Цена 80 коп.

С ТРЕБОВАНИЯМИ
на издания Гослесбумиздата обращаться во все книжные магазины и отделения Когиза. При отсутствии литературы на местах заказы направлять по адресу:

МИНИСТЕРСТВО ЛЕСНОЙ ПРОМЫШЛЕННОСТИ СССР
ЦЕНТРАЛЬНЫЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ МЕХАНИЗАЦИИ И ЭНЕРГЕТИКИ ЛЕСОЗАГОТОВОК
Н. П. БОБКОВ, К. А. ШАХОВ

ДРЕВЕСНО-УГОЛЬНЫЙ ГАЗОГЕНЕРАТОР ЦНИИМЭ-16 К АВТОМОБИЛЮ УРАЛ ЗИС-21

ГОСЛЕСБУМИЗДАТ
1951
ВВЕДЕНИЕ

Применение древесного угля в качестве заменителя жидкого топлива, исходя на его более высокую теплотворность и низкую стоимость, не имеет широкого распространения в связи с отсутствием газогенераторов надежной конструкции.

Имеющиеся конструкции транспортных древесно-угольных газогенераторов, как правило, требуют древесный уголь высокого качества (хорошо выжженный из древесины твердодольственной пород с размером кусков угля 8—30 мм, влажностью и содержанием летучих и смоль в пределах 12—16). Лесная промышленность обычно имеют в избытке уголь более низкого качества, выжигаемый из порубочных остатков древесины всех пород с содержанием в нем недожожа и бурого угля, а также летучих и влаги до 30—40%.

В целях использования этого низкосортного несортированного древесного угля из порубочных остатков в качестве топлива для транспортных газогенераторов Центральный научно-исследовательский институт механизации и энергетики лесной промышленности СССР (ЦНИИМЭ) в период 1949—50 гг. разработал, изготовил и испытал несколько опытных образцов древесно-угольных газогенераторных установок конструкции ЦНИИМЭ-16.

Испытания газогенераторных установок ЦНИИМЭ-16 производились в лабораторных, пробеговых и производственных условиях на лесовывозке.

В руководстве приводится краткое описание древесно-угольной газогенераторной установки ЦНИИМЭ-16, предназначенной для автомобиля ЗИС-21, и указания по уходу за ней при эксплуатации.
Хотя приводимые материалы составлены на основании данных, полученных при испытаниях этих автомобилей и длительного опыта работы последних в производственных условиях на лесовывозке, все же они не могут считаться исчерпывающими, а потому ЦНИИМЭ просит водителей, механиков и руководителей автохозяйств сообщить о всех замеченных производственных и конструктивных недостатках газогенераторных установок ЦНИИМЭ-16 в целях возможности дальнейшего совершенствования конструкции.

Адрес: г. Химки, Московской обл. ЦНИИМЭ.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА
газогенераторной установки ЦНИИМЭ-16 для автомобиля Урал ЗИС-21

Газогенераторная установка ЦНИИМЭ-16 предназначается для газификации товарного древесного несортированного угля, полученного при переработке порубочных остатков и сухой перегонке древесины.

A. Газогенератор

Тип газогенератора — цилиндрический, одностворчатый, однофурменный

Процесс газификации — поперечный

Способ подачи воздуха — под разрежением, создаваемым двигателем

Топливо — древесный уголь: размер кусков от 5 до 60 мм (в смеси), влажность до 50%, абс., содержание летучих и смол до 25—30%, воды — до 40% к весу сухого древесного угля

Общая высота газогенератора — 1780 мм

Внутренний диаметр поперечного сечения газогенератора — 550 мм

Емкость бункера газогенератора — 0,37 м³

Топливник — цилиндрический, сварной из 5-мм листовой стали

Количество фурм — 1

Тип фурмы — стальная, массивная, цилиндрическая с водопаровоздушным охлаждением

Длина фурмы — 280 мм

Диаметр фурмы наружный — 100 мм
Диаметр воздушного жиклера мм — 30
Диаметр канала фурмы мм — 50
Длина испарительной камеры фурмы мм — 125
Диаметр испарительной камеры фурмы мм — 80
Горловина топливника — сменная, чугунная, литая двух размеров (для летней и зимней работы)
Размер горловины для работы на угле из древесины мм — 150
Размер горