0	60,9	60,7
0,800 6	0,5	60,4	60,2	60,1	59,9	59,8	59,6	59,5	59,3	59,2
	9,0	58,9	58,7	58,6	58,4	58,3	58,1	58,0	57,8	57,7
	7,5	57,4	57,3	57,1	57,0	56,8	56,7	56,5	56,4	56,3
	6,1	56,0	55,8	55,7	55,6	55,4	55,3	55,1	55,0	54,9
	4,7	54,6	54,5	54,3	54,2	54,1	54,0	53,8	53,7	53,6
	3,4	53,3	53,2	53,0	52,9	52,8	52,7	52,5	52,4	52,3
	2,2	52,0	51,9	51,8	51,7	51,5	51,4	51,3	51,2	51,0
	0,9	50,8	50,7	50,6	50,4	50,3	50,2	50,1	50,0	49,9
	9,7	49,6	49,5	49,4	49,3	49,2	49,0	48,9	48,8	48,7
1 ' [8,6	48,5	48,4	48,2	48,1	48,0	47,9	47,8	47,7	47,6
1 ' 1	7,5	47,4	47,3	47,2	47,0	46,9	46,8	46,7	46,6	46,5
	6,4	46,3	46,2	46,1	46,0	45,9	45,8	45,7	45,6	45,5
1 1	5,4	45,3	45,2	45,1	45,0	44,9	44,8	44,7	44,6	44,5
1 1	4,4	44,3	44,2	44,1	44,0	13,9	43,8	43,7	43,6	43,5
1 ' 1	3,4	43,3	43,2	43,1	43,0	12,9	42,8	42,7	42,6	42,5
1 1	2,4	42,3	42,2	42,2	42,1	42,0	41,9	41,8	41,7	41,6
1 1	1,5	41,4	41,3	41,2	41,2	41,1	41,0	40,9	40,8	40,7
	0,6	40,5	40,5	40,4	40,3	40,2	40,1	40,0	39,9	39,9
0,980 3	9,8	39,7	39,6	39,5	39,4	39,4	39,3	39,2	39,1	39,0

Продолжение приложения 1

_		1			1			,	1	,
<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,990	38,9	38,9	38,8	38,7	38,6	38,5	38,4'	38,4	38,3	38,2
1,000	38,1	38,0	38,0	37,9	37,8	37,7	37,7	37,6	37,5	37,4
1,010	37,3	37,3	37,2	37,1	37,0	37,0	36,9	36,8	36,7	36,7
1,020	36,6	36,5	36,4	36,4	36,3	36,2	36,1	36,1	36,0	35,9
1,030	35,8	35,8	35,7	35,6	35,5	35,5	35,4	35,4	35,3	35,2
1,040	35,1	35,0	35,0	34,9	34,8	34,8	34,7	34,6	34,6	34,5
1,050	34,4	34,4	34,3	34,2	34,1	34,1	34,0	33,9	33,9	33,8
1,060	33,7	33,7	33,6	33,5	33,5	33,4	33,3	33,3	33,2	33,1
1,070	33,1	33,0	33,0	32,9	32,8	32,8	32,7	32,6	32,6	32,5
1,080	32,4	32,4	32,3	32,2	32,2	32,1	32,1	32,0	31,9	31,9
1,090	31,8	31,8	31,7	31,6	31,5	31,5	31,4	31,4	31,3	31,3
1,100	31,2	31,1	31,1	31,0	31,0	30,9	30,8	30,8	30,7	30,7
1,110	30,6	30,6	30,5	30,4	30,4	30,3	30,3	30,2	30,2	30,1
1,120	30,0	30,0	29,9	29,9	29,8	29,8	29,7	29,6	29,6	29,5
1,130	29,5	29,4	29,4	29,3	29,3	29,2	29,1	29,1	29,0	29,0
1,140	28,9	28,9	28,8	28,8	28,7	28,7	28,6	28,6	28,5	28,5
1,150	28,4	28,3	28,3	28,2	28,2	28,1	28,1	28,0	28,0	27,9
1,160	27,9	27,8	27,8	27,7	27,7	27,6	27,6	27,5	27,5	27,4
1,170	27,4	27,3	27,3	27,2	27,2	27,1	27,1	27,0	27,0	26,9
1,180	26,9	26,8	26,8	26,7	26,7	26,6	26,6	26,5	26,5	26,5
1,190	26,4	26,4	26,3	26,3	26,2	26,2	26,1	26,1	26,0	26,0
1,200	25,9	25,9	25,8	25,8	25,8	25,7	25,7	25,6	25,6	25,5
1,210	25,5	25,4	25,4	25,3	25,3	25,2	25,2	25,2	25,1	25,1
1,220	25,0	25,0	24,9	24,9	24,9	24,8	24,8	24,7	24,7	24,6
1,230	24,6	24,6	24,5	24,5	24,4	24,4	24,3	24,3	24,3	24,2
1,240	24,2	24,1	24,1	24,0	24,0	24,0	23,9	23,9	23,8	23,8
1,250	23,8	23,7	23,7	23,6	23,6	23,6	23,5	23,5	23,4	23,4
1,260	23,4	23,3	23,3	23,2	23,2	23,2	23,2	23,1	23,0	23,0
1,270	23,0	22,9	22,9	22,8	22,8	22,8	22,7	22,7	22,6	22,6
1,280	22,6	22,5	22,5	22,5	22,4	22,4	22,3	22,3	22,3	22,2
1,290	22,2	22,2	22,1	22,1	22,0	22,0	21,9	21,9	21,9	21,9
1,300	21,8	21,8	21,8	21,7	21,7	21,6	21,6	21,6	21,5	21,5
1,310	21,5	21,4	21,4	21,4	21,3	21,3	21,3	21,2	21,2	21,1
1,320	21,1	21,1	21,0	21,0	21,0	20,9	20,9	20,9	20,8	20,8
1,330	20,8	20,7	20,7	20,7	20,6	20,6	20,6	20,5	20,5	20,5
1,340	20,4	20,4	20,4	20,3	20,3	20,3	20,2	20,2	20,2	20,1
1,350	20,1	20,1	20,0	20,0	20,0	19,9	19,9	19,9	19,8	19,8

Продолжение приложения 1

D = 2.5 mm, P = 61.5 H (6.25 kgc) H K = 1

	· · · · ·		` `	<u> </u>		,				
<i>d,</i> мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,650	18,5	18,5	18,4	18,3	18,3	18,2	18,2	18,1	18,1	18,0
0,660	17,9	17,9	17,8	17,8	17,7	17,7	17,6	17,6	17,5	17,5
0,670	17,4	17,4	17,3	17,3	17,2	17,1	17,1	17,0	17,0	16,9
0,680	16,9	16,8	16,8	16,7	16,7	16,6	16,6	16,5	16,5	16,4
0,690	16,4	16,3	16,3	16,2	16,2	16,1	16,1	16,1	16,0	16,0
0,700	15,9	15,9	15,8	15,8	15,7	15,6	15,6	15,6	15,6	15,5
0,710	15,5	15,4	15,4	15,3	15,3	15,2	15,2	15,2	15,1	15,1
0,720	15,0	15,0	14,9	14,9	14,9	14,8	14,8	14,7	14,7	14,6
0,730	14,6	14,6	14,5	14,5	14,4	14,4	14,4	14,3	14,3	14,2
0,740	14,2	14,2	14,1	14,1	14,1	14,0	14,0	13,9	13,9	13,9
0,750	13,8	13,8	13,7	13,7	13,6	13,6	13,6	13,6	13,5	13,5
0,760	13,5	13,4	13,4	13,3	13,3	13,3	13,2	13,2	13,2	13,1
0,770	13,1	13,1	13,0	13,0	13,0	12,9	12,9	12,9	12,8	12,8
0,780	12,8	12,7	12,7	12,7	12,6	12,6	12,6	12,5	12,5	12,5
0,790	12,4	12,4	12,4	12,3	12,3	12,3	12,2	12,2	12,2	12,1
0,800	12,1	12,1	12,0	12,0	12,0	12,0	11,9	11,9	11,9	11,8
0,810	11,8	11,8	11,7	11,7	11,7	11,7	11,6	11,6	11,6	11,5
0,820	11,5	11,5	11,5	11,4	11,4	11,4	11,3	11,3	11,3	11,3
0,830	11,2	11,2	11,2	11,1	11,1	11,1	11,1	11,0	11,0	11,0
0,840	10,9	10,9	10,9	10,9	10,8	10,8	10,8	10,8	10,7	10,7
0,850	10,7	10,7	10,6	10,6	10,6	10,6	10,5	10,5	10,5	10,5
0,860	10,4	10,4	10,4	10,4	10,3	10,3	10,3	10,3	10,2	10,2
0,870	10,2	10,2	10,1	10,1	10,1	10,1	10,0	10,0	9,99	9,97
0,880	9,95	9,92	9,90	9,88	9,85	9,83	9,81	9,79	9,76	9,74
0,890	9,72	9,69	9,67	9,65	9,63	9,61	9,58	9,56	9,54	9,52
0,900	9,49	9,47	9,45	9,43	9,41	9,39	9,36	9,34	9,32	9,30
0,910	9,28	9,26	9,24	9,22	9,20	9,17	9,15	9,13	9,11	9,09
0,920	9,07	9,05	9,03	9,01	8,99	8,97	8,95	8,93	8,91	8,89
0,930	8,87	8,85	8,83	8,81	8,79	8,77	8,75	8,73	8,71	8,69
0,940	8,68	8,66	8,64	8,62	8,60	8,58	8,56	8,54	8,52	8,51
0,950	8,49	8,47	8,45	8,43	8,41	8,39	8,38	8,36	8,34	8,32
0,960	8,30	8,29	8,27	8,25	8,23	8,21	8,20	8,18	8,16	8,14
0,970	8,13	8,11	8,09	8,07	8,06	8,04	8,02	8,00	7,99	7,97
0,980	7,95	7,94	7,92	7,90	7,89	7,87	7,85	7,84	7,82	7,80

Продолжение приложения 1

								JOUJIJICEN		
<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,990	7,79	7,77	7,75	7,74	7,72	7,71	7,69	7,67	7,66	7,64
1,000	7,63	7,61	7,59	7,58	7,56	7,55	7,53	7,52	7,50	7,48
1,010	7,47	7,45	7,44	7,42	7,41	7,39	7,38	7,36	7,35	7,33
1,020	7,32	7,30	7,29	7,27	7,26	7,24	7,23	7,21	7,20	7,18
1,030	7,17	7,15	7,14	7,12	7,11	7,10	7,08	7,07	7,05	7,04
1,040	7,02	7,01	7,00	6,98	6,97	6,95	6,94	6,93	6,91	6,90
1,050	6,88	6,87	6,86	6,84	6,83	6,82	6,80	6,79	6,78	6,76
1,060	6,75	6,73	6,72	6,71	6,69	6,68	6,67	6,66	6,64	6,63
1,070	6,62	6,60	6,59	6,58	6,56	6,55	6,54	6,53	6,51	6,50
1,080	6,49	6,47	6,46	6,45	6,44	6,42	6,41	6,40	6,39	6,38
1,090	6,36	6,35	6,34	6,33	6,31	6,30	6,29	6,28	6,27	6,25
1,100	6,24	6,23	6,22	6,21	6,19	6,18	6,17	6,16	6,15	6,13
1,110	6,12	6,11	6,10	6,09	6,08	6,06	6,05	6,04	6,03	6,02
1,120	6,01	6,00	5,98	5,97	5,96	5,95	5,94	5,93	5,92	5,91
1,130	5,90	5,88	5,87	5,86	5,85	5,84	5,83	5,82	5,81	5,80
1,140	5,79	5,78	5,76	5,75	5,74	5,73	5,72	5,71	5,70	5,69
1,150	5,68	5,67	5,66	5,65	5,64	5,63	5,62	5,61	5,60	5,59
1,160	5,58	5,57	5,56	5,55	5,54	5,53	5,52	5,51	5,50	5,49
1,170	5,48	5,47	5,46	5,45	5,44	5,43	5,42	5,41	5,40	5,39
1,180	5,38	5,37	5,36	5,35	5,34	5,33	5,32	5,31	5,30	5,29
1,190	5,28	5,27	5,26	5,25	5,24	5,23	5,22	5,21	5,21	5,20
1,200	5,19	5,18	5,17	5,16	5,15	5,14	5,13	5,12	5,11	5,10
1,210	5,10	5,09	5,08	5,07	5,06	5,05	5,04	5,03	5,02	5,02
1,220	5,01	5,00	4,99	4,98	4,97	4,96	4,95	4,95	4,94	4,93
1,230	4,92	4,91	4,90	4,89	4,89	4,88	4,87	4,86	4,85	4,84
1,240	4,83	4,83	4,82	4,81	4,80	4,79	4,78	4,78	4,77	4,76
1,250	4,75	4,74	4,74	4,73	4,72	4,71	4,70	4,69	4,69	4,68
1,260	4,67	4,66	4,65	4,65	4,64	4,63	4,62	4,62	4,61	4,60
1,270	4,59	4,58	4,58	4,57	4,56	4,55	4,55	4,54	4,53	4,52
1,280	4,51	4,51	4,50	4,49	4,48	4,48	4,47	4,46	4,45	4,45
1,290	4,44	4,43	4,42	4,42	4,41	4,40	4,39	4,39	4,38	4,37
1,300	4,37	4,36	4,35	4,34	4,34	4,33	4,32	4,31	4,31	4,30
1,310	4,29	4,29	4,28	4,27	4,26	4,26	4,25	4,21	4,24	4,23
1,320	4,22	4,22	4,21	4,20	4,20	4,19	4,18	4,17	4,17	4,16
1,330	4,15	4,15	4,14	4,13	4,13	4,12	4,11	4,11	4,10	4,09

Продолжение приложения 1

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,340	4,09	4,08	4,07	4,07	4,06	4,05	4,05	4,04	4,03	4,03
1,350	4,02	4,01	4,01	4,00	3,99	3,99	3,98	3,98	3,97	3,96
1,360	3,96	3,95	3,94	3,94	3,93	3,92	3,92	3,91	3,91	3,90
1,370	3,89	3,80	3,88	3,87	3,87	3,86	3,86	3,85	3,84	3,84
1,380	3,83	3,83	3,82	3,81	3,81	3,80	3,80	3,79	3,78	3,78
1,390	3,77	3,76	3,76	3,75	3,75	3,74	3,74	3,73	3,72	3,72
1,400	3,71	3,71	3,70	3,69	3,68	3,68	3,68	3,67	3,67	3,66
1,410	3,66	3,65	3,64	3,64	3,63	3,63	3,63	3,61	3,61	3,60

D = 2 mm, P = 1176 H (120 krc) H K = 30

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,580	444	443	441	440	438	437	435	434	432	431
0,590	429	428	426	425	423	422	420	419	417	416
0,600	415	413	412	410	409	408	406	405	404	402
0,610	401	399	398	397	395	394	393	392	390	389
0,620	388	386	385	384	383	381	380	379	378	376
0,630	375	374	373	372	370	369	368	367	366	364
0,640	363	362	361	360	359	357	356	355	354	353
0,650	352	351	350	348	347	346	345	344	343	342
0,660	341	340	339	338	337	336	335	334	333	332
0,670	331	330	329	327	326	326	325	324	323	322
0,680	321	320	319	318	317	316	315	314	313	312
0,690	311	310	309	308	307	306	306	305	304	303
0,700	302	301	300	299	298	298	297	296	295	294
0,710	293	292	292	291	290	289	288	287	286	286
0,720	285	284	283	282	282	281	280	279	278	278
0,730	277	276	275	274	274	273	272	271	271	270
0,740	269	268	268	267	266	265	265	264	263	262
0,750	262	261	260	260	259	258	257	257	256	255
0,760	255	254	253	253	252	251	250	250	249	248
0,770	248	247	246	246	245	244	244	243	242	242
0,780	241	241	240	239	239	238	237	237	236	235
0,790	235	234	234	233	232	232	231	231	230	229
0,800	229	228	228	227	226	226	225	225	224	223

Продолжение приложения 1

		,							ие прило	
<i>d,</i> мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,810	223	222	222	221	221	220	219	219	218	218
0,820	217	217	216	216	215	214	214	213	213	212
0,830	212	211	211	210	210	209	209	208	208	207
0,840	207	206	205	205	204	204	203	203	202	202
0,850	201	201	200	200	199	199	199	198	198	197
0,860	197	196	196	195	195	194	194	193	193	192
0,870	192	191	191	190	190	190	189	189	188	188
0,880	187	187	186	186	185	185	185	184	184	183
0,890	183	182	182	182	181	181	180	180 °	179	179
0,900	179	178	178	177	177	176	176	176	175	175
0,910	174	174	174	173	173	172	172	172	171	171
0,920	170	170	170	169	169	168	168	168	167	167
0,930	167	166	166	165	165	165	164	164	164	163
0,940	163	162	162	162	161	161	161	160	160	159
0,950	159	159	158	158	158	157	157	157	156	156
0,960	156	155	155	155	154	154	154	153	153	153
0,970	152	152	152	151	151	151	150	150	150	149
0,980	149	149	148	148	148	147	147	147	146	146
0,990	146	145	145	145	144	144	144	143	143	143
1,000	143	142	142	142	141	141	141	140	140	140
1,010	140	139	139	139	138	138	138	137	137	137
1,020	137	136	136	136	135	135	135	135	134	134
1,030	134	133	133	133	133	132	132	132	132	131
1,040	131	131	130	130	130	130	129	129	129	129
1,050	128	128	128	127	127	127	127	126	126	126
1,060	126	125	125	125	125	124	124	124	124	123
1,070	123	123	123	122	122	122	122	121	121	121
1,080	121	120	120	120	120	119	119	119	119	118
1,090	118	118	118	118	117	117	117	117	116	116
1,100	116	116	115	115	115	115	114	114	114	114
1,110	114	113	113	113	113	112	112	112	112	112
1,120	111	111	111	111	110	110	110	110	110	109
1,130	109	109	109	109	108	108	108	108	107	107
1,140	107	107	107	106	106	106	106	106	105	105
1,150	105	105	105	104	104	104	104	104	103	103

Продолжение приложения 1

<i>d,</i> мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,160	103	103	103	102	102	102	102	102	101	101
1,170	101	101	101	100	100	100	99,9	99,7	99,5	99,4
1,180	99,2	99,0	98,8	98,6	98,4	98,2	98,0	97,9	97,7	97,5
1,190	97,3	97,1	96,9	96,8	96,6	96,4	96,2	96,0	95,9	95,7

D = 2 mm, P = 392 H (40 krc) H K = 10

d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,500	200	200	199	198	197	196	195	195	194	193
0,510	193	192	191	190	190	189	188	187	187	186
0,520	185	184	184	183	182	182	181	180	179	179
0,530	178	177	177	176	175	175	174	173	173	172
0,540	171	171	170	169	169	168	168	167	166	166
0,550	165	165	164	163	163	162	162	161	160	160
0,560	159	159	158	157	157	156	156	155	155	154
0,570	154	153	152	152	151	151	150	150	149	149
0,580	148	148	147	147	146	146	145	145	144	144
0,590	143	143	142	142	141	141	140	140	139	139
0,600	138	138	137	137	136	136	135	135	135	134
0,610	134	133	133	132	132	131	131	131	130	130
0,620	129	129	128	128	128	127	127	126	126	125
0,630	125	125	124	124	123	123	123	122	122	121
0,640	121	121	120	120	120	119	119	118	118	118
0,650	117	117	117	116	116	115	115	115	114	114
0,660	114	113	113	113	112	112	112	111	111	111
0,670	110	110	110	109	109	109	108	108	108	107
0,680	107	107	106	106	106	105	105	105	104	104
0,690	104	103	103	103	102	102	102	102	101	101
0,700	101	100	100	99,8	99,5	99,2	98,9	98,6	98,3	98,0
0,710	97,7	97,5	97,2	96,9	96,6	96,3	96,1	95,8	95,5	95,2
0,720	95,0	94,7	94,4	94,1	93,9	93,6	93,3	93,1	92,8	92,5
0,730	92,3	92,0	91,8	91,5	91,2	91,0	90,7	90,5	90,2	90,0
0 740	89,7	89,5	89,2	89,0	88,7	88,5	88,2	88,0	87,7	87,5
0,750	87,2	87,0	86,8	86,5	86,3	86,0	85,8	85,6	85,3	85,1
0,760	84,9	84,6	84,4	84,2	83,9	83,7	83,5	85,3	83,0	82,8

Продолжение приложения 1

d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,770	82,6	82,4	82,1	81,9	81,7	81,5	81,3	81,0	80,8	80,6
0,780	80,4	80,2	80,0	79,8	79,5	79,3	79,1	78,9	78,7	78,5
0,790	78,3	78,1	77,9	77,7	77,5	77,3	77,1	76,9	76,7	76,5
0,800	76,3	76,1	75,9	75,7	75,5	75,3	75,1	74,9	74,7	74,1
0,810	74,3	74,1	73,9	73,7	73,5	73,3	73,2	73,0	72,8	72,6
0,820	72,4	72,2	72,0	71,9	71,7	71,5	71,3	71,1	71,0	70,8
0,830	70,6	70,4	70,2	70,1	69,9	69,7	69,5	69,2	69,2	69,0
0,840	68,8	68,7	68,5	68,3	68,2	68,0	67,8	67,7	67,5	67,3
0,850	67,1	67,0	66,8	66,7	66,5	66,3	66,2	66,0	65,8	65,7
0,860	65,5	65,4	65,2	65,0	61,9	61,7	64,6	61,4	64,2	64,1
0,870	63,9	63,8	63,6	63,5	63,3	63,2	63,0	62,9	62,7	62,6
0,880	62,4	62,3	62,1	62,0	61,8	61,7	61,5	61,4	61,2	61,1
0,890	60,9	60,8	60,6	60,5	60,4	60,2	60,1	59,9	59,8	58,7
0,900	59,5	59,4	59,2	59,1	59,0	58,8	58,7	58,5	58,4	58,3
0,910	58,1	58,0	57,9	57,7	57,6	57,5	57,3	57,2	57,1	56,9
0,920	56,8	56,7	56,5	56,4	56,3	56,1	56,0	55,9	55,8	55,6
0,930	55,5	55,4	55,3	55,1	55,0	54,9	54,8	54,6	54,5	54,4
0,940	54,3	54,1	54,0	53,9	53,8	53,6	53,5	53,4	53,3	53,2
0,950	53,0	52,9	52,8	52,7	52,6	52,5	52,3	52,2	52,1	52,0
0,960	51,9	51,8	51,6	51,5	51,4	51,3	51,2	51,1	51,0	50,8
0,970	50,7	50,6	50,5	50,4	50,3	50,2	50,1	50,0	49,8	49,7
0,980	49,6	49,5	49,4	49,3	49,2	49,1	49,0	48,9	48,8	48,7
0,990	48,6	48,5	48,3	48,2	48,1	48,0	47,9	47,8	47,7	47,6
1,000	47,5	47,4	47,3	47,2	47,1	47,0	46,9	46,8	46,7	46,6
1,010	46,5	46,4	46,3	46,2	46,1	46,0	45,9	45,8	45,7	45,6
1,020	45,5	45,4	45,3	45,2	45,1	45,1	45,0	44,9	44,8	44,7
1,030	44,6	44,5	44,4	44,3	44,2	44,1	44,0	43,9	43,8	43,7
1,040	43,7	43,6	43,5	43,4	43,3	43,2	43,1	43,0	42,9	42,8
1,050	42,8	42,7	42,6	42,5	42,4	42,3	42,2	42,1	42,1	42,0
1,060	41,9	41,8	41,7	41,6	41,6	41,5	41,5	41,4	41,3	41,1

D = 2 mm, P = 39,2 H (4 krc) H K = 1

d, мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,500	20,0	20,0	19,9	19,8	19,7	19,6	19,6	19,5	19,4	19,3
0,510	19,3	19,2	19,1	19,0	19,0	18,9	18,8	18,7	18,7	18,6

Продолжение приложения 1

Прооолжение приложения									экспия 1	
d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,520	18,5	18,4	18,4	18,3	18,2	18,2	18,1	18,0	17,9	17,9
0,530	17,8	17,7	17,7	17,6	17,5	17,5	17,4	17,3	17,3	17,2
0,540	17,1	17,1	17,0	16,9	16,9	16,8	16,8	16,7	16,6	16,6
0,550	16,5	16,5	16,4	16,3	16,2	16,2	16,2	16,1	16,0	16,0
0,560	15,9	15,9	15,8	15,7	15,7	15,6	15,6	15,5	15,5	15,4
0,570	15,4	15,3	15,2	15,2	15,1	15,1	15,0	15,0	14,9	14,9
0,580	14,8	14,8	14,7	14,7	14,6	14,6	14,5	14,5	14,4	14,4
0,590	14,3	14,3	14,2	14,2	14,1	14,1	14,0	14,0	13,9	13,9
0,600	13,8	13,8	13,7	13,7	13,6	13,6	13,5	13,5	13,5	13,4
0,610	13,4	13,3	13,3	13,2	13,2	13,1	13,1	13,1	13,0	13,0
0,620	12,9	12,9	12,8	12,8	12,8	12,7	12,7	12,6	12,6	12,5
0,630	12,5	12,5	12,4	12,4	12,3	12,3	12,3	12,2	12,2	12,1
0,640	12,1	12,1	12,0	12,0	12,0	11,9	11,9	11,8	11,8	11,8
0,650	11,7	11,7	11,7	11,6	11,6	11,5	11,5	11,5	11,4	11,4
0,660	11,4	11,3	11,3	11,3	11,2	11,2	11,2	11,1	11,1	11,1
0,670	11,0	11,0	11,0	10,9	10,9	10,9	10,8	10,8	10,8	10,7
0,680	10,7	10,7	10,6	10,6	10,6	10,5	10,5	10,5	10,4	10,4
0,690	10,4	10,3	10,3	10,3	10,2	10,2	10,2	10,2	10,1	10,1
0,700	10,1	10,0	10,0	9,98	9,95	9,92	9,89	9,86	9,83	9,80
0,710	9,77	9,75	9,72	9,69	9,66	9,63	9,61	9,58	9,55	9,52
0,720	9,50	9,47	9,44	9,41	9,39	9,33	9,33	9,31	9,28	9,25
0,730	9,23	9,20	9,18	9,15	9,12	9,10	9,07	9,05	9,02	9,00
0,740	8,97	8,95	8,92	8,90	8,87	8,85	8,82	8,80	8,77	8,75
0,750	8,72	8,70	8,68	8,65	8,63	8,60	8,58	8,56	8,53	8,51
0,760	8,49	8,46	8,44	8,42	8,39	8,37	8,35	8,33	8,30	8,28
0,770	8,26	8,24	8,21	8,19	8,17	8,15	8,13	8,10	8,08	8,06
0,780	8,04	8,02	8,00	7,98	7,95	7,93	7,91	7,89	7,87	7,85
0,790	7,83	7,81	7,79	7,77	7,75	7,73	7,71	7,69	7,67	7,65
0,800	7,63	7,61	7,59	7,57	7,55	7,53	7,51	7,49	7,47	7,45
0,810	7,43	7,41	7,39	7,37	7,35	7,33	7,32	7,30	7,28	7,26
0,820	7,24	7,22	7,20	7,19	7,17	7,15	7,13	7,11	7,10	7,08
0,830	7,06	7,04	7,02	7,01	6,99	6,97	6,95	6,94	6,92	6,90
0,840	6,88	6,87	6,85	6,83	6,82	6,80	6,78	6,77	6,75	6,73
0,850	6,71	6,70	6,88	6,67	6,65	6,63	6,62	6,60	6,58	6,57
	·	<u> </u>		I	<u> </u>	<u> </u>	1	·		

Продолжение приложения 1

	Прооолжение приложения									экспия 1
<i>d</i> , MM	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,860	6,55	6,54	6,52	6,50	6,49	6,47	6,46	6,44	6,42	6,41
0,870	6,39	6,38	6,36	6,35	6,33	6,32	6,30	6,29	6,27	6,26
0,880	6,24	6,23	6,21	6,20	6,18	6,17	6,15	6,14	6,12	6,11
0,890	6,09	6,08	6,06	6,05	6,04	6,02	6,01	5,99	5,98	5,97
0,900	5,95	5,94	5,92	5,91	5,80	5,88	5,87	5,85	5,84	5,83
0,910	5,81	5,80	5,79	5,77	5,76	5,75	5,73	5,72	5,71	5,69
0,920	5,68	5,67	5,65	5,64	5,63	5,61	5,60	5,59	5,58	5,56
0,930	5,55	5,54	5,53	5,51	5,50	5,49	5,48	5,46	5,45	5,44
0,940	5,43	5,41	5,40	5,39	5,38	5,36	5,35	5,34	5,33	5,32
0,950	5,30	5,29	5,29	5,27	5,26	5,25	5,23	5,22	5,21	5,20
0,960	5,19	5,18	5,16	5,15	5,14	5,13	5,12	5,11	5,10	5,08
0,970	5,07	5,06	5,05	5,04	5,03	5,02	5,01	5,00	4,98	4,97
0,980	4,96	4,95	4,94	4,93	4,92	4,91	4,90	4,89	4,88	4,87
0,990	4,86	4,85	4,83	4,82	4,81	4,80	4,79	4,78	4,77	4,76
1,000	4,75	4,74	4,73	4,72	4,71	4,70	4,69	4,68	4,67	4,66
1,010	4,65	4,64	4,63	4,62	4,61	4,60	4,59	4,58	4,57	4,56
1,020	4,55	4,54	4,53	4,52	4,51	4,51	4,50	4,49	4,48	4,47
1,030	4,46	4,45	4,44	4,43	4,42	4,41	4,40	4,39	4,38	4,37
1,040	4,37	4,36	4,35	4,34	4,33	4,32	4,31	4,30	4,29	4,28
1,050	4,28	4,27	4,26	4,25	4,24	4,23	4,22	4,21	4,21	4,20
1,060	4,19	4,18	4,17	4,16	4,15	4,15	4,14	4,13	4,12	4,11
1,070	4,10	4,09	4,09	4,08	4,07	4,06	4,05	4,05	4,04	4,03
1,080	4,02	4,01	4,00	4,00	3,99	3,98	3,97	3,96	3,96	3,95
1,090	3,94	3,93	3,92	3,92	3,91	3,90	3,89	3,89	3,88	3,87
1,100	3,86	3,85	3,85	3,84	3,83	3,82	3,82	3,81	3,80	3,79
1,110	3,79	3,78	3,77	3,76	3,76	3,75	3,74	3,73	3,73	3,72
1,120	3,71	3,70	3,70	3,69	3,68	3,68	3,67	3,66	3,65	3,65
1,130	3,64	3,63	3,63	3,62	3,61	3,60	3,60	3,59	3,58	3,58
1,140	3,57	3,56	3,56	3,55	3,54	3,53	3,53	3,52	3,51	3,51
1,150	3,50	3,49	3,49	3,48	3,47	3,47	3,46	3,45	3,45	3,44
1,160	3,43	3,43	3,42	3,41	3,41	3,40	3,39	3,39	3,38	3,38
1,170	3,37	3,36	3,36	3,35	3,34	3,34	3,33	3,32	3,32	3,31
1,180	3,31	3,30	3,29	3,29	3,28	3,27	3,27	3,26	3,26	3,25
1,190	3,24	3,24	3,23	3,23	3,22	3,21	3,20	3,20	3,20	3,19
<u> </u>	<u> </u>		<u> </u>							

Продолжение приложения 1

D = 1 mm, P = 294 H (30 krc) H K = 30

d, мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,280								453	450	447
0,290	444	441	438	435	432	429	426	423	420	417
0,300	414	411	408	405	405	402	399	396	393	390
0,310	387	384	384	381	378	375	372	369	369	366
0,320	363	360	360	357	354	351	351	348	345	342
0,330	342	339	336	336	333	330	330	327	324	324
0,340	321	318	318	315	312	312	309	306	306	303
0,350	303	300	298	297	295	293	292	290	288	286
0,360	285	283	282	280	278	277	276	274	272	271
0,370	269	268	266	265	263	262	260	259	257	256
0,380	255	253	252	250	249	248	246	245	244	242
0,390	241	240	238	237	236	235	234	233	231	230
0,400	229	228	226	225	224	223	222	220	219	218
0,410	217	216	215	214	213	212	211	210	208	207
0,420	206	205	204	203	202	201	200	199	198	197
0,430	196	196	195	194	193	192	191	190	189	188
0,440	187	186	185	184	184	183	182	181	180	179
0,450	178	178	177	176	175	174	173	172	172	171
0,460	170	169	169	168	167	166	165	165	164	163
0,470	163	162	161	160	160	159	158	158	157	156
0,480	156	155	154	153	153	152	151	151	150	149
0,490	149	148	147	147	146	146	145	144	144	143
0,500	142	142	141	141	140	140	139	138	138	137
0,510	136	136	135	135	134	134	133	133	132	131
0,520	131	130	130	129	129	128	128	127	127	126
0,530	126	125	125	124	124	123	123	122	122	121
0,540	120	120	120	119	119	118	118	117	117	116
0,550	116	116	115	115	114	114	113	113	112	112
0,560	111	111	110	110	110	110	109	108	108	107
0,570	107	107	106	106	105	105	105	104	104	103
0,580	103	103	102	102	101	101	101	100	99,9	99,6
0,590	99,3	98,7	98,4	98,1	97,8	97,2	96,9	96,6	96,3	96,0
		ı		ŧ	ı	ł	ł	ı	1	ı

Продолжение приложения 1

D = 1 mm, P = 98 H (10 kgc) H K = 10

d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,250	200	199	197	196	194	193	191	190	188	187
0,260	185	184	182	181	179	178	177	175	174	173
0,270	171	170	169	168	166	165	161	163	162	160
0,280	159	158	157	156	155	154	152	151	150	149
0,290	148	147	146	145	144	132	142	141	140	139
0,300	138	137	136	135	135	134	133	132	131	130
0,310	129	128	128	127	126	125	124	123	123	122
0,320	121	120	120	119	118	117	117	116	115	114
0,330	114	113	112	112	111	110	110	109	108	108
0,340	107	106	106	105	104	104	103	102	102	101
0,350	101	100	99,5	98,9	98,3	97,7	97 9	96,6	96,1	95,5
0,360	95,0	94,4	93,9	93,3	92,8	92,3	91,8	91,2	90,7	90,2
0,370	89,7	89,2	88,7	88,2	87,7	87,2	86,8	86,3	85,8	85,3
0,380	84,9	84,4	83,9	83,5	83,0	82,6	82,1	81,7	81,3	80,8
0,390	80,4	80,0	79,5	79,1	78,7	78,3	77,9	77,5	77,1	76,7
0,400	76,3	75,9	75,5	75,1	74,7	74,3	73,9	73,5	73,2	72,8
0,410	72,4	72,0	71,7	71,3	71,0	70,6	70,2	69,9	69,5	69,2
0,420	68,8	68,5	68,2	67,8	67,5	67,1	66,8	66,5	66,2	65,8
0,430	65,5	65,2	64,9	64,6	64,2	63,9	63,6	63,3	63,0	62,7
0,440	62,4	62,1	61,8	61,5	61,2	60,9	60,6	60,4	60,1	59,8
0,450	59,5	59,2	59,0	58,7	58,4	58,1	57,9	57,6	57,3	57,1
0,460	56,8	56,5	56,3	56,0	55,8	55,5	55,3	55,0	54,8	54,5
0,470	54,3	54,0	53,8	53,5	53,3	53,0	52,8	52,6	52,3	52,1
0,480	51,9	51,6	51,4	51,2	51,0	50,7	50,5	50,3	50,1	49,8
0,490	49,6	49,4	49,2	49,0	48,8	48,6	48,3	48,1	47,9	47,7
0,500	47,5	47,3	47,1	46,9	46,7	46,5	46,3	46,1	45,9	45,7
0,510	45,5	45,3	45,1	45,0	44,8	44,6	44,4	44,2	44,0	43,8
0,520	43,7	43,5	43,3	43,1	42,9	42,8	42,6	42,4	42,2	42,1
0,530	41,9	41,7	41,5	41,4	41,2	41,0	40,9	40,7	40,5	40,4
0,540	40,2	40,0	39,9	39,7	39,6	39,4	39,2	39,1	38,9	38,8
0,550	38,6	38,5	38,3	38,2	38,0	37,9	37,7	37,6	37,4	37,3
0,560	37,1	37,0	36,8	36,7	36,5	36,4	36,3	36,1	36,0	35,8
0,570	35,7	35,6	35,4	35,3	35,1	35,0	34,9	34,7	34,6	34,5
0,580	34,3	34,2	34,1	33,9	33,8	33,7	33,6	33,4	33,3	33,2
0,590	33,1	32,9	32,8	32,7	32,6	32,4	32,3	32,2	32,1	32,0

Продолжение приложения 1

D = 1 mm, P = 49 H (5 krc) H K = 5

d, мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,250	100	99,4	98,6	97,8	97,1	96,3	95,5	94,8	94,0	93,3
0,260	92,6	91,8	91,1	90,4	89,7	89,0	88,4	87,7	87,0	86,4
0,270	85,7	85,1	84,4	83,8	82,2	82,6	81,9	81,3	80,0	80,2
0,280	79,6	79,0	78,4	77,9	77,3	76,8	76,2	75,7	75,1	74,6
0,290	74,1	73,6	73,0	72,5	72,0	71,5	71,0	70,5	70,1	69,6
0,300	69,1	68,6	68,2	67,7	67,3	66,8	66,4	65,9	65,5	65,0
0,310	64,6	64,2	63,8	63,3	62,9	62,5	62,1	61,7	61,3	60,9
0,320	60,5	60,1	59,8	59,4	59,0	58,6	58,3	57,9	57,5	57,2
0,330	56,8	56,5	56,1	55,8	55,4	55,1	54,8	54,4	54,1	53,8
0,340	53,4	53,1	52,8	52,5	52,2	51,8	51,5	51,2	50,9	50,6
0,350	50,3	50,0	49,7	49,4	49,2	48,9	48,6	48,3	48,0	47,7
0,360	47,5	47,2	46,9	46,7	46,4	46,1	45,9	45,6	45,4	45,1
0,370	44,9	44,6	44,4	44,1	43,9	43,6	43,4	43,1	42,9	42,7
0,380	42,4	42,2	42,0	41,7	41,5	41,3	41,1	40,9	40,6	40,4
0,390	40,2	40,0	39,8	39,6	39,4	39,1	38,9	38,7	38,5	38,3
0,400	38,1	37,9	37,7	37,5	37,3	37,1	37,0	36,8	36,6	36,4
0,410	36,2	36,0	35,8	35,7	35,5	35,3	35,1	34,9	34,8	34,6
0,420	34,4	34,2	34,1	33,9	33,7	33,6	33,4	33,2	33,1	32,9
0,430	32,8	32,6	32,4	32,3	32,1	32,0	31,8	31,7	31,5	31,4
0,440	31,2	31,1	30,9	30,8	30,6	30,5	30,3	30,2	30,0	29,9
0,450	29,8	29,6	29,5	29,3	29,2	29,1	28,9	28,8	28,7	28,5
0,460	28,4	28,3	28,1	28,0	27,9	27,8	27,6	27,5	27,4	27,3
0,470	27,1	27,0	26,9	26,8	26,6	26,5	26,4	26,3	26,2	26,1
0,480	25,9	25,8	25,7	25,6	25,5	25,4	25,3	25,1	25,0	24,9
0,490	24,8	24,7	24,6	24,5	24,4	24,3	24,2	24,1	24,0	23,9
0,500	23,8	23,7	23,6	23,5	23,4	23,3	23,2	23,1	23,0	22,9
0,510	22,8	22,7	22,6	22,5	22,4	22,3	22,2	22,1	22,0	21,9
0,520	21,8	21,7	21,6	21,6	21,5	21,4	21,3	21,2	21,1	21,0
0,530	20,9	20,9	20,8	20,7	20,6	20,5	20,4	20,3	20,3	20,2
0,540	20,1	20,0	19,9	19,9	19,8	19,7	19,6	19,5	19,5	19,4
0,550	19,3	19,2	19,2	19,1	19,0	18,9	18,9	18,8	18,7	18,6
0,560	18,6	18,5	18,4	18,3	18,3	18,2	18,1	18,1	18,0	17,9
0,570	17,8	17,8	17,7	17,6	17,6	17,5	17,4	17,4	17,3	17,2
0,580	17,2	17,1	17,0	17,0	16,9	16,8	16,8	16,7	16,7	16,6
0,590	16,5	16,5	16,4	16,3	16,3	16,2	16,2	16,1	16,0	16,0
L .		1	i	I	1	Į.	ł	I	1	ŀ

Продолжение приложения 1

D = 1 mm, P = 9.8 H (1 krc) H K = 1

<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,250	20,0	19,9	19,7	19,6	19,4	19,3	19,1	19,0	18,8	18,7
0,260	18,5	18,4	18,2	18,1	17,9	17,8	17,7	17,5	17,4	17,3
0,270	17,1	17,0	16,9	16,8	16,6	16,5	16,4	16,3	16,2	16,0
0,280	15,9	15,8	15,7	15,6	15,5	15,4	15,2	15,1	15,0	14,9
0,290	14,8	14,7	14,6	14,5	14,4	14,3	14,2	14,1	14,0	13,9
0,300	13,8	13,7	13,6	13,5	13,5	13,4	13,3	13,2	13,1	13,0
0,310	12,9	12,8	12,8	12,7	12,6	12,5	12,4	12,3	12,3	12,2
0,320	12,1	12,0	12,0	11,9	11,8	11,7	11,7	11,6	11,5	11,4
0,330	11,4	11,3	11,2	11,2	11,1	11,0	11,0	10,9	10,9	10,8
0,340	10,7	10,6	10,6	10,5	10,4	10,4	10,3	10,2	10,2	10,1
0,350	10,1	10,0	9,95	9,89	9,83	9,77	9,72	9,66	9,61	9,55
0,360	9,50	9,44	9,39	9,33	9,28	9,23	9,18	9,12	9,07	9,02
0,370	8,97	8,92	8,87	8,82	8,77	8,72	8,68	8,63	8,58	8,53
0,380	9,49	8,44	8,39	8,35	8,30	8,26	8,21	8,17	8,13	8,08
0,390	8,04	8,00	7,95	7,91	7,87	7,83	7,79	7,75	7,71	7,67
0,400	7,63	7,59	7,55	7,51	7,47	7,43	7,39	7,35	7,32	7,28
0,410	7,24	7,20	7,17	7,13	7,10	7,06	7,02	6,99	6,95	6,92
0,420	6,88	6,85	6,82	6,78	6,75	6,71	6,68	6,65	6,62	6,58
0,430	6,55	6,52	6,49	6,46	6,42	6,39	6,36	6,33	6,30	6,27
0,440	6,24	6,21	6,18	6,15	6,12	6,09	6,06	6,04	6,01	5,98
0,450	5,95	5,92	5,90	5,87	5,84	5,81	5,79	5,76	5,73	5,71
0,460	5,68	5,65	5,63	5,60	5,58	5,55	5,53	5,50	5,48	5,45
0,470	5,43	5,40	5,38	5,35	5,33	5,30	5,28	5,26	5,23	5,21
0,480	5,19	5,16	5,14	5,12	5,10	5,07	5,05	5,03	5,01	4,98
0,490	4,96	4,94	4,92	4,90	4,88	4,86	4,83	4,81	4,79	4,77
0,500	4,75	4,73	4,71	4,69	4,67	4,65	4,63	4,61	4,59	4,57
0,510	4,55	4,53	4,51	4,50	4,48	4,46	4,44	4,42	4,40	4,38
0,520	4,37	4,35	4,33	4,31	4,29	4,28	4,26	4,24	4,22	4,21
0,530	4,19	4,17	4,15	4,14	4,12	4,10	4,09	4,07	4,05	4,04
0,540	4,02	4,00	3,99	3,97	3,96	3,94	3,92	3,91	3,89	3,88
0,550	3,86	3,85	3,83	3,82	3,80	3,79	3,77	3,76	3,74	3,73
0,560	3,71	3,70	3,68	3,67	3,65	3,64	3,63	3,61	3,60	3,58
0,570	3,57	3,56	3,54	3,53	3,51	3,50	3,49	3,47	3,46	3,45
0,580	3,43	3,42	3,41	3,39	3,38	3,37	3,36	3,34	3,33	3,32
0,590	3,31	3,29	3,28	3,27	3,26	3,24	3,23	3,22	3,21	3,20

Приложение 2

Твердость по Бринеллю при определении переносным твердомером статического действия (в соответствии с ГОСТ 22761-77)

<i>d</i> , мм, при нии шара	отпечатка вдавлива- диаметром мм	Твердость по Бринеллю НВ, МПа (кгс/мм ²)при нагрузке <i>P</i> , Н (кгс), равной						
D = 2.5	D=1	294,2 D^2 (30 D^2)	98,1 D ² (10D ²)	$24,5 D^2 (2,5D^2)$				
0,719	0,288	4413 (450)	-	-				
0,724	0,290	4364 (445)	-	-				
0,728	0,291	4315 (440)	-	-				
0,732	0,293	4266 (435)	-	-				
0,736	0,294	4217 (430)	-	-				
0,741	0,296	4168 (425)	-	-				
0,745	0,298	4119 (420)	-	343 (35,0)				
0,748	0,300	4080 (416)	1363 (139)	341 (34,8)				
0,749	0,300	4070 (415)	1353 (138)	339 (34,6)				
0,753	0,301	4021 (410)	1344 (137)	336 (34,3)				
0,758	0,303	3972 (405)	1324 (135)	330 (33,6)				
0,763	0,305	3923 (400)	1314 (134)	327 (33,3)				
0,767	0,307	3874 (395)	1295 (132)	324 (33,0)				
0,772	0,309	3825 (390)	1275 (130)	319 (32,5)				
0,777	0,311	3776 (385)	1255 (128)	315 (32,1)				
0,782	0 313	3727 (380)	1245 (127)	311 (31,7)				
0,787	0,315	3677 (375)	1226 (125)	307 (31,3)				
0,792	0,317	3629 (370)	1206 (123)	303 (30,9)				
0,798	0,320	3579 (365)	187 (121)	298 (30,4)				
0,803	0,321	3530 (360)	177 (120)	294 (30,0)				
0,808	0,323	3481 (355)	157 (118)	290 (29,6)				
0,814	0,326	3432 (350)	147 (117)	286 (29,2)				
0,819	0,328	3383 (345)	128 (115)	282 (28,8)				
0,825	0,330	3334 (340)	118 (114)	278 (28,3)				
0,832	0,333	3285 (335)	1098 (112)	274 (27,9)				
0,838	0,335	3236 (330)	1078 (110)	270 (27,5)				

Продолжение приложения 2

Диаметр (d, мм, при нии шара , D,	вдавлива-	Твердоств (кгс/мм ²)при	по Бринеллю НВ, нагрузке <i>P</i> , Н (кго	МПа), равной
D = 2,5	D = 1	$294,2 D^2 (30D^2)$	98,1 D ² (10D ²)	$24,5 D^2 (2,5D^2)$
0,844	0,338	318 ⁷ (325)	1059 (108)	266 (27,1)
0,850	0,340	3138 (320)	1049 (107)	262 (26,7)
0,858	0,343	3089 (315)	1030 (105)	257 (26,2)
0,864	0,346	3040 (310)	1010 (103)	254 (25,9)
0,870	0,348	2991 (303)	1000 (102)	249 (25,4)
0,878	0,351	2142 (300)	981 (100)	245 (25,0)
0,885	0,354	2893 (295)	964 (98,3)	241 (24,6)
0,892	0,357	2844 (290)	947 (96,6)	237 (24,2)
0,900	0,330	2795 (285)	932 (95,0)	232 (23,7)
0,907	0,363	2746 (280)	915 (03,3)	229 (23,3)
0,915	0,366	2697 (275)	900 (91,8)	225 (22,9)
0,924	0,370	2648 (270)	883 (90,0)	221 (22,5)
0,932	0 373	2599 (265)	865 (88,2)	217 (22,1)
0,940	0,376	2550 (260)	851 (86,8)	213 (21,7)
0,950	0,380	2501 (255)	833 (84,9)	208 (21,2)
0,957	0,383	2452 (250)	819 (83,5)	205 (20,9)
0,967	0,387	2403 (245)	801 (81,7)	200 (20,4)
0,977	0,391	2354 (240)	785 (80,0)	196 (20,0)
0,988	0,395	2305 (235)	768 (78,3)	192 (19,6)
0,997	0,399	2256 (230)	752 (76,7)	188 (19,2)
1,01	0,404	2207 (225)	737 (75,1)	184 (18,8)
1,02	0,408	2158 (220)	717 (73,1)	180 (18,4)
1,03	0,412	2109 (215)	703 (71,7)	176 (17,9)
1,04	0,416	2059 (210)	686 (69,9)	172 (17,5)
1,05	0,420	2010 (205)	672 (68,5)	168 (17,1)
1,06	0,424	1961 (200)	655 (66,8)	164 (16,7)
1,08	0,432	1912 (195)	637 (64,9)	159 (16,2)
1,09	0,436	1863 (190)	621 (63,3)	155 (15,8)
1,11	0,444	1814 (185)	606 (61,8)	152 (15,5)

Продолжение приложения 2

				seenue apunoscenus 2
d, мм, при нии шара	отпечатка вдавлива- диаметром мм		ло Бринеллю НВ, нагрузке <i>P</i> , Н (кго	
D = 2.5	D=1	294,2 D ² (30D ²)	98,1 D ² (10D ²)	$24,5 D^2 (2,5D^2)$
1,12	0,448	1765 (180)	589 (60,1)	147 (15,0)
1,14	0,456	1716 (175)	573 (58,4)	143 (14,6)
1,15	0,460	1667 (170)	557 (56,8)	139 (14,2)
1,17	0,468	1618 (165)	539 (55,0)	135 (13,8)
1,18	0,472	1569 (160)	523 (53,3)	130 (13,3)
1,20	0,480	1520 (155)	507 (51,7)	127 (12,9)
1,22	0,488	1471 (150)	491 (50,1)	123 (12,5)
1,24	0,496	1422 (145)	475 (48,4)	119 (12,1)
1,26	0,504	1373 (140)	458 (46,7)	115 (11,7)
1,28	0,512	1324 (135)	442 (45,1)	111 (11,3)
1,30	0,520	1275 (130)	427 (43,5)	107 (10,9)
1,32	0,528	-	414 (42,2)	104 (10,6)
1,33	0,532	-	408 (41,6)	102 (10,4)
1,34	0,536	_	401 (40,9)	100 (10,2)
1,35	0,540	-	394 (40,2)	99 (10,1)
1,36	0,544	-	388 (39,6)	97 (9,90)
1,37	0,548	-	382 (38,9)	95,4 (9,73)
1,38	0,552	-	376 (38,3)	93,9 (9,58)
1,39	0,556	-	370 (37,7)	92,5 (9,43)
1,40	0,560	-	364 (37,1)	90,0 (9,27)
1,41	0,564	-	358 (36,5)	89,6 (9,14)
1,42	0,568	-	353 (36,0)	88,3 (9,00)
1,43	0,572	-	347 (35,4)	86,9 (8,86)
1,44	0,576	-	341 (34,8)	85,4 (8,71)
1,45	0,580	-	337 (34,4)	84,4 (8,61)
1,46	0,584	-	332 (33,8)	83,0 (8,46)
1,47	0,588	-	327 (33,3)	81,7 (8,33)
1,48	0,592	-	322 (32,8)	80,4 (8,20)
1,49	0,596	-	313 (31,9)	78,4 (7,99)

Приложение 3

Твердость на пределе текучести $H_{0,2}$, МПа, при вдавливании шара диаметром 10 мм под нагрузкой $P_{0,2}$, H, соответствующей диаметру отпечатка, равному 0,9 мм (ГОСТ 22762—77)

Твердость на пределе текучести $H_{0,2}$, МПа, под нагрузкой $P_{0,2}$, Н

На-	Твердость, МПа											
грузка $P_{0,2}$, Н	0	1	2	3	4	5	6	7	8	9		
50	78,5	80	81,6	83,2	84,7	86,3	87,9	89,4	91,0	92,6		
60	94,1	95,7	97,3	98,9	100,4	102	103,6	105,1	106,7	108,3		
70	109,8	111,4	113	114,5	116	117,7	119,2	120,8	122,4	124		
80	125,5	127,1	128,7	130,2	131,8	133,4	134,9	136,5	138,1	139,6		
90	141,2	142,8	144,3	145,9	147,5	149,1	150,6	152,2	153,8	155,3		
100	157	159	160	162	163	165	166	168	170	171		
110	173	174	176	177	179	180	182	184	185	187		
120	188	190	191	193	195	196	198	199	201	202		
130	204	206	207	209	210	212	213	215	217	218		
140	220	221	223	224	226	228	229	231	232	234		
150	235	237	239	240	242	243	245	246	248	250		
160	251	253	254	256	257	259	261	262	264	265		
170	267	268	270	271	273	275	276	278	279	281		
180	282	284	286	287	289	290	292	293	295	297		
190	298	300	301	303	304	306	308	309	311	312		
На- грузка				Твеј	рдость,	МПа						
$P_{0,2}$, H	0	2	4	6	8	10	12	14	16	18		
200	314	317	320	323	326	330	333	336	339	342		
220	345	348	352	355	358	361	364	367	370	373		
240	377	380	383	386	389	392	395	399	402	405		
260	408	411	414	417	421	424	427	430	433	436		
280	439	443	446	449	452	455	458	461	464	468		
300	471	474	477	480	483	486	490	493	496	499		
320	502	505	508	512	515	518	521	524	527	530		
340	534	537	540	543	546	549	552	555	559	562		
360	565	568	571	574	577	581	584	587	590	593		
380	596	599	603	606	609	612	615	618	621	624		

Продолжение приложения 3

На-	Твердость, МПа										
грузка $P_{0,2}$, Н	0	4	8	12	16	20	24	28	32	36	
400	628	634	640	646	653	659	665	672	678	684	
440	690	697	703	709	716	722	728	734	741	747	
480	753	759	766	772	778	785	791	797	803	810	
520	816	822	828	835	841	847	854	860	866	872	
560	879	885	891	897	904	910	916	923	929	935	
600	941	948	954	960	967	973	979	985	992	998	
640	1004	1010	1017	1023	1029	1036	1042	1048	1054	1061	
680	1067	1073	1080	1086	1092	1098	1105	1111	1117	1123	
720	1130	1136	1142	1149	1155	1161	1167	1174	1180	1186	
760	1192	1199	1205	1211	1218	1224	1230	1236	1243	1249	
800	1255	1261	1268	1274	1280	1287	1293	1299	1305	1312	
840	1318	1324	1331	1337	1343	1349	1356	1362	1368	1374	
880	1381	1387	1393	1400	1406	1412	1418	1425	1431	1437	
920	1443	1450	1456	1462	1469	1475	1481	1487	1494	1500	
960	1506	1513	1519	1525	1531	1538	1544	1550	1556	1563	
На-				Тве	рдость,	МПа					
грузка <i>P</i> _{0,2} , Н	0	10	20	30	40	50	60	70	80	90	
1000	1569	1585	1600	1616	1632	1647	1663	1679	1695	1710	
1100	1726	1742	1757	1773	1789	1804	1820	1836	1851	1867	
1200	1883	1898	1914	1930	1946	1961	1977	1993	2008	2024	
1300	2040	2055	2071	2087	2108	2118	2134	2150	2165	2181	
1400	2197	2212	2228	2244	2259	2275	2291	2306	2322	2338	
1500	2354	2369	2385	2401	2416	2432	2448	2463	2479	2495	
1600	2510	2526	2542	2557	2573	2589	2605	2620	2626	2652	
1700	2667	2683	2699	2714	2730	2746	2761	2777	2793	2809	
1800	2824	2840	2856	2871	2887	2903	2918	2934	2950	2965	
1900	2981	2997	3012	3028	3044	3060	3075	3091	3107	3122	
2000	3138	3154	3169	3185	3200	3216	3232	3248	3264	3279	
2100	3295	3311	3326	3342	3358	3373	3389	3405	3420	3436	
2200	3452	3468	3483	3499	3515	3530	3546	3562	3577	3593	

Продолжение приложения 3 Твердость на пределе текучести $\mathrm{H}_{0,2}$, кгс/мм 2 , под нагрузкой $P_{0,2}$, кгс

На-	Твердость, кгс/мм ²									
грузка <i>Р</i> _{0,2} ,кгс	0,0	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9
5	7,8	8,0	8,2	8,3	8,5	8,6	8,8	8,9	9,1	9,3
6	9,4	9,6	9,7	9,9	10,0	10,2	10,4	10,5	10,7	10,8
7	11,0	11,1	11,3	11,5	11,6	11,8	11,9	12,1	12,2	12,4
8	12,5	12,7	12,9	13,0	13,2	13,3	13,5	13,6	13,8	14,0
9	14,1	14,3	14,4	14,6	14,7	14,9	15,1	15,2	15,4	15,5
10	15,7	15,8	16,0	16,2	16,3	16,5	16,6	16,8	16,9	17,1
11	17,3	17,4	17,6	17,7	17,9	18,0	18,2	18,4	18,5	18,7
12	18,8	19,0	19,1	19,3	19,5	19,6	19,8	20,0	20,1	20,2
13	20,4	20,6	20,7	20,9	21,0	21,2	21,3	21,5	21,6	21,8
14	22,0	22,1	22,3	22,4	22,6	22,7	22,9	23,1	23,2	23,4
15	23,5	23,7	23,8	24,0	24,2	24,3	24,5	24,6	24,8	24,9
16	25,1	25,3	25,4	25,6	25,7	25,9	26,0	26,2	26,4	26,5
17	26,7	26,8	27,0	27,1	27,3	27,5	27,6	27,8	27,9	28,1
18	28,2	28,4	28,6	28,7	28,9	29,0	29,2	29,3	29,5	29,6
19	29,8	30,0	30,1	30,3	30,4	30,6	30,7	30,9	31,1	31,2
20	31,4	31,5	31,7	31,8	32,0	32,2	32,3	32,5	32,6	32,8
На-				Тве	рдость,	кгс/мм	2			
грузка $P_{0,2}$,кгс	0,0	0,2	0,4	0,6	0,8	1,0	1,2	1,4	1,6	1,8
21	32,0	33,3	33,6	33,9	34,2	34,5	34,8	35,1	35,5	35,8
23	36,1	36,4	36,7	37,0	37,3	37,6	38,0	38,3	38,6	38,9
25	39,2	39,5	39,8	40,2	40,5	40,8	41,1	41,4	41,7	42,0
27	42,4	42,7	43,0	43,3	43,6	43,9	44,2	44,6	44,9	45,2
29	45,5	45,8	46,1	46,4	46,7	47,1	47,4	47,7	48,0	48,3
31	48,6	48,9	49,3	49,6	49,9	50,2	50,5	50,8	51,1	51,5
33	51,8	52,1	52,4	52,7	53,0	53,3	53,6	54,0	54,3	54,6
35	54,9	55,2	55,5	55,8	56,2	56,5	56,8	57,1	57,4	57,7
37	58,0	58,4	58,7	59,0	59,3	59,6	59,9	60,2	60,6	60,9
39	61,2	61,5	61,8	62,1	62,4	62,7	63,1	63,4	63,7	64,0

Продолжение приложения 3

На-	Твердость, кгс/мм²										
грузка					рдоств,						
$P_{0,2}$, KTC	0,0	0,4	0,8	1,2	1,6	2,0	2,4	2,8	3,2	3,6	
41	64,3	64,9	65,6	66,2	66,8	67,5	68,1	68,7	69,3	70,0	
45	70,6	71,2	71,8	72,5	73,1	73,7	74,4	75,0	75,5	76,2	
49	76,9	77,5	78,1	78,7	79,4	80,0	80,6	81,3	81,9	82,5	
53	83,1	83,8	84,4	85,0	85,7	86,3	86,9	87,5	88,2	88,8	
57	89,4	90,0	90,7	91,3	91,9	92,6	93,2	93,8	94,4	95,1	
61	95,7	96,3	96,9	97,6	98,2	98,6	99,5	100,1	100,7	101,3	
65	102,0	102,6	103,2	103,8	104,5	105,1	105,7	106,4	107,0	107,6	
69	108,2	108,9	109,5	110,1	110,8	111,4	112,0	112,6	113,3	113,9	
73	114,5	115,1	115,8	116,4	117,0		118,3	118,9	119,5	120,2	
77	120,8	121,4	122,0	122,7	123,3		124,6	125,2	125,8	126,4	
81	127,1	127,7	128,3	128,9	129,6	130,2	130,8	131,5	132,1	132,7	
85	133,3	134,0	134,6	135,2	135,9	136,5	137,1	137,7	138,4	138,9	
89	139,6	140,2	140,9	141,5	142,1	142,8	143,4	144,0	144,6	145,3	
93	145,9	146,5	147,1	147,8	148,4	149,0	149,7	150,3	150,9	151,5	
97	152,2	152,8	153,4	154,0	154,7	155,3	155,9	156,6	157,2	157,8	
На-				Тве	рдость,	кгс/мм	2				
грузка	0	1	2	3	4	5	6	7	8	9	
Р _{0,2} ,кго											
101	158,4	160,0	161,6	163,1	164,7	166,3	167,9	169,4	171,0	172,6	
111	174,1	175,7	177,3	178,8	180,4		183,5	185,1	186,7	188,2	
121	189,8	191,4	193,0	194,5	196,1	197,7	199,2	200,8	202,4	203,9	
131	205,5	207,1	208,6	210,2	211,8	213,3	214,9	216,5	218,1	219,6	
141	221,2	222,8	224,3	225,9	227,5	229,0	230,6	232,2	233,7	235,3	
151	236,9	238,4	240,0	241,6	243,2	244,7	246,3	247,9	249,4	251,0	
161 171	252,6	254,1	255,7	257,3	258,8	260,4	262,0	263,5	265,1	266,7	
1 :	268,2	269,8	271,4	273,0	274,5	276,1	277,7	279,2	280,8	282,4	
181	283,9	285,5	287,1	288,6	290,2	291,8	293,3	294,9	296,5	298,1	
191	299,6	301,2	302,8	304,3	305,9	307,5	309,0	310,6	312,2	313,7	
201	315,3	316,9	318,4	320,0	321,6	323,2	324,7	326,3	327,9	329,4	
211	331,0	332,6	334,1	335,7	337,3	338,8	340,4	342,0	343,5	345,1	
221	346,7	348,3	349,8	351,4	353,0	354,5	356,1	357,7	359,2	360,8	
231	362,4	363,9	365,5	367,1	368,6	370,2	371,8	373,4	374,9	376,5	
241	378,1	379,6	381,2	382,8	384,3	385,9	387,5	389,0	390,6	392,2	
251	393,7	395,3	396,9	398,5	400,0	-	-	-	-	-	

Приложение 4

Твердость при испытании алмазной пирамидой по Виккерсу HV в зависимости от диагонали отпечатка d и прикладываемой нагрузки P (ГОСТ 2999—75)

Нагрузка 1 кгс (9,807 Н)

Диа- гональ отпе- чатка	Значения твердости HV											
d, MM	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009		
0,03	2060	1930	1811	1703	1604	1514	1431	1355	1284	1219		
0,04	1159	1103	1051	1003	958	916	876	839	805	772		
0,05	742	713	686	660	636	613	591	571	551	533		
0,06	515	498	482	467	453	439	426	413	401	389		
0,07	378	368	358	348	339	330	321	313	305	297		
0,08	290	283	276	269	263	257	251	245	239	234		
0,09	229	224	219	214	210	205	201	197	193	189		
0,10	185	182	178	175	171	168	165	162	159	156		
0,11	153	151	148	145	143	140	138	135	133	131		
0,12	129	127	125	123	121	119	117	115	113	111		
0,13	110	108	106	105	103	102	100	98,8	97,4	96,0		
0,14	94,6	93,3	92,0	90,7	89,4	88,2	87,0	85,8	84,7	83,5		
0,15	82,4	81,3	80,3	79,2	78,2	77,2	76,2	75,2	74,3	73,4		
0,16	72,4	71,5	70,7	69,8	68,9	68,1	67,3	66,5	65,7	64,9		
0,17	64,2	63,4	62,7	62,0	61,2	60,6	59,9	59,2	58,5	57,9		
0,18	57,2	56,6	56,0	55,4	54,8	54,2	53,6	53,0	52,5	51,9		
0,19	51,4	50,8	50,3	49,8	49,3	48,8	48,3	47,8	47,3	46,8		
0,20	46,4	45,9	45,4	45,0	44,6	44,1	43,7	43,3	42,9	42,5		
0,21	42,0	41,7	41,3	40,9	40,5	40,1	39,7	39,4	39,0	38,7		
0,22	38,3	38,0	37,6	37,3	37,0	36,6	36,3	36,0	35,7	35,4		
0,23	35,1	34,8	34,5	34,2	33,9	33,6	33,3	33,0	32,7	32,5		
0,24	32,2	31,9	31,7	31,4	31,1	30,9	30,6	30,4	30,1	29,9		
0,25	29,7	29,4	29,2	29,0	28,7	28,5	28,3	28,1	27,9	27,6		
0,26	27,4	27,2	27,0	26,8	26,6	26,4	26,2	26,0	25,8	25,6		
0,27	25,4	25,2	25,1	24,9	24,7	24,5	24,3	24,2	24,0	23,8		
0,28	23,7	23,5	23,3	23,2	23,0	22,8	22,7	22,5	22,4	22,2		

Продолжение приложения 4

							-			
Диа- гональ отпе-				Знач	чения т	вердост	и HV			
чатка		,		,						
<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,29	22,0	21,9	21,7	21,6	21,5	21,3	21,2	21,0	20,9	20,7
0,30	20,6	20,5	20,3	20,2	20,1	19,9	19,8	19,7	19,5	19,4
0,31	19,3	19,2	19,0	18,9	18,8	18,7	18,6	18,5	18,3	18,2
0,32	18,1	18,0	17,9	17,8	17,7	17,6	17,4	17,3	17,2	17,1
0,33	17,0	16,9	16,8	16,7	16,6	16,5	16,4	16,3	16,2	16,1
0,34	16,04	15,95	15,85	15,76	15,67		15,49	15,40	15,31	15,22
0,35	15,14	15,05	14,98	14,88	14,80	14,71	14,63	14,55	14,47	14,39
0,36	14,31	14,23	14,15	14,07	14,00	13,92	13,84	13,77	13,69	13,62
0,37	13,55	13,47	13,40	13,33	13,26	13,19	13,12	13,05	12,98	12,91
0,38	12,84	12,77	12,71	12,64	12,58		12,45	12,38	12,32	12,25
0,39	12,19	12,13	12,07	12,01	11,95	11,89	11,83	11,77	11,71	11,65
0,40	11,59	11,53	11,47	11,42	11,36	11,31	11,25	11,19	11,14	11,09
0,41	11,03	10,98	10,92	10,87	10,82	10,77	10,72	10,66	10,61	10,56
0,42	10,51	10,46	10,41	10,36	10,31	10,27	10,22	10,17	10,12	10,08
0,43	10,03	9,98	9,94	9,89	9,85	9,80	9,75	9,71	9,67	9,62
0,44	9,58	9,53	9,49	9,45	9,41	9,36	9,32	9,28	9,24	9,20
0,45	9,16	9,12	9,08	9,04	9,00	8,96	8,92	8,88	8,84	8,80
0,46	8,76	8,73	8,69	8,65	8,61	8,58	8,54	8,50	8,47	8,43
0,47	8,39	8,36	8,32	8,29	8,25	8,22	8,18	8,15	8,12	8,08
0,48	8,05	8,02	7,98	7,95	7,92	7,88	7,85	7,82	7,79	7,75
0,49	7,72	7,69	7,66	7,63	7,60	7,57	7,54	7,51	7,48	7,45
0,50	7,42	7,39	7,36	7,33	7,30	7,27	7,24	7,21	7,19	7,16
0,51	7,13	7,10	7,07	7,05	7,02	6,99	6,96	6,94	6,91	6,88
0,52	6,86	6,83	6,81	6,78	6,75	6,73	6,70	6,68	6,65	6,63
0,53	6,60	6,58	6,55	6,53	6,50	6,48	6,45	6,43	6,41	6,38
0,54	6,36	6,34	6,31	6,29	6,27	6,24	6,22	6,20	6,17	6,15
0,55	6,13	6,11	6,09	6,06	6,04	6,02	6,00	5,98	5,96	5,93
0,56	5,91	5,89	5,87	5,85	5,83	5,81	5,79	5,77	5,75	5,73
0,57	5,71	5,69	5,67	5,65	5,63	5,61	5,59	5,57	5,55	5,53
0,58	5,51	5,49	5,47	5,46	5,44	5,42	5,40	5,38	5,36	5,35
0,59	5,33	5,31	5,29	5,27	5,26	5,24	5,22	5,20	5,19	5,17
0,60	5,15	5,13	5,12	5,10	5,08	5,07	5,05	5,03	5,02	5,00

Примечание. Для вычисления HV при нагрузках 2 (19,61), 2,5 (14,52), 3 (29,42) кгс (H) необходимо значение твердости из данной таблицы умножить соответственно на 2,0; 2,5 и 3,0.

Продолжение приложения 4

Нагрузка 5 кгс (49,03 Н)

										
Диа- гональ				Зна	чения т	вердост	и HV			
отпе-										
чатка	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
d, MM					<u> </u>					
0,06	2576	2492	2412	2336	2264	2195	2129	2065	2005	1947
0,07	1892	1839	1789	1740	1693	1648	1605	1564	1524	1486
0,08	1449	1413	1379	1346	1314	1283	1254	1225	1197	1171
0,09	1145	1120	1095	1072	1049	1027	1006	935	965	946
0,10	927	909	891	874	857	841	825	810	795	780
0,11	766	753	739	726	713	701	689	677	666	655
0,12	644	633	623	613	603	593	584	575	566	557
0,13	545	540	532	524	516	509	501	494	487	480
0,14	473	466	460	453	447	441	435	429	423	418
0,15	412	407	401	396	391	386	381	376	371	367
0,16	362	358	353	349	345	341	336	332	329	325
0,17	321	317	313	310	300	303	299	296	293	289
0,18	286	283	280	277	274	271	268	265	262	260
0,19	257	254	252	249	246	244	241	239	237	234
0,20	232	229	227	225	223	221	218	216	214	212
0,21	210	208	206	204	202	201	199	197	195	193
0,22	192	190	188	186	185	183	182	180	178	177
0,23	175	174	172	171	169	168	166	165	164	162
0,24	161	160	158	157	156	154	153	152	151	150
0,25	148	147	146	145	144	143	141	140	139	138
0,26	137	136	135	134	133	132	131	130	129	128
0,27	127	126	125	124	123,5	122,6	121,7	120,8	120,0	119,1
0,28	118,3	117,4	116,6	115,8	115,0	114,2	113,4	112,6	111,8	111,0
0,29	110,2	109,5	108,7	108,0	107,3	105,5	105,8	105,1	104,4	103,7
0,30	103,0	102,3	101,7	101,0	100,3	99,7	99,0	98,4	97,7	97,1
0,31	96,5	95,9	95,2	94,6	94,0	93,4	92,9	92,3	91,7	91,1
0,32	90,5	90,0	89,4	88,9	88,3	87,8	87,2	86,7	86,2	85,7
0,33	85,1	84,6	84,1	83,6	83,1	82,6	82,1	81,6	81,2	80,7
0,34	80,2	79,7	79,3	78,8	78,4	77,9	77,4	77,0	76,6	76,1
0,35	75,7	75,3	74,8	74,4	74,0	73,6	73,2	72,7	72,9	71,9
0,36	71,5	71,1	70,8	70,4	70,0	69,6	69,2	68,8	68,5	68,1
0,37	67,7	67,4	67,0	66,6	66,3	65,9	65,6	65,2	64,9	64,5
0,38	64,2	63,9	63,5	63,2	62,9	62,6	62,2	61,9	61,6	61,3

Продолжение приложения 4

									ие прило	
Диа- гональ отпе- чатка				Знач	чения т	вердост	ч НV			
<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,39	61,0	60,6	60,3	60,0	59,7	59,4	59,1	58,8	58,5	58,2
0,40	57,9	57,7	57,4	57,1	56,8	56,5	56,2	56,0	55,7	55,4
0,41	55,2	54,9	54,6	54,4	54,1	53,8	53,6	53,3	53,1	52,8
0,42	52,6	52,3	52,1	51,8	51,6	51,3	51,1	50,9	50,6	50,4
0,43	50,1	49,9	49,7	49,5	49,2	49,0	48,8	48,6	48,3	48,1
0,44	47,9	47,7	47,5	47,2	47,0	46,8	46,6	46,4	46,2	46,0
0,45	45,3	45,6	45,4	45,2	45,0	44,8	44,6	44,4	44,2	44,0
0,46	43,8	43,6	43,4	43,3	43,1	42,9	42,7	42,5	42,3	42,2
0,47	42,0	41,8	41,6	41,4	41,3	41,1	40,9	40,8	40,6	40,4
0,48	40,2	40,1	39,9	39,7	39,6	39,4	39,3	39,1	38,9	38,8
0,49	38,6	38,5	38,3	38,1	38,0	37,8	37,7	37,5	37,4	37,2
0,50	37,1	36,9	36,8	30,6	36,5	36,4	36,2	36,1	35,9	35,8
0,51	35,6	35,5	35,4	35,2	35,1	35,0	34,8	34,7	34,6	34,4
0,52	34,3	31,2	34,0	33,9	33,8	33,6	33,5	33,4	33,3	33,1
0,53	33,0	32,9	32,8	32,6	32,5	32,4	32,3	32,2	32,0	31,9
0,54	31,8	31,7	31,6	31,4	31,3	31,2	31,1	31,0	30,9	30,8
0,55	30,7	30,5	30,4	30,3	30,2	30,1	30,0	29,9	29,8	29,7
0,56	29,6	29,5	29,4	29,3	29,1	29,0	28,9	28,8	28,7	28,0
0,57	28,5	28,4	28,3	28,2	28,1	28,0	27,9	27,85	27,75	27,66
0,58	27,56	27,47	27,37	27,28	27,19	27,09	27,00	26,91	26,82	26,73
0,59	26,04	26,55	26,46	20,37	26,28	26,19	26,10	26,01	25,93	25,84
0,60	25,70	25,67	25,58	25,50	25,42	25,33	25,25	25,16	25,08	25,00
0,61	21,92	24,84	24,75	24,07	24,59	24,51	24,43	24,36	24,23	24,20
0,62	24,12	24,04	23,97	23,89	23,81	23,74	23,66	23,58	23,51	23,43
0,63	23,36	23,29	23,21	23,14	23,07	22,99	22,92	22,85	22,78	22,71
0,64	22,64	22,57	22,50	22,43	22,36	22,29	22,22	22,15	22,08	22,01
0,65	22,95	21,88	21,81	21,74	21,68	21,61	21,55	21,48	21,41	21,35
0,66	21,29	21,22	21,16	21,09	21,03	20,97	20,90	20,84	20,78	20,72
0,67	20,65	20,59	20,53	20,47	20,41	20,35	20,29	20,23	20,17	20,11
0,68	20,05	19,99	19,93	19,88	19,82	19,76	19,70	19,65	19,59	19,53
0,69	19,47	19,42	19,36	19,31	19,25	19,20	19,14	19,09	19,03	18,98
0,70	18,92	18,87	18,81	18,76	18,71	18,65	18,60	18,55	18,50	18,44
0,71	18,39	18,34	18,29	18,24	18,19	18,14	18,09	18,04	17,99	17,94

Продолжение приложения 4

r	r									
Диа- гональ				Знач	чения т	вердост	и HV			
отпе-				J.1.u		вордос.				
чатка	<u> </u>									
d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,72	17,89	17,84	17,79	17,74	17,69		17,59	17,54	17,49	17,45
0,73	17,40	17,35	17,30	17,26	17,21		17,12	17,07	17,02	16,98
0,74	16,93	16,89	16,84	16,80	16,75	16,71	16,66	16,62	16,57	16,53
0,75	16,48	16,44	16,40	16,35	16,31	16,27	16,22	16,18	16,14	16,09
0,76	16,05	16,01	15,97	15,93	15,88	15,84	15,80	15,76	15,72	15,68
0,77	15,64	15,60	15,56	15,52	15,48	15,44	15,40	15,36	15,32	15,28
0,78	15,21	15,20	15,16	15,12	15,08	15,05	15,01	14,97	14,93	14,89
0,79	14,86	14,82	14,78	14,74	14,71	14,67	14,63	14,60	14,56	14,52
0,80	14,49	14,45	14,42	14,38	14,34		14,27	14,24	14,20	14,17
0,81	14,13	14,10	14,06	14,03	13,99		13,92	13,89	13,86	13,82
0,82	13,79	13,76	13,72	13,69	13,66	13,62	13,59	13,56	13,52	13,49
0,83	13,46	13,43	13,39	13,36	13,33	13,30	13,27	13,23	13,20	13,17
0,84	13,14	13,11	13,08	13,05	13,02		12,95	12,92	12,89	12,86
0,85	12,83	12,80	12,77	12,74	12,71	12,68	12,65	12,62	12,59	12,57
0,86	12,54	12,51	12,48	12,45	12,42	12,39	12,36	12,33	12,31	12,28
0,87	12,25	12,22	12,19	12,17	12,14		12,08	12,05	12,03	12,00
0,88	11,97	11,95	11,92	11,89	11,86		11,81	11,78	11,76	11,73
0,89	11,71	11,68	11,65	11,63	11,60	11,57	11,55	11,52	11,50	11,47
0,90	11,45	11,42	11,40	11,37	11,35		11,30	11,27	11,25	11,22
0,91	11,20	11,17	11,15	11,12	11,10	11,07	11,05	11,03	11,00	10,98
0,92	10,95	10,93	10,91	10,88	10,86	10,84	10,81	10,79	10,77	10,74
0,93	10,72	10,70	10,67	10,65	10,63	10,61	10,58	10,56	10,54	10,52
0,94	10,49	10,47	10,45	10,43	10,40	10,38	10,36	10,34	10,32	10,30
0,95	10,27	10,25	10,23	10,21	10,19	10,17	10,14	10,12	10,10	10,08
0,96	10,06	10,04	10,02	10,00	9,98	9,96	9,94	9,92	9,89	9,87
0,97	9,85	9,83	9,81	9,79	9,77	9,75	9,73	9,71	9,69	9,67
0,98	9,65	9,63	9,61	9,60	9,58	9,56	9,54	9,52	9,50	9,48
0,99	9,46	9,44	9,42	9,40	9,38	9,37	9,35	9,33	9,31	9,29
1,00	9,27	9,25	9,23	9,22	9,20	9,18	9,13	9,14	9,13	9,11
1,01	9,09	9,07	9,05	9,04	9,02	9,00	8,98	8,96	8,95	8,93
1,02	8,91	8,89	8,88	8,86	8,84	8,83	8,81	8,79	8,77	8,76
1,03	8,74	8,72	8,71	8,69	8,67	8,66	8,64	8,62	8,61	8,59
1,04	8,57	8,56	8,54	8,52	8,51	8,49	8,47	8,46	8,44	6,43
1,05	8,41	8,39	8,38	8,36	8,35	8,33	8,31	8,30	8,28	8,27

Продолжение приложения 4

Диа- гональ отпе- чатка				Зна	чения т	вердост	и HV			
d, mm	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,06	8,25	8,24	8,22	8,21	8,19	8,17	8,16	8,14	8,13	8,11
1,07	8,10	8,08	8,07	8,05	8,04	8,02	8,01	7,99	7,98	7,96
1,08	7,95	7,93	7,92	7,91	7,89	7,88	7,86	7,85	7,83	7,82
1,09	7,80	7,79	7,78	7,76	7,75	7,73	7,72	7,70	7,69	7,68
1,10	7,66	7,65	7,63	7,62	7,61	7,59	7,58	7,57	7,55	7,54
1,11	7,53	7,51	7,50	7,48	7,47	7,46	7,44	7,43	7,42	7,40
1,12	7,39	7,38	7,37	7,35	7,34	7,33	7,31	7,30	7,29	7,27
1,13	7,26	7,25	7,24	7,22	7,21	7,20	7,18	7,17	7,16	7,15
1,14	7,13	7,12	7,11	7,10	7,08	7,07	7,06	7,05	7,04	7,02
1,15	7,01	7,00	6,99	6,97	6,96	6,95	6,94	6,93	6,91	6,90
1,16	6,89	6,88	6,87	6,85	6,84	6,83	6,82	6,81	6,80	6,78
1,17	6,77	6,76	6,75	6,74	6,73	6,72	6,70	6,69	6,68	6,67
1,18	6,66	6,65	6,64	6,63	6,61	6,60	6,59	6,58	6,57	6,56
1,19	6,55	6,54	6,53	6,51	6,50	6,49	6,48	6,47	6,46	6,45
1,20	6,44	6,43	6,42	6,41	6,40	6,39	6,37	6,36	6,35	6,34
1,21	6,33	6,32	6,31	6,30	6,29	6,28	6,27	6,26	6,25	6,24
1,22	6,23	6,22	6,21	6,20	6,19	6,18	6,17	6,16	6,15	6,14
1,23	6,13	6,12	6,11	6,10	6,09	6,08	6,07	6,06	6,05	6,04
1,24	6,03	6,02	6,01	6,00	5,99	5,98	5,97	5,96	5,95	5,94
1,25	5,93	5,92	5,92	5,91	5,90	5,89	5,88	5,87	5,86	5,85
1,26	5,84	5,83	5,82	5,81	5,80	5,79	5,78	5,78	5,77	6,76
1,27	5,75	5,74	5,73	5,72	5,71	5,70	5,69	5,69	5,68	5,67
1,28	5,66	5,65	5,64	5,63	5,62	5,62	5,61	5,60	5,59	5,58
1,29	5,57	5,56	5,55	5,55	5,54	5,53	5,52	5,51	5,50	5,49
1,30	5,49	5,48	5,47	5,46	5,45	5,44	5,44	5,43	5,42	6,41
1,31	5,40	5,39	5,39	5,38	5,37	5,36	5,35	5,35	5,34	5,33
1,32	5,32	5,31	5,31	5,30	5,29	5,28	5,27	5,27	5,26	5,25
1,33	5,24	5,23	5,23	5,22	5,21	5,20	5,19	5,19	5,18	5,17
1,34	5,16	5,16	5,15	5,14	5,13	5,13	5,12	5,11	5,10	5,09
1,35	5,09	5,08	5,07	5,06	5,06	5,05	5,04	5,04	5,03	5,02
1,36	5,01	5,01	5,00	4,99	4,98	4,98	4,97	4,96	4,95	4,95

Примечание. Для вычисления HV при нагрузке 50 кгс (490,3 H) необходимо значение твердости из данной таблицы умножить на 10.

Продолжение приложения 4

Нагрузка 10 кгс (98,07 Н)

Диа- гональ отпе-				Знач	чения т	вердост	и HV			
чатка <i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,09	2289	2239	2191	2144	2099	2055	2012	1971	1931	1898
0,10	1854	1818	1782	1746	1714	1682	1650	1620	1590	1561
0,11	1533	1505	1478	1152	1427	1402	1378	1355	1332	1305
0,12	1288	1207	1246	1226	1206	1187	1168	1150	1132	1114
0,13	1097	1081	1064	1048	1033	1017	1003	988	974	960
0,14	946	933	920	907	894	882	870	858	847	836
0,15	824	813	803	792	782	772	762	752	743	732
0,16	724	715	707	698	689	681	673	565	657	649
0,17	642	634	627	620	612	606	599	592	585	570
0,18	572	566	560	551	548	542	536	530	525	519
0,19	514	508	513	498	493	488	483	478	473	468
0,20	464	459	454	450	446	441	437	433	429	425
0,21	420	417	413	409	405	401	397	394	390	387
0,22	383	380	376	373	370	366	363	360	357	351
0,23	351	348	345	342	339	336	333	330	327	325
0,24	322	319	317	314	311	309	306	304	302	299
0,25	297	294	292	290	287	283	283	281	279	276
0,26	274	272	270	268	266	264	262	260	258	256
0,27	254	252	251	249	247	245	243	242	240	238
0,28	237	235	233	232	230	228	227	225	224	222
0,29	220	219	217	216	215	213	212	210	209	207
0,30	206	205	203	202	201	199	198	197	195	194
0,31	193	192	190	189	188	187	186	185	183	182
0,32	181	180	179	178	177	176	174	173	172	171
0,33	170	169	168	167	166	165	164	163	162	161
0,34	160,4	159,5	158,5	157,6	156,7	155,8	154,9	154,0	153,1	152,2
0,35	151,4	150,5	149,7	148,8	148,0		146,3	145,5	144,7	143,9
0,36	143,1	142,3	141,5	140,7	140,0		138,4		136,9	136,2
0,37	135,5	134,7	134,0	133,3	132,6		131,2	130,5	129,8	129,1
0,38	128,4	127,7	127,1	126,4	125,8	129,1	124,5	123,8	123,2	122,5
0,39	121,9	121,3	120,7	120,1	119,5		118,3	117,7	117,1	116,5
0,40	115,9	115,3	114,7	114,2	113,6		112,5	111,9	111,4	110,5
0,41	110,3	109,8	109,2	108,7	108,2	107,7	107,2	106,6	106,1	105,6
0,42	105,1	104,6	104,1	103,6	103,1	102,7	102,2	101,7	101,2	100,8

Продолжение приложения 4

	r						Про	оолжен	ие прило	JICCHILA T
Диа- гональ отпе-				Зна	чения т	вердост	и НV			
чатка <i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,43	100,3	99,8	99,4	98,9	96,5	98,0	97,5	97,1	96,7	96,2
0,44	95, 8	95,3	94,9	94,5	94,1	93,6	93,2	92,8	92,4	92,0
0,45	91,6	91,2	90,8	90,4	90,0	89,6	89,2	88,8	88,4	88,0
0,46	87,6	87,3	86,9	86,5	86,1	85,8	85,4	85,0	84,7	84,3
0,47	83,9	83,6	83,2	82,9	82,5	82,2	81,8	81,5	81,2	80,8
0,48	80,5	80,2	79,8	79,5	79,2	78,8	78,5	78,2	77,9	77,5
0,49	77,2	76,9	76,6	76,3	76,0	75,7	75,4	75,1	74,8	74,5
0,50	74,2	73,9	73,6	73,3	73,0	72,7	72,4	72,1	71,9	71,6
0,51	71,3	71,0	70,7	70,5	70,2	69,9	69,6	69,4	69,1	68,8
0,52	68,6	68,3	68,1	67,8	67,5	67,3	67,0	66,8	66,5	66,3
0,53	66,0	65,8	65,5	65,3	65,0	64,8	64,5	64,3	64,1	63,8
0,54	63,6	63,4	63,1	62,9	62,7	62,4	62,2	62,0	61,7	61,5
0,55	61,3	61,1	60,9	60,6	60,4	60,2	60,0	59,8	59,6	59,3
0,56	59,1	58,9	58,7	58,5	58,3	58,1	57,9	57,7	57,5	57,3
0,57	57,1	56,9	56,7	56,5	56,3	56,1	55,9	55,7	55,5	55,3
0,58	55,1	54,9	54,7	54,6	54,4	54,2	54,0	53,8	53,6	53,5
0,59	53,3	53,1	52,9	52,7	52,6	52,4	52,2	52,0	51,9	51,7
0,60	51,5	51,3	51,2	51,0	50,8	50,7	50,5	50,3	50,2	50,0
0,61	49,8	49,7	49,5	49,3	49,2	49,0	48,9	48,7	48,6	48,4
0,62	48,2	48,1	47,9	47,8	47,6	47,5	47,3	47,2	47,0	46,9
0,63	46,7	46,6	46,4	46,3	46,1	46,0	45,8	45,7	45,6	48,4
0,64	45,3	45,1	45,0	44,9	44,7	41,6	44,4	44,3	44,2	44,0
0,65	43,9	43,8	43,6	43,5	43,4	43,2	43,1	43,0	42,8	42,7
0,66	42,6	42,4	42,3	42,2	42,1	41,9	41,8	41,7	41,6	41,4
0,67	41,3	41,2	41,1	40,9	40,8	40,7	40,6	40,5	40,3	40,2
0,68	40,1	40,0	39,9	39,8	39,6	39,5	39,4	39,3	39,2	39,1
0,69	38,9	38,8	38,7	38,6	38,5	38,4	38,3	38,2	38,1	38,0
0,70	37,8	37,7	37,6	37,5	37,4	37,3	37,2	37,1	37,0	36,9
0,71	36,8	36,7	36,6	36,5	36,4	36,3	36,2	36,1	36,0	35,9
0,72	35,8	35,7	35,6	35,5	35,4	35,3	35,2	35,1	35,0	34,9
0,73	34,8	34,7	34,6	34,5	34,4	34,3	34,2	34,1	34,05	33,96
0,74	33,86	33,77	33,68	33,59	33,50	33,41	33,32	33,23	33,14	33,05
0,75	32,97	32,88	32,79	32,70	32,62	32,53	32,45	32,36	32,27	32,19
0,76	32,10	32,02	31,94	31,85	31,77	31,69	31,60	31,52	31,44	31,36
0,77	31,28	31,20	31,11	31,03	30,95	30,87	30,79	30,72	30,64	30,56

Продолжение приложения 4

				_						
Диа- гональ				Зна	чения т	вердост	и HV			
отпе-				0110	10,1,1,,	вордос.				
чатка					ſ					
<i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,78	30,48	30,40	30,32	30,25	30,17	30,09	30,02	29,94	29,86	29,79
0,79	29,71	29,64	29,56	29,49	29,41	29,34	29,27	29,19	29,12	29,05
0,80	28,97	28,90	28,83	28,76	28,69	28,62	28,54	28,47	28,40	28,33
0,81	28,26	28,19	28,12	28,06	27,99	27,92	27,85	27,78	27,71	27,65
0,82	27,58	27,51	27,44	27,38	27,31	27,25	27,18	27,11	27,05	26,99
0,83	26,92	26,85	26,79	26,72	26,66	26,60	26,53	26,47	26,41	26,34
0,84	26,28	26,22	26,16	26,09	26,03	25,97	25,91	25,85	25,79	25,73
0,85	25,67	25,61	25,55	25,49	25,43	25,37	25,31	25,25	25,19	25,15
0,86	25,07	25,01	24,96	24,90	24,84	24,78	24,73	24,67	24,61	24,55
0,87	21,50	24,44	24,39	24,33	24,28	24,22	24,17	24,11	24,06	24,00
0,88	23,95	23,89	23,84	23,78	23,73	23,68	23,62	23,57	23,52	23,46
0,89	23,41	23,36	23,31	23,25	23,20	23,15	23,10	23,05	23,00	22,94
0,90	22,89	22,84	22,79	22,74	22,69	22,64	22,59	22,54	22,49	22,44
0,91	22,39	22,34	22,29	22,25	23,20	22,15	22,10	22,05	22,00	21,96
0,92	21,91	21,86	21,81	21,77	21,72	21,67	21,63	21,58	21,53	21,49
0,93	21,44	21,39	21,35	21,30	21,26	21,21	21,17	21,12	21,08	21,03
0,94	20,99	20,94	20,90	20,85	20,81	20,77	20,72	20,68	20,63	20,59
0,95	20,55	20,50	20,46	20,42	20,38	20,33	20,29	20,25	20,21	20,16
0,96	20,12	20,08	20,04	20,00	19,95	19,91	19,87	19,83	19,79	19,76
0,97	19,71	19,67	19,63	19,59	19,55	19,51	19,47	19,43	19,39	19,35
0,98	19,31	19,27	19,23	19,19	19,15	19,11	19,07	19,04	19,00	18,96
0,99	18,92	18,88	18,84	16,81	18,77	18,73	13,69	18,66	18,62	18,59
1,00	18,54	18,51	18,47	18,43	18,40	18,36	18,32	18,29	18,25	18,21
1,01	19,18	18,14	18,11	18,07	18,04	18,00	17,96	17,93	17,89	17,86
1,02	17,82	17,79	17,75	17,72	17,68	17,65	17,62	17,58	17,55	17,51
1,03	17,48	17,45	17,41	17,38	17,34	17,31	17,28	17,24	17,21	17,18
1,04	17,14	17,11	17,08	17,05	17,01	16,98	16,95	16,92	16,88	16,85
1,05	16,82	16,79	16,76	16,72	16,69	16,66	16,63	16,60	16,57	16,53
1,06	16,50	16,47	16,44	16,41	16,38	16,35	16,32	16,29	16,26	16,23
1,07	16,20	16,17	16,14	16,11	16,08	16,05	16,02	15,99	15,96	15,93
1,08	15,90	15,87	15,84	15,81	15,78	15,75	15,72	15,69	15,67	15,64
1,09	15,61	15,58	15,55	15,52	15,49	15,47	15,44	15,41	15,38	15,35
1,10	15,33	15,30	15,27	15,24	15,21	15,19	15,16	15,13	15,10	15,08
1,11	15,05	15,02	15,00	14,97	14,94	14,92	14,89	14,86	14,84	14,81
1,12	14,78	14,76	14,73	14,70	14,68	14,65	14,63	14,60	14,57	14,55

Продолжение приложения 4

Диа-										
гональ отпе- чатка				Знач	т кинэн	вердост	и HV			
	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,13	14,52	14,50	14,47	14,45	14,42	14,39	14,37	14,34	14,32	14,29
1,14	14,27	14,24	14,22	14,19	14,17	14,14	14,12	14,10	14,07	14,05
1,15	14,02	14,00	13,97	13,95	13,92	13,90	13,88	13,85	13,83	13,80
1,16	13,78	13,76	13,73	13,71	13,69	13,66	13,64	13,62	13,59	13,57
1,17	13,55	13,52	13,50	13,48	13,45	13,43	13,41	13,39	13,36	13,34
1,18	13,32	13,30	13,27	13,25	13,23	13,21	13,18	13,16	13,14	13,12
1,19	13,09	13,07	13,05	13,03	13,01	12,99	12,96	12,94	12,92	12,90
	12,88	12,86	12,83	12,81	12,79	12,77	12,75	12,73	12,71	12,69
	12,67	12,64	12,62	12,60	12,58	12,56	12,54	12,52	12,50	12,48
1,22	12,46	12,44	12,42	12,40	12,38	12,36	12,34	12,32	12,30	12,28
	12,26	12,24	12,22	12,20	12,18	12,16	12,14	12,12	12,10	12,08
	12,06	12,04	12,02	12,00	11,98	11,96	11,94	11,93	11,91	11,89
1,25	11,87	11,85	11,83	11,31	11,79	11,77	11,75	11,74	11,72	11,70
	11,68	11,66	11,64	11,62	11,61	11,59	11,57	11,55	11,53	11,52
	11,50	11,48	11,46	11,44	11,43	11,41	11,39	11,37	11,35	11,34
	11,32	11,30	11,28	11,27	11,25	11,23	11,21	11,20	11,18	11,16
	11,14	11,13	11,11	11,09	11,07	11,06	11,04	11,02	11,01	10,99
1,30	10,97	10,96	10,94	10,92	10,91	10,89	10,87	10,86	10,84	10,82
1,31	10,81	10,79	10,77	10,70	10,74	10,72	10,71	10,69	10,67	10,66
1,32	10,64	10,63	10,61	10,59	10,58	10,56	10,55	10,53	10,51	10,50
1,33	10,48	10,47	10,45	10,44	10,42	10,40	10,39	10,37	10,36	10,34
1,34	10,33	10,31	10,30	10,28	10,27	10,25	10,24	10,22	10,21	10,19
1,35	10,17	10,16	10,14	10,13	10,11	10,10	10,09	10,07	10,06	10,04
1,36	10,03	10,01	10,00	9,98	9,97	9,95	9,94	9,92	9,91	9,89
1,37	9,88	9,87	9,85	9,84	9,82	9,81	9,79	9,78	9,77	9,75
1,38	9,74	9,72	9,71	9,70	9,68	9,67	9,65	9,64	9,63	9,61
1,39	9,60	9,58	9,57	9,56	9,54	9,53	9,52	9,50	9,49	9,47
1,40	9,46	9,45	9,43	9,42	9,41	9,39	9,38	9,37	9,36	9,34
1,41	9,33	9,31	9,30	9,29	9,27	9,26	9,25	9,24	9,22	9,21
	9,20	9,18	9,17	9,16	9,14	9,13	9,12	9,11	9,09	9,08
	9,07	9,06	9,04	9,03	9,02	9,01	8,99	8,98	8,97	8,96
	8,94	8,93	8,92	8,91	8,89	8,88	8,87	8,86	8,64	8,74
1,45	8,82	8,81	8,80	8,78	8,77	8,76	8,75	8,74	8,72	8,71
1,46	6,70	6,69	8,68	8,66	8,65	8,64	8,63	8,63	8,60	8,59
1,47	8,58	8,57	8,56	8,55	8,53	8,52	8,51	8,50	8,49	8,48

Продолжение приложения 4

Диа- гональ отпе- чатка				Зна	чения т	вердост	и НV			
d, MM	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,48	8,47	8,45	8,44	8,43	8,42	8,41	8,40	8,39	8,38	8,36
1,49	8,35	8,34	8,33	8,32	8,31	8,30	8,29	8,27	8,26	8,25
1,50	8,24	8,23	8,22	8,31	8,20	8,19	8,18	8,17	8,15	8,14
1,51	8,13	8,12	8,11	8,10	8,09	8,08	8,07	8,06	8,05	8,04
1,52	8,03	8,02	8,01	7,99	7,98	7,97	7,96	7,95	7,94	7,93
1,53	7,92	7,91	7,90	7,89	7,88	7,87	7,86	7,85	7,84	7,83
1,54	7,82	7,81	7,80	7,79	7,78	7,77	7,76	7,75	7,74	7,73
1,55	7,72	7,71	7,70	7,69	7,68	7,67	7,66	7,66	7,64	7,63
1,56	7,62	7,61	7,60	7,59	7,58	7,57	7,56	7,55	7,54	7,53
1,57	7,52	7,51	7,50	7,49	7,48	7,48	7,47	7,46	7,45	7,44
1,58	7,43	7,42	7,41	7,40	7,39	7,38	7,37	7,36	7,35	7;34
1,59	7,34	7,33	7,32	7,31	7,30	7,29	7,28	7,27	7,26	7,25
1,60	7,24	7,23	7,23	7,22	7,21	7,20	7,19	7,18	7,17	7,18
1,61	7,15	7,15	7,14	7,13	7,12	7,11	7,10	7,09	7,08	7,07
1,62	7,07	7,06	7,05	7,04	7,03	7,02	7,01	7,01	7,00	6,99
1,63	6,98	6,97	6,96	6,95	6,95	6,95	6,93	6,92	6,91	6,90
1,64	6,89	6,89	6,88	6,87	6,86	6,85	6,84	6,84	6,83	6,82
1,65	6,81	6,80	6,79	6,79	6,78	6,77	6,76	6,75	6,75	6,74
1,66	6,73	6,72	6,71	6,71	6,70	6,69	6,68	6,67	6,67	6,66
1,67	6,65	6,64	6,63	6,63	6,62	6,61	6,60	6,59	6,59	6,58
1,68	6,57	6,56	6,55	6,55	6,54	6,53	6,52	6,52	6,51	6,50
1,69	6,49	6,48	6,48	6,47	6,46	6,45	6,45	6,44	6,43	6,42
1,70	6,42	6,41	6,40	6,39	6,39	6,38	6,37	6,36	6,36	6,35
1,71	6,34	6,33	6,33	6,32	6,31	6,30	6,30	6,29	6,28	6,28
1,72	6,27	6,26	6,25	6,25	6,24	6,23	6,22	6,22	6,21	6,20
1,73	6,20	6,19	6,18	6,17	6,17	6,16	6,15	6,15	6,14	6,13
1,74	6,12	6,12	6,11	6,10	6,10	6,09	6,08	6,08	6,07	6,06
1,75	6,06	6,05	6,04	6,03	6,03	6,02	6,01	6,01	6,00	5,99
1,76	5,99	5,98	5,97	5,97	5,96	5,95	5,95	5,94	5,93	5,93
1,77	5,92	5,91	5,91	5,90	5,89	5,89	5,88	5,87	5,87	5,86
1,78	5,85	5,85	5,84	5,83	5,83	5,82	5,81	5,81	5,80	5,79
1,79	5,79	5,78	5,77	5,77	5,76	5,76	5,75	5,74	5,74	5,73
1,80	5,72	5,72	5,71	5,70	5,70	5,69	5,69	5,68	5,67	5,67
1,81	5,66	5,65	5,65	5,64	5,64	5,63	5,62	5,62	5,61	5,60
1,82	5,60	5,59	5,59	5,58	5,57	5,57	5,56	5,56	5,55	5,54

Продолжение приложения 4

Диа- гональ, отпе- чатка				Зна	чения т	вердост	и HV			
d, мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
1,83	5,54	5,54	5,53	5,52	5,51	5,51	5,50	5,50	5,49	5,48
1,84	5,48	5,47	5,47	5,46	5,45	5,45	5,44	5,44	5,43	5,42
1,85	5,42	5,41	5,41	5,40	5,39	5,39	5,36	5,38	5,37	5,37
1,86	5,36	5,35	5,35	5,34	5,34	5,33	5,33	5,32	5,31	5,31
1,87	5,30	5,30	5,29	5,29	5,28	5,27	5,27	5,26	5,26	5,25
1,88	5,25	5,24	5,24	5,23	5,22	5,22	5,21	5,21	5,20	5,20
1,89	5,19	5,19	5,18	5,17	5,17	5,16	5,16	5,15	5,15	5,14
1,90	5,14	5,13	5,13	5,12	5,12	5,11	5,10	5,10	5,09	5,09
1,91	5,08	5,08	5,07	5,07	5,06	5,06	5,05	5,05	5,04	5,04
1,92	5,03	5,03	5,02	5,01	5,01	5,00	5,00	4,99	4,99	4,98

Примечание. Для вычисления HV при нагрузке 100 кгс (980,7 H) необходимо значение твердости из данной таблицы умножить на 10.

Нагрузка 294,2 Н (30 кгс)

Диа- гональ отпе- чатка				Зна	чения т	вердост	и НV			
d, MM	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,16	2173	2146	2120	2094	2068	2043	2019	1995	1971	1948
0,17	1925	1903	1880	1859	1837	1817	1796	1776	1756	1736
0,18	1717	1698	1679	1661	1643	1625	1608	1591	1574	1557
0,19	1541	1525	1509	1493	1478	1463	1448	1433	1419	1405
0,20	1391	1377	1363	1350	1337	1324	1311	1298	1286	1274
0,21	1261	1250	1238	1226	1215	1203	1192	1181	1171	1160
0,22	1149	1139	1129	1119	1109	1099	1089	1080	1070	1061
0,23	1052	1043	1034	1025	1016	1007	999	990	982	974
0,24	966`	958	950	942	934	927	919	912	905	897
0,25	890	883	876	869	862	856	849	842	836	829
0,26	823	817	810	804	798	792	786	780	775	769
0,27	763	757	752	746	741	736	730	725	720	715
0,28	710	705	700	695	690	685	680	675	671	666
0,29	661	657	652	648	644	639	635	631	626	622
0,30	618	614	610	606	602	598	591	590	586	583

Продолжение приложения 4

Диа-				2			UV		-	
гональ отпе-				Эна	т кинэр	вердост	ипу			
чатка <i>d</i> , мм	0,000	0,001	0,002	0,003	0,004	0,005	0,006	0,007	0,008	0,009
0,31	579	575	571	568	564	561	557	554	550	547
0,32	543	540	537	533	530	527	525	520	517	514
0,33	511	508	505	502	499	496	493	490	487	484
0,34	481	478	476	473	470	467	465	462	459	457
0,35	454	452	449	446	444	441	439	436	434	432
0,36	429	427	425	422	420	418	415	413	411	409
0,37	406	404	402	400	398	396	393	391	389	387
0,38	385	383	381	379	377	375	373	371	370	368
0,39	366	364	362	360	358	357	355	353	351	349
0,40	318	346	344	343	341	339	337	336	334	333
0,41	331	329	328	326	325	323	321	320	318	317
0,42	315	314	312	311	309	308	307	305	304	302
0,43	301	299	298	297	295	291	293	291	290	289
0,44	287	286	285	283	282	281	280	278	277	276
0,45	275	274	272	271	270	264	268	266	265	264
0,46	263	262	261	260	258	257	256	255	254	253
0,47	252	251	250	249	248	247	246	245	243	242
0,48	241	240	239	238	237,5	236,5	235,5	234,6	233,6	232,6
0,49	231,7	230,8	229,8	228,9	228,0	227,0	226,1	225,2	224,3	223,4
0,50	222,5	221,6	220,8	219,9	219,0	218,1	217,3	216,4	215,6	214,7
0,51	213,9	213,0	212,2	211,4	210,6		208,9	208,1	207,3	206,5
0,52	205,7	204,9	204,2	203,4	202,6	201,8	201,1	200,3	199,5	198,8
0,53	198,0	197,3		195,8	195,1		193,6	192,9	192,2	191,5
0,54	190,8	190,1	189,4	188,7	188,0		186,6	185,9	185,2	184,6
0,55	183,9	183,2	182,6	181,9	181,3		180,0	179,3	178,7	178,0
0,56	177,4	176,8	176,1	175,5	174,9		173,7	173,0	172,1	171,8
0,57	171,2	170,6	170,0	169,1	168,8	168,3	167,7	167,1	166,5	165,9
0,58	165,4	164,8	164,2	163,7	163,1	162,6	162,0	161,5	160,9	160,4
0,59	159,8	159,3	158,7	158,2	157,7	1 '	156,6	156,1	155,6	155,0
0,60	154,5	154,0	153,5	153,0	152,5		151,5	151,0	150,5	150,0
0,61	149,5	149,0	148,5	148,0	147,6		146,6	141,1	145,7	145,2
0,62	144,7	144,3	143,8	143,3	142,9		142,0	141,5	141,1	140,6
0,63	140,2	139,7	139,3	138,8	138,4	138,0	137,5	137,1	136,7	136,2

Продолжение приложения 4

	···						
Диа- гональ			Значен	ия тве	рдости HV		
отпе-			3114 1011	1101 120	рдоот		
чатка							
<i>d</i> , мм	HV	<i>d</i> , мм	HV	<i>d</i> , мм	HV	<i>d</i> , мм	HV
0,64	135,8-132,1	0,97	59,1-58,0	1,32	31,93-31,50	1,66	20,19-19,97
0,65	131,7-128,1	0,98	57,9-56,9	1,33	31,45-31,03	1,67	19,95-19,73
0,66	127,7-124,3	0,99	56,8-55,7	1,34	30,98-30,57	1,68	19,71-19,50
0,67	123,9-120,7	1,01	54,5-53,6	1,35	30,52-30,12	1,69	19,48-19,27
0,68	120,3-117,2	1,02	53,5-52,5	1,36	30,08-29,68	1,70	19,25-19,05
0,69	116,8-113,9	1,03	52,4-51,5	1,38	29,21-28,83	1,71	19,03-18,83
0,70	113,5-110,7	1,04	51,4-50,56	1,39	28,79-28,42	1,72	18,80-18,61
0,71	110,4-107,6	1,05	50,46-49,60	1,40	28,38-28,02	1,73	18,59-18,40
0,72	107,3-104,7	1,07	48,59-47,78	1,41	27,98-27,63	1,74	18,37-18,19
0,73	104,4-101,9	1,08	47,69-46,91	1,42	27,59-27,54	1,75	18,17-17,98
0,74	101,6-99,2	1,09	46,82-46,06	1,43	27,20-26,87	1,76	17,96-17,78
0,75	98,9-96,6	1,10	45,98-45,23	1,44	26,83-26,50	1,77	17,76-17,58
0,76	96,3-94,1	1,11	45,15-44,43	1,45	26,46-26,13	1,78	17,56-17,38
0,77	93,8-91,7	1,12	44,35-43,64	1,46	26,10-25,78	1,79	17,36-17,19
0,78	91,4-89,4	1,13	43,57-42,88	1,47	25,74-25,43	1,80	17,17-17,00
0,79	89,1-87,1	1,14	42,81-42,14	1,48	25,40-25,09	1,81	16,98-16,81
0,80	86,9-85,0	1,15	42,07-41,41	1,49	25,06-24,76	1,82	16,79-16,63
0,81	84,8-82,9	1,16	41,34-40,71	1,50	24,72-24,43	1,83	16,61-16,45
0,82	82,7-80,9	1,17	40,64-40,02	1,51	24,40-24,11	1,84	16,43-16,27
0,83	80,8-79,0	1,18	39,95-39,35	1,52	24,08-23,80	1,85	16,25-16,10
0,84	78,8-77,2	1,19	39,28-38,70	1,53	23,76-23,49	1,86	16,08-15,93
0,85	77,0-75,4	1,20	38,63-38,06	1,54	23,46-23,19	1,87	15,91-15,76
0,86	75,2-73,7	1,21	38,00-37,44	1,55	23,16-22,89	1,88	15,74-15,59
0,87	73,5-72,0	1,22	37,38-36,83	1,56	22,86-22,60	1,89	15,57-15,43
0,88	71,8-70,4	1,23	36,77-36,24		22,57-22,31	1,90	15,41-15,27
0,89	70,2-68,8	1,24	36,18-35,66	1,58	22,28-22,03	1,91	15,25-15,11
0,90	68,7-67,3	1,25	35,60-35,10		22,01-21,76	1,92	15,09-14,95
0,91	67,2-65,9	1,26	35,04-34,55		21,73-21,49	1,93	14,93-14,80
0,92	65,7-64,5	1,27	34,49-34,01	1,61	21,46-21,22		14,78-14,65
0,93	64,3-63,1	1,28	33,95-33,48		21,20-20,96	1,95	14,63-14,50
0,94	63,0-61,8	1,29	33,43-32,96		20,94-20,71	1,96	14,48-14,35
0,95	61,6-60,5	1,30	32,92-32,47	1,64	20,68-20,46	1,97	14,33-14,20
0,96	60,4-59,2	1,31	32,42-31,98		20,43-20,21	1,98	14,19-14,06
						1,99	14,05-13,92
L							

Приложение 5

Числа микротвердости при испытании вдавливанием четырехгранной алмазной пирамиды по ГОСТ 9450—76

Диагональ от- течатка d, мкм	incio maporibepaceri ii, min (areymin)													
Диагон печатка	0	1	2	3	4	5	6	7	8	9				
				При	нагрузке 0,	049 H (5 rc)								
0	-	-	-	-	5684(579)	3637(371)	2526(258)	1856(189)	1421(145)	1123(114)				
10	909,4(92,7)	751,5(76,6)	631,5(64,4)	538,1(54,9)	464,0(47,3)	404,2(41,2)	355,2(36,2)	314,7(32,1)	280,7(28,6)	251,9(25,7)				
20	227,3(23,2)	206,2(21,0)	187,9(19,2)	171,9(17,5)	157,9(16,1)	145,5(14,8)	134,5(13,7)	124,7(12,7)	116,0(11,8)	108,1(11,0)				
30	101,0(10,3)	96,6(9,6)	88,8(9,0)	83,5(8,5)	78,7(8,0)	74,2(7,6)	70,2(7,1)	66,4(6,8)	63,0(6,4)	59,8(6,1)				
	· · · · · · · · · · · · · · · · · · ·		·	При	нагрузке 0,0	98 H (10 rc	:)							
0	-	-	-	-	11367(1159)	7275(742)	5052(515)	3712(378)	2842(290)	2245(229)				
10	1819(185,4)	1503(153,2)	1263(128,8)	1076(109,7)	928(94,6)	808(82,4)	710(72,4)	629(64,2)	561(57,2)	505(51,4)				
20	455(46,4)	412(42,0)	376(38,3)	344(35,0)	316(32,2)	291(29,7)	269(27,4)	249(25,4)	232(23,6)	216(22,0)				
30	202(20,6)	189(19,3)	178(18,1)	167(17,0)	157(16,0)	148(15,1)	140(14,3)	133(13,5)	126(12,8)	120(12,2)				
40	114(11,6)	108(11,0)	103(10,5)	98(10,0)	94(9,6)	90(9,2)	86(8,8)	82(8,4)	79(8,0)	76(7,7)				
		* 		При	нагрузке 0,1	96 H (20 rd	:)	 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
0	-	-	-	-	22735(2318)	14550(1483)	10104(1030)	7424(757)	5684(579)	4491(458)				
10	3638(371)	3006(306)	2526(258)	2152(219)	1856(189)	1617(165)	1421(145)	1259(128)	1123(114)	1003(103)				
20	909(92,7)	825(84,1)	752(76,6)	688(70,1)	632(64,4)	532(59,3)	538(54,9)	499(50,9)	464(47,3)	433(44,1)				
30	404(41,2)	379(38,6)	355(36,2)	334(34,0)	315(32,1)	397(30,3)	281(28,6)	266(27,1)	252(25,7)	139(24,4)				

40	227(23,2)	216(22,1)	206(21,0)	197(20,1)	188(19,2)	180(18,3)	172(17,5)	165(16,8)	158(16,1)	152(15,4)
50	145(14,8)	140(14,3)	135(13,7)	129(13,2)	125(12,7)	120(12,3)	116(11,8)	112(11,4)	108(11,0)	104(10,7)
60	101,0(10,3)	97,8(10,0)	94,6(9,6)	91,6(9,3)	88,8(9,1)	86,1(8,8)	83,5(8,5)	81,0(8,3)	78,7(8,0)	76,4(7,8)
				При	нагрузке 0,4	190 H (50 rc	:)	<u> </u>	·	
0	-	-	-	-	-	36375(3708)	25261(2575)	18559(1892)	14209(1448)	11227(1144)
10	9094(927)	7516(766)	6315(644)	5381(549)	4640(473)	4042(412)	3552(362)	3147(321)	2807(286)	2519(257)
20	2273(232)	2062(210)	1879(192)	1719(175)	1579(161)	1455(148)	1345(137)	1247(127)	1160(118)	1081(110)
30	1010(1030)	946(96,5)	888(90,5)	835(85,1)	787(80,2)	742(75,7)	702(71,5)	664(67,7)	630(64,2)	598(60,9)
40	568(57,9)	541(55,1)	516(52,6)	492(50,1)	470(47,9)	449(45,8)	430(43,8)	412(42,0)	495(40,2)	379(38,6)
50	364(37,1)	350(35,6)	336(34,3)	324(33,0)	312(31,8)	301(30,6)	290(29,6)	280(28,5)	270(27,6)	261(26,6)
60	253(25,8)	244(24,9)	237(24,1)	229(23,4)	222(22,6)	215(21,9)	203(21,3)	203(20,7)	197(20,1)	191(19,5)
70	186(18,9)	180(18,4)	175(17,9)	171(17,4)	166(16,9)	162(16,5)	157(16,0)	153(15,6)	149(15,2)	146(14,9)
80	142(14,5)	139(14,1)	135(13,8)	132(13,5)	129(13,1)	126(12,8)	123(12,5)	120(12,2)	117(12,0)	115(11,7)
90	112(11,4)	110(11,2)	107(11,0)	105(10,7)	103(10,5)	101(10,3)	99(10,1)	97(9,9)	95(9,7)	93(9,5)
				При н	агрузке 0,9	81 Н (100 г	c)			
0	-	-	-		-	-	50521(5149)	37117(3784)	28418(2897)	22453(2289)
10	18188(1854)	15031(1532)	12630(1288)	10762(1097)	9279(946)	8033(824)	7105(724)	6293(642)	5613(572)	5038(514)
20	4547(464)	4124(420)	3758(383)	3438(351)	3158(322)	2910(297)	2691(274)	2495(254)	2320(236)	2163(221)
30	2021(206)	1893(193)	1776(181)	1670(170)	1573(160)	1485(151)	1403(143)	1329(135)	1260(128)	1196(122)
40	1137(116,0)	1082(110,0)	1031(105,1)	984(100,3)	939(95,8)	898(91,6)	860(87,6)	823(83,9)	789(80,4)	757(77,2)
50	728(74,2)	699(71,3)	673(68,6)	647(66,0)	624(63,6)	601(61,3)	580(59,1)	560(57,1)	541(55,1)	522(53,3)
60	505(51,5)	489(49,8)	473(48,2)	458(46,7)	444(45,3)	431(43,9)	418(42,6)	405(41,3)	393(40,1)	332(39,0)
70	371(37,8)	361(36,8)	351(35,8)	342(34,8)	332(33,9)	323(33,0)	315(32,1)	307(31,3)	299(30,5)	291(29,7)
.80	284(29,0)	277(28,3)	271(27,6)	264(26,9)	258(26,3)	252(25,7)	246(25,1)	240(24,5)	235(24,0)	230(23,4)
90	225(22,9)	220(22,4)	215(21,9)	210(21,4)	206(21,0)	202(20,5)	197(20,1)	193(19,7)	189(19,3)	186(18,9)
100	182(18,5)	178(18,2)	175(17,8)	171(17,5)	168(17,1)	165(16,8)	162(16,5)	159(16,2)	156(15,9)	153(15,6)
110	150(15,3)	148(15,1)	145(14,8)	142(14,5)	140(14,3)	138(14,0)	135(13,8)	133(13,5)	131(13,3)	128(13,1)

								IIp	юдолжение п	риложения 5
OT-				Число ми	кротвердос	ти Н, мм ² (кгс/мм ²) .			
Диагональ от- печатка d, мкм	0	1	2	3	4	5	6	7	8	9
120	126(12,9)	124(12,7)	122(12,5)	120(12,3)	118(12,1)	116(11,9)	115(11,7)	113(11,5)	111(11,3)	109(11,1)
130	103(11,0)	106(10,8)	104(10,6)	103(10,5)	101(10,3)	99,8(10,2)	98,3(10,0)	96,9(9,9)	95,5(9,7)	94,1(9,6)
				При н	агрузке 1,9	62 H (200 rc	;)			
10	36375(3708)		25261(2575)	21524(2194)	18559(1892)	16167(1648)	14203(1443)	12587(1283)	11227(1144)	10076(1027)
20	9094(927)	8248(841)	7516(766)	6876(701)	6315(644)	5820(593)	5381(549)	4990(503)	4640(473)	4326(441)
30	4042(412)	3786(386)	3552(362)	3340(341)	3147(321)	2969(303)	2807(286)	2657(271)	2519(257)	2392(244)
40	2273(232)	2164(221)	2062(210)	1967(201)	1879(192)	796(183)	1719(175)	1647(168)	1579(161)	1515(154)
50	1455(148)	1399(143)	1345(137)	1295(132)	1247(127)	1202(123)	1160(118)	1120(114)	1031(110)	1045(107)
60	1010(103)	978(99,7)	946(96,5)	916(93,4)	888(90,5)	861(87,8)	835(85,1)	810(82,6)	787(80,2)	764(77,9)
70	742(75,7)	722(73,6)	702(71,5)	683(69,6)	664(67,7)	647(65,9)	630(64,2)	614(62,5)	598(60,4)	583(59,4)
80	568(57,9)	554(56,5)	541(55,1)	528(53,8)	516(52,6)	503(51,3)	492(50,1)	431(49,0)	470(47,9)	459(46,8)
90	449(45,8)	439(44,8)	430(43,8)	421(42,9)	412(42,0)	403(41,1)	395(40,2)	387(39,4)	379(33,6)	371(37,8)
100	364(37,1)	357(36,3)	350(35,6)	343(35,0)	336(34,3)	330(33,6)	324(33,0)	318(32,4)	312(31,8)	306(31,2)
110	301(30,6)	245(30,1)	290(29,6)	285(29,0)	280(28,5)	275(23,0)	270(27,6)	266(27,1)	261(26,6)	257(26,2)
120	253(25,7)	244(25,3)	244(24,9)	240(24,5)	237(24,1)	233(23,7)	229(23,4)	226(23,0)	222(22,6)	219(22,3)
130	215(21,9)	212(21,6)	209(21,3)	206(21,0)	203(20,7)	200(20,3)	197(20,0)	194(19,8)	191(19,5)	188(19,2)
140	186(18,9)	183(18,7)	180(18,4)	178(18,1)	175(17,9)	173(17,6)	170(17,4)	168(17,2)	166(16,9)	164(16,7)
150	162(16,5)	160(16,3)	157(16,0)	155(15,8)	153(15,6)	151(15,4)	149(15,2)	148(15,0)	146(14,9)	144(14,7)
160	142(14,5)	140(14,3)	139(14,1)	137(14,0)	135(13,8)	134(13,6)	132(13,5)	130(13,3)	129(13,1)	127(13,0)
170	126(12,8)	124(12,7)	123(12,5)	122(12,4)	120(12,2)	119(12,1)	117(12,0)	116(11,8)	115(11,7)	114(11,6)
180	112(11,4)	111(11,3)	110(11,9)	109(11,1)	107(11,0)	106(10,8)	105(10,7)	104(10,6)	103(10,5)	102(10,4)
190	101(10,3)	100(10,2)	99(10,1)	98(10,0)	97(9,9)	96(9,8)	95(9,7)	94(9,6)	93(9,5)	92(9,4)

Приложение 6

Сравнительная твердость испытуемого стального образца в зависимости от отношения диаметров отпечатков на контрольном бруске d_3 и на образце d_0 и твердости стального контрольного бруска при испытаниях методом ударного отпечатка по ГОСТ 18661—73.

Твердость HV

d_3/d_0														
	100	120	140	160	180	200	220	240	260	280	300	320		
0,60	-	-	-	-	-	-	-	-	-	-	72	76		
0,62	-	-	-	-	-	-	-	-	-	-	78	83		
0,64	-	-	-	-	-	-	-	-	-	-	84	89		
0,66	-	-	-	- 1	-	-	-	-	-	86	91	97		
0,68	-	-	-	-	-	-	-	-	-	93	98	104		
0,70	-	-	-	-	-	-	-	88	94	100	106	113		
0,72	-	-	-	-	-	-	-	94	101	107	114	121		
0,74	-	-	-	-	-	-	94	101	108	115	123	131		
0,76	-	-	-	-	-	93	101	108	116	124	132	141		
0,78	-	-	-	-	-	93	108	116	124	133	142	152		
0,80	-	-	-	-	97	106	115	124	133	142	152	163		
0,82	-	-	-	-	101	113	123	133	143	153	164	176		
0,84	-	-	-	99	110	121	131	142	153	164	176	189		
0,86	-	-	94	106	117	129	140	152	164	176	189	203		
0,88	-	-	99	119	125	137	150	162	175	189	203	218		
0,90	-	91	105	112	144	146	160	173	187	202	218	234		
0,92	-	96	112	126	141	156	170	185	201	216	233	251		
0,94	86	102	118	134	150	166	182	198	214	232	249	268		
0,96	90	108	125	142	159	177	194	211	229	247	266	285		
0,98	95	114	132	151	169	188	207	225	244	263	283	303		
1,00	100	120	140	160	180	200	220	240	260	280	300	320		
1,02	105	127	148	170	191	213	234	255	276	297	317	337		
1,04	111	134	157	180	203	226	249	271	292	313	333	353		
1,06	116	141	166	190	215	240	264	287	309	329	350	369		
1,08	122	149	175	202	228	254	279	302	329	345	365	384		
1,10	129	157	185	214	242	269	294	318	340	361	380	399		
1,12	135	165	196	226	256	284	310	333	355	375	394	415		
1,14	149	174	207	239	270	299	325	348	370	390	410	449		

Продолжение приложения 6

									110000		прилож	contain o		
d_3/d_0	Твердость испытуемого образца HV _c при твердости контрольного бруска HV ₃ 100 120 140 160 180 200 220 240 260 280 300 320 149 183 218 252 284 314 340 363 384 404 426 449													
	100	120	140	160	180	200	220	240	260	280	300	320		
1,16	149	183	218	252	284	314	340	363	384	404	426	449		
1,18	157	199	230	266	299	328	354	377	397	420	443	466		
1,20	165	203	242	280	313	342	368	390	413	436	459	484		
1,22	174	214	255	293	327	356	381	404	428	452	477	503		
1,24	182	225	268	307	341	370	394	419	444	468	495	522		
1,26	191	237	281	321	354	381	408	434	460	486	513	541		
1,28	200	249	295	334	368	395	423	450	476	504	532	561		
1,30	210	261	308	347	380	409	438	466	493	522	551	581		
1,32	221	274	321	360	392	423	453	482	511	540	571	602		
1,34	231	286	334	373	405	437	468	498	529	559	591	624		
1,36	242	299	346	385	418	452	484	515	547	579	612	646		
1,38	253	311	358	396	432	467	500	533	566	599	633	669		
1,40	265	323	370	409	446	482	517	551	585	619	655	693		
1,42	276	335	382	422	461	498	534	569	604	640	677	717		
1,44	288	347	393	435	475	514	551	588	624	662	701	742		
1,46	300	359	405	449	490	530	569	607	645	684	724	767		
1,48	311	369	417	463	506	547	587	627	666	707	749	793		
1,50	323	381	430	477	521	564	606	647	688	730	774	821		
1,52	334	391	443	491	537	582	625	668	710	754	800	-		
1,54	345	402	456	506	554	600	645	689	733	779	827	-		
1,56	356	414	469	521	571	618	665	711	757	804	854	-		
1,58	367	426	483	536	588	637	685	733	781	831	-	-		
1,60	377	438	497	552	605	656	706	756	806	858	-	-		
1,62	387	450	511	568	623	676	728	780	832	-	-	-		
1,64	396	464	525	585	641	696	750	804	858	-	-	-		
1,66	407	475	540	601	660	717	773	829	885	-	-	-		
1,68	418	488	555	618	679	738	796	-	-	-	-	-		
1,70	429	502	570	636	699	760	820	-	-	-	-	-		
1,72	441	515	586	654	719	782	-	-	-	-	-	-		
1,74	452	529	602	672	739	805	-	-	-	-	-	-		
1,76	464	543	618	691	760	828	-	-	-	-	-	-		
1,78	476	557	635	710	782	-	-	-	-	-	-	-		
1,80	488	572	652	729	804	-	-	-	-	-	-	-		
1,82	500	587	669	749	-	-	-	-	-	-	-	-		
1,84	513	602	687	770	-	-	-	-	-	-	-	-		
1,86	525	617	705	791	-	-	-	-	-	-	-	-		
1,88	538	633	724	812	-	-	-	-	-	-	-	-		
1,90	552	649	743	834	-	-	-	-	-	-	-	-		
1,92	565	665	762		-	-	-	-			-	-		

Продолжение приложения 6

$d_{\rm s}/d_{\rm o}$	Твер	дость и	спытуе	мого о	бразца	HV _c π	ри тве	рдости	контро	льного	бруск	a HV ₃
	100	120	140	160	180	200	220	240	260	280	300	320
1,94	579	682	781	-	_	-	-	-	-	-	-	-
1,96	593	699	800	-	-	-	-	-	-	-	-	-
1,98	607	716	820	-	-	-	-	-	-	-	-	-
2,00	622	734	-	-	-	-	-	-	-	-	-	-
2,02	636	752	-	-	-	-	-	-	-	-	-	-
2,04	651	771	-	-	-	-	-	-	-	-	-	-
2,06	667	790	-	-	-	-	-	-	-	-	-	-
2,08	682	809	-	-	-	-	-	- 1	-	-	-	-
2,10	698	829	-	-	-	-	-	-	-	-	-	-
2,12	714	849	-	-	-	-	-	-	-	-	-	-
2,14	731	869	-	-	-	- 1	-	-	-	-	-	-
2,16	748	890	-	-	-	-	-	-	-	-	-	-
2,18	765	912	-	-	-	-	-	-		-	-	-
2,20	782	934	-	-	-	-	-	-	-	-	-	-

Твердость HB_c , кг/мм², диаметр шарика D=5 мм

$d_{\rm s}/d_{\rm o}$	Твердост	ь испыту	емого об	разца Н	В, при тв	ердости і	контроль	ного бру	ска НВ,
	120	130	140	150	160	170	180	190	200
			Скор	ость удар	pa v = 0	75 м/с	_		
0,78	_	-	-	-	-	-	94	99	105
0,80	-	-	-	-	-	94	100	106	112
0,82	-	-	-	-	94	101	107	114	120
0,84	-	-	-	94	101	108	114	121	128
0,86	-	-	94	100	108	114	122	129	137
0,88	_	92	100	108	114	122	129	137	145
0,90	90	98	106	113	121	129	137	145	154
0,92	95	103	112	120	128	137	145	154	163
0,94	101	110	118	127	136	145	154	163	172
0,96	107	116	125	134	144	153	162	172	182
0,98	113	123	132	142	152	162	172	180	191
1,00	120	130	140	150	160	170	180	190	200
1,02	126	137	146	157	168	179	189	200	210
1,04	132	143	153	165	177	188	198	210	221
1,06	139	150	161	173	186	197	208	220	231
1,08	146	157	168	181	194	207	218	230	242
1,10	153	165	176	190	204	216	228	240	253
1,12	161	173	184	199	213	226	238	251	264

Продолжение приложения 6

d_3/d_0	Твердость испытуемого образца НВ _с при твердости контрольного бруска НВ ₃ 120 130 140 150 160 170 180 190 200												
	120	130	140	150	160	170	180	190	200				
			Скоре	ость уда	pa v = 0	75 м/с							
1,14	168	181	193	208	223	236	249	262	275				
1,16	178	189	202	217	233	246	259	273	287				
1,18	184	197	210	227	243	256	270	285	299				
1,20	192	206	220	236	252	266	280	295	311				
1,22	200	214	229	245	262	277	291	306	323				
1,24	208	223	238	255	273	288	303	318	335				
1,26	216	232	247	264	283	299	315	331	348				
1,28	225	240	257	275	294	310	326	341	355				
1,30	233	250	267	286	305	321	337	354	-				
1,32	242	259	277	297	317	333	348	-	-				
1,34	251	269	288	308	328	344	-	-	-				
1,36	260	278	298	319	339	-	-	-	-				
1,38	270	288	309	330	350	-	-	-	- .				
1,40	280	299	319	341	-	-	-	-	-				
1,42	289	308	328	354	-	-	-	-	-				
1,44	299	318	340	-	-	-	-	-	-				
1,46	309	329	350	-	-	-	-	-	-				
1,48	319	339	-	-	-	-	-	-	-				
1,50	329	350	-	-	-	-	-	-	-				
$d_{\mathfrak{I}}/d_{\mathfrak{O}}$	Твердост	ь испыту	емого об	разца Н	В _с при тв	ердости	контроль	ного бру	ска НВ,				
	120	130	140	150	160	170	180	190	200				
			Ско	рость уд	apa υ = 1	м/с							
0,78	_	-	-	-	-	-	92	98	103				
0,80	-	-	- '	-	-	93	99	105	111				
0,82	-	-	-	-	93	100	106	112	119				
0,84	-	-	-	93	100	106	113	120	126				
0,86	-	-	92	99	106	113	120	127	135				
0,88	-	91	98	106	113	121	128	135	144				
0,90	89	97	105	113	121	128	136	144	152				
0,92	95	103	112	120	127	136	144	152	162				
0,94	100	109	118	127	135	144	152	162	170				
0,96	107	115	124	134	143	152	162	170	179				
0,98	113	122	132	141	150	160	170	179	189				
1,00	120	130	140	150	160	170	180	190	200				

Продолжение приложения 6

$d_{\rm s}/d_{\rm o}$	Твердость испытуемого образца НВ _с при твердости контрольного бруска НВ _э 120 130 140 150 160 170 180 190 200												
	120	130	140	150	·160	170	180	190	200				
			Ско	рость уд	apa υ =	1 м/с							
1,02	126	137	148	158	169	179	189	200	210				
1,04	133	144	155	166	177	188	198	210	220				
1,06	140	152	163	175	186	197	208	220	231				
1,08	148	160	172	184	195	207	219	231	242				
1,10	155	168	182	194	205	218	230	243	257				
1,12	163	177	191	203	215	229	242	255	269				
1,14	170	185	200	213	226	239	253	267	282				
1,16	177	195	208	223	236	251	264	279	294				
1,18	188	203	218	233	247	261	276	291	309				
1,20	196	212	228	244	258	272	287	303	319				
1,22	205	222	238	253	268	283	298	314	331				
1,24	213	251	247	263	280	294	310	326	344				
1,26	222	240	257	274	291	305	321	340	-				
1,28	231	249	267	285	302	317	333	351	-				
1,30	238	260	277	295	312	328	345	-	-				
1,32	248	269	287	305	323	340	356	-	-				
1,34	258	278	297	316	334	352	-	-	-				
1,36	268	288	308	326	346	-	-	-	-				
1,38	278	298	319	337	-	-	-		-				
1,40	288	308	329	348	-	-	-	-	-				
1,42	298	318	341	-	-	-	-	-	-				
1,44	309	330	352	-	-	-	-	-	-				
1,46	319	341	-	-	-	-	-	_	-				
$d_{\mathfrak{I}}/d_{\mathfrak{O}}$	Твердост	ь испыту	емого об	разца Hl	В _с при тв	ердости	контроль	ного бру	ска НВ,				
	120	130	140	150	160	170	180	190	200				
			Ско	рость уд	apa v = 2	2 м/с		,					
1,04	134	146	157	169	179	190	201	213	223				
1,06	142	154	166	178	190	200	212	224	235				
1,08	150	162	175	187	200	212	223	236	247				
1,10	158	171	184	197	210	223	235	248	259				
1,12	166	181	194	208	221	234	247	260	273				
1,14	175	190	204	218	231	245	259	272	286				
1,16	184	199	214	228	241	256	270	285	299				
1,18	193	208	222	238	252	268	282	297	313				
1,20	202	218	234	249	264	280	295	311	328				

Продолжение приложения 6

d_{9}/d_{0}	Твердост	ъ испыту	емого об	разца Н	В _с при тв	ердости	контроль	ного бру	ска НВ,						
	120	130	140	150	160	170	180	190	200						
			Ско	рость уд	apa υ =	2 м/с									
1,22															
1,24	221	239	256	271	289	304	321	337	353						
1,26	231	249	267	283	301	317	334	350	-						
1,28	242	261	279	296	314	330	347	-	-						
1,30	252	271	290	308	327	344	-	-	-						
1,32	262	282	302	320	339	356	-	-	-						
1,34	273	294	314	332	352	-	-	-	-						
1,36	284	305	326	345	-	-	-	-	-						
1,38	295	316	338	-	-	-	-	-	_						
1,40	307	329	350	-	-	-	-	-	-						
1,42	316	341	-	-	-	-	-	-	-						
1,44	327	352	-	-	-	-	-	-	<u>-</u>						

Твердость $\mathrm{HB_c}$, кг/мм², диаметр шарика $D{=}10$ мм

d_3/d_0	Твердость испытуемого образца ${\rm HB_c}$ при твердости контрольного бруска ${\rm HB_3}$									
	120	130	140	150	160	170	180	190	200	
Скорость удара $v = 0.75 \text{ м/c}$										
0,80	-	-	-	-	89	95	101	107 -	113	
0,82	-	-	83	89	95	102	108	114	121	
0,84	-	-	88	95	101	106	115	122	129	
0,86	80	87	94	101	108	115	123	130	137	
0,88	85	92	100	107	115	122	130	138	145	
0,90	91	98	106	114	122	130	138	146	154	
0,92	96	104	112	121	129	137	146	154	162	
0,94	102	111	119	128	137	145	154	163	171	
0,96	108	117	126	135	144	153	162	172	180	
0,98	114	123	133	142	152	162	171	181	190	
1,00	120	130	140	150	160	170	180	190	200	
1,02	126	137	147	158	168	179	189	199	210	
1,04	132	144	154	166	176	187	198	209	220	
1,06	139	151	162	174	185	196	208	219	231	
1,08	146	158	170	182	194	205	217	229	241	
1,10	153	166	178	190	203	215	227	240	252	
1,12	160	173	186	199	212	224	237	250	263	

Продолжение приложения 6

d_3/d_0	_о Твердость испытуемого образца НВ _с при твердости контрольного бруска Н								ска НВ,	
	120	130	140	150	160	170	180	190	200	
Скорость удара v = 0,75 м/с										
1,14	168	181	194	208	221	234	248	261	275	
1,16	179	189	203	217	230	244	258	272	286	
1,18	182	197	212	226	240	255	269	283	298	
1,20	190	205	220	235	250	265	280	294	310	
1,22	198	214	229	245	261	276	291	306	322	
1,24	206	222	238	254	271	286	302	318	334	
1,26	214	231	240	264	281	297	314	330	347	
1,28	222	240	257	274	291	308	325	342	360	
1,30	231	249	267	284	302	320	337	355	373	
1,32	230	258	277	294	313	331	349	367	386	
1,34	248	268	287	305	324	343	362	380	400	
1,36	257	277	297	316	335	355	374	393	413	
1,38	266	287	307	327	347	367	387	407	427	
1,40	275	297	317	338	358	379	400	420	441	
1,42	285	307	328	349	370	392	413	434	456	
1,44	294	317	339	360	382	404	426	448	-	
1,46	304	327	350	372	395	417	439	-	-	
1,48	313	337	361	384	407	438	453	-	-	
1,50	323	348	372	396	420	443	-	-	-	
1,52	333	359	383	408	432	456	-	-	-	
d_{9}/d_{0}	Твердост	ь испыту	емого об	разца НІ	З _с при тв	ердости і	контроль	ного бру	ска НВ,	
	120	130	140	150	160	170	180	190	200	
			Ско	рость уд	apa υ = 1	м/с				
0,78	-	-	-	-	81	87	92	98	103	
0,80	-	_	-	-	87	93	99	105	111	
0,82	-	-	81	87	93	100	106	112	119	
0,84	-	-	87	93	100	107	113	120	127	
0,86	79	86	93	100	107	114	121	128	135	
0,88	85	91	99	106	114	121	129	136	143	
0,90	90	97	105	113	121	129	137	144	152	
0,92	95	103	112	120	127	137	145	153	161	
0,94	101	110	119	127	136	145	153	162	171	
0,96	107	116	126	134	144	153	162	171	180	
0,98	114	123	133	142	152	161	171	180	190	

Продолжение приложения 6

$d_{\rm s}/d_{\rm o}$	Твердость испытуемого образца HB_{c} при твердости контрольного бруска HB_{s}								
	120	130	140	150	160	170	180	190	200
Скорость удара $v = 1$ м/с									
1,00	120	130	140	150	160	170	180	190	200
1,02	127	137	148	158	168	179	189	200	210
1,04	133	144	155	164	177	188	199	210	221
1,06	140	152	163	175	186	197	209	220	232
1,08	147	159	171	183	195	207	219	230	243
1,10	153	167	180	192	204	217	229	241	254
1,12	162	175	188	201	214	227	239	252	265
1,14	170	183	197	210	224	237	250	264	277
1,16	177	191	206	219	234	247	261	275	289
1,18	185	200	215	229	244	258	272	287	301
1,20	193	208	224	239	254	269	283	299	313
1,22	202	217	233	249	264	280	295	331	326
1,24	210	226	242	259	275	291	307	323	339
1,26	216	236	252	269	286	303	319	336	352
1,28	227	245	262	279	296	314	331	349	365
1,30	296	254	272	290	296	320	344	362	379
1,32	245	264	282	301	318	338	356	375	393
1,34	235	274	293	312	331	350	369	388	407
1,36	264	284	304	323	343	369	382	402	421
1,38	274	294	315	335	355	376	396	416	436
1,40	283	304	326	347	367	389	409	430	451
1,42	293	315	337	359	380	402	423	444	-
1,44	303	326	348	371	393	415	437	459	-
1,46	313	337	360	383	406	428	451	-	-
1,48	323	348	371	395	419	442	-	-	-
1,50	334	359	389	408	432	456	-	-	-
1,52	345	370	395	420	445	-	-	-	-
1,54	356	381	408	433	459	•	-	-	-
d_3/d_0	Твердост	ь испыту	емого об	разца Н	З _с при тв	ердости і	контроль	ного бру	ска НВ,
	120	130	140	150	160	170	180	190	200
Скорость удара $v = 2,0$ м/с									
0,80	-	-	-	-	-	-	94	99	105
0,82	-	-	-	_	-	96	101	107	113
0,84	-		-	_	96	102	109	115	121
0,86	-	-		96	103	110	117	123	130

Продолжение приложения 6

$d_{\rm g}/d_{\rm o}$	Твердость испытуемого образца ${\rm HB_c}$ при твердости контрольного бруска ${\rm HB_3}$									
	120	130	140	150	160	170	180	190	200	
Скорость удара $v=2$ м/с										
0,88	-	-	96	103	110	118	130	132	139	
0,90	-	95	103	110	118	126	133	141	149	
0,92	94	101	110	117	126	134	142	150	158	
0,94	100	108	117	125	134	143	151	160	168	
0,96	106	115	124	133	142	152	160	170	178	
0,98	113	123	132	142	151	161	170	180	189	
1,00	120	130	140	150	160	170	180	190	200	
1,02	127	138	148	159	169	180	190	201	211	
1,04	134	146	156	168	178	190	200	212	222	
1,06	142	154	165	177	188	200	211	223	234	
1,08	150	162	174	185	198	210	222	234	246	
1,10	158	171	183	196	209	221	234	246	259	
1,12	166	180	192	206	219	232	245	258	272	
1,14	175	189	202	216	230	244	257	271	285	
1,16	183	198	212	226	241	255	269	284	298	
1,18	192	207	222	237	252	267	282	297	312	
1,20	201	217	233	248	264	279	295	310	326	
1,22	211	227	243	259	276	292	308	324	340	
1,24	220	237	254	271	288	304	321	338	354	
1,26	230	248	265	283	300	317	335	352	369	
1,28	240	258	276	295	312	330	348	366	384	
1,30	250	269	288	307	325	344	352	381	399	
1,32	260	280	300	319	338	358	376	396	415	
1,34	271	291	312	332	352	372	391	411	-	
1,36	282	303	324	345	365	386	406	426	-	
1,38	293	316	336	358	379	400	421	-	-	
1,40	304	327	349	371	393	415	-	-	-	
1,42	315	339	362	385	407	-	-	-	-	
1,44	327	351	375	398	422	-	-	-	-	
1,46	339	364	388	412	-	-	-	-	-	
1,48	351	376	401	426	-	-	-	-	-	
1,50	363	389	415	-	-	-	-	-	-	
1,52	375	402	429	-	-	-	-	-	-	
1,54	388	416	-	-	-	-	-	-	-	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Металловедение и термическая обработка стали. Справочник. (под ред. М.Л. Бернштейна и А.Г. Рахштадта), том 1.2. Методы испытаний и исследования. Москва: Металлургия, 1991. 462 с.
- 2. Костин П.П. Физико-механические испытания металлов, сплавов и неметаллических материалов. М.: Машиностроение, 1990.-256 с.
- 3. Золоторевский В.С. Механически свойства металлов. М.: Металлургия, 1998. 400 с.
- 4. Шмитт-Томас К.Г. Металловедение для машиностроения: Справочник. М.:Металлургия, 1995. 512 с.
- 5. Шапошников Н.А. Механические испытания металлов. Л.: Машгиз, 1954. 443 с.
- 6. Селиванов В.В. Прикладная механика сплошных сред. Т. 2. Механика разрушения деформируемого тела. М.: Из-во МГТУ им. Н.Э.Баумана, 1999. 420 с.
- 7. *Марковец М.П.* Определение механических свойств металлов по твердости. М.: Машиностроение, 1979. 191 с.
- 8. Барон А.А., Рябчук Г.В. Оперативная оценка прочности и расчет сосудов давления методами механики разрушения. Волгоград: Волг Γ ТУ, 1996 94 с.
- 9. Симон Г., Тома М. Прикладная техника обработки поверхности: Справочник. Челябинск: Металлургия, 1991. 368 с.
- 10. *Григорович В.К.* Твердость и микротвердость металлов. М.: Наука, 1976. 230 с.
- 11. Семин А.М. Определение механических свойств металлов по характеристикам твердости. М.: Современный гуманитарный университет, 2000. 152 с.
- 12. *Матюнин В.М.* Методы и средства безобразцовой экспрессоценки механических свойств конструкционных материалов. М.: Изд-во МЭИ, 2001. 94 с.

- 13. Матюнин В.М., Воков П.В. Испытания материалов царапанием // Технология металлов. 2000. № 2. С.27–30.
- 14. *Лаврентьев А.И*. К методике определения сопротивления царапанию // Машиноведение. 1974. № 6. С.94–99.
- 15. Булычев С.И., Алехин В.П. Испытание материалов непрерывным вдавливанием индентора. М: Машиностроение, 1990. 224 с.
- 16. Бакиров М.Б., Потапов В.В. Феноменологическая методика определения механических свойств корпусных сталей ВВЭР по диаграмме вдавливания шарового индентора // Заводская лаборатория. Диагностика металлов. 2000. Т. 66. № 12. С. 35–44.
- 17. *Марковец М.П.*, *Матюнин В.М.*, *Шабанов В.М.* Переносные приборы для измерения твердости и механических свойств // Заводская лаборатория. 1989. Т. 55. № 12. С. 73–76.
- 18. Tabor D. The Hardness and Strength of Metals. // Inst. Met. 1951. V.79. P. 1–18
- 19. Бакиров М.Б., Потапов В.В., Яровой Г.О. и др. Инструкция «Определение характеристик механических свойств металла оборудования атомных электростанций безобразцовыми методами по характеристикам твердости», РД ЭО 0027-94, концерн «Росэнергоатом», Т. 1,2. М., 1994. 15 с.
- 20. Bakirov M.B. Modifiziert des Harteprufverfahren // Kontrolle (Germany). 1994. № 10. S. 120.
- 21. Европейский стандарт VDI/VDE 2616. «Измерение универсальной твердости HU».
- 22. Бакиров М. Б. Россия. Патент № 214396. Способ акустикоэмиссионного определения начальной пластической деформации. (20.05.2000).
- 23. Bakirov Murat, Bulychev Sergei I., Alekhin Velentin P. Principles of kinetic indentation methodology. International Indentation Workshop 2. Cavendish Laboratory, Cambridge, UK. 15–12 July 2000. P. 1–12.
- 24. Reiff K., Herdt K. D., and Hoffmann R., Approximation of stress-strain curves by various functions. Steel Research. Vol. 57. N 12. 1986. P. 658-663.
- 25. Амаев А.Д., Бакиров М.Б., Соколов М.А. Построение диаграммы деформирования стали марки 15Х2МФА методом непрерывного вдавливания шарового индентора. – Препринт ИАЭ-4942/11: М., 1989.
- 26. *Бакиров М.Б.*, *Зайцев М.А.*, *Фролов И.В*. Математическое моделирование процесса вдавливания сферы в упругопластическое полупространство. Заводская лаборатория. 2001. № 1. С. 37–46.

- 27. Бакиров М.Б., Фролов И.В., Зайцев М.А., Бородина А.Ю., Потапов В.В. Разработка конечно-элементных методов компьютерного моделирования процессов натурного безобразцового контроля состояния стали на АЭС. Сборник тезисов научно-технического совещания «Контроль за состоянием металла при эксплуатации АЭС в ВВЭР» 24—26 ноября 1998 г. Москва. 1998. С. 11—12.
- 28. Куксенова Л.Й., Лаптева В.Г., Колмаков А.Г., Рыбакова Л.М. Методы испытаний на трение и износ. М.: «Интермет Инжиниринг», 2001.-152 с.
- 29. Рыбакова Л.М., Куксенова Л.И., Босов С.В. Рентгенографический метод исследования структурных изменений в тонком поверхностном слое металла при трении // Заводская лаборатория. 1973. № 3. С. 293–296.
- 30. Рыбакова Л.М., Куксенова Л.И. Структура и износостой-кость металла. М.: Машиностроение, 1982. 212 с.
- 31. *Рыбакова Л.М., Куксенова Л.И*. Исследование структуры тонкого поверхностного слоя деформированного металла // Физика и химия обработки материалов. 1975. № 1. С. 104–109.
- 32. Колмаков А.Г. Рыбакова Л.М., Терентьев В.Ф. Влияние магнетронного покрытия Мо-46% Re на эволюцию дислокационной структуры приповерхностных слоев молибдена при статическом растяжении // Физика и химия обработки материалов. 1994. № 2. С. 76–85.
- 33. *Иванова В.С., Баланкин А.С., Бунин И.Ж., Оксогоев А.А.* Синергетика и фракталы в материаловедении. М.: Наука, 1994. 383 с.
- 34. Встовский Г.В., Колмаков А.Г., Бунин И.Ж. Введение в мультифрактальную параметризацию структур материалов. Ижевск: Научно-издательский центр «Регулярная и хаотическая динамика», 2001, 116 с.
- 35. Бунин И.Ж., Колмаков А.Г., Встовский Г.В., Терентьев В.Ф., Концепция фрактала в материаловедении. Сообщение 1. Фрактальная параметризация структур материалов. //Материаловедение. 1999. № 2. С. 19–26.
- 36. Терентьев В.Ф., Колмаков А.Г. Механические свойства металлических материалов: Учебное пособие., Ч. 1.-M.: Изд-во МГТУ им. Н.Э.Баумана, 2003. -110 с.
- 37. Колмаков А.Г., Терентьев В.Ф. Системный подход к изучению особенностей пластической деформации и разрушения. // Сб. докл. Всероссийской науч.-технич. конф.(с международным участием) «Методы и технические средства оперативной оценки

- структурно-механического состояния металла элементов конструкций и машин», Москва, 26-28 ноября 2002 г. М.: МЭИ(ТУ), 2002. С. 90–102.
- 38. Vilys J., Ciuplys V., Terentjev V., Kolmakov A. et al., Particularies of Plastic Deformation of Metals Near Surface Layers., Kaunas: Technologija, 2003. 208 p.
- 39. Оксогоев А.А., Бунин И.Ж., Колмаков А.Г., Встовский Г.В. Мультифрактальный анализ изменения зеренной структуры алюминиевого сплава при ударном воздействии скоростной частицей // Физика и химия обработки материалов. 1999. № 4. С. 63–71.
- 40. Колмаков А.Г., Головин Ю.И., Терентьев В.Ф., Бакиров М.Б. Методы определения твердости металлических материалов. Воронеж: Изд-во ВГТУ, 2000.-80 с.
- 41. *Гудков А.А.* Стандартизация методов определения твердости металлов // Технология металлов. 2004. № 3. С. 35–39.
- 42. *Матюнин В.М.* Методы твердости в диагностике материалов. Состояние, проблемы, перспективы // Заводская лаборатория. Диагностика материалов. 2004. Том 70. № 6. С. 37–42.
- 43. Бекпаганбетов А.У., Матюнин В.М., Немытов Д.С. Определение твердости при переходе от упругой к упругопластической деформации // Заводская лаборатория. Диагностика материалов. 2004. Том 70. № 6. С. 42–46.
- 44. Алехин В.П., Булычев С.И., Калмакова А.В., Узинцев О.Е. Кинетическое индентирование в проблеме неразрушающего пароля и диагностики материалов // Заводская лаборатория. Диагностика материалов. 2004. Том 70. № 6. С. 46–51.

Справочное издание

Колмаков Алексей Георгиевич Терентьев Владимир Федорович Бакиров Мурат Баязитович

МЕТОДЫ ИЗМЕРЕНИЯ ТВЕРДОСТИ

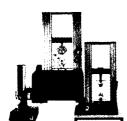
Редактор Т.А. Карасева Технический редактор Э.А. Кулакова Компьютерная верстка Е.В. Костромцовой Дизайн обложки Е.Г. Бедриной

Подписано в печать 20.04.2003. Формат 60×90¹/₁₆. Бум. офсетная № 1. Печать офсетная. Гарнитура «Таймс». Усл. печ.л. 9,5. Уч.-изд. Л. 8,0. Тираж 1000 экз. Заказ № 6961

Соответствует санитарным правилам СанПиН 1.2.1253-03 (санитарно-эпидемиологическое заключение № 77.99.02.953.Д. 006128.08.03)

«Интермет Инжиниринг»
127006, Москва, Старопименовский пер., д. 8, стр. 1-1A
e-mail: info@imet.ru
www.imet.ru

Изготовлено в филиале Государственного ордена Октябрьской Революции, Ордена Трудового Красного Знамени Московского предприятия «Первая Образцовая типография» Федерального агентства по печати и массовым коммуникациям 115114, Москва, Шлюзовая наб., 10


Испытательное оборудование от мирового лидера — корпорации $INSTRON^{\circledR}$

Твердомеры

Мы предлагаем широкую линейку твердомеров:

- Роквелл, аналоговые и полностью инфровые модели с автоматическим измерением твердости и возможностью перевода в другую шкалу;
- Виккерс и Микро-Виккерс, полностью цифровые модели с автоматическим процессом измерения твердости при нагрузках от 10 г до 30 кг;
- Универсальные твердомеры, аналоговые и полностью цифровые модели с обработкой изображений отпечатков;
- Шор и Микро-Шор, аналоговые и полностью цифровые модели;
- Портативные, переносные, универсальные твердомеры, позволяющие проводить измерение гвердости на крупных заготовках, готовых изделиях и конструкциях.

Испытательные машины

Мы предлагаем универсальные машины:

- Электромеханические, нагрузки от 0,05 H до 600 кН в настольном и напольном исполнении;
- Гидравлические, нагрузки от 100 кН до 20 МН;
- Сервогидравлические, нагрузки до 2,5 МН с частотой до 100 Гц в настольном и напольном исполнении;
- Машины для испытаний на кручение, настольные с нагружающим моментом до 220 Нм;
- Пружинные тестеры для испытания пружин растяжениясжатия.

Эксклюзивный представитель корпорации INSTRON^{*} на территории России и в странах СНГ:

ООО «АСМ Тесты и Измерения» 127287, Москва, Петровско-Разумовский проезд, 29/4 Интернет: <u>www.asmtm.ru</u>

Отдел продаж и технической поддержки тел.: (095) 424-75-98, факс: (095) 733-90-48, info@asmtm.dol.ru

Сервис-центр

тел.: (095) 212-39-03, факс: (095) 733-90-48, service@asmtm.dol.ru

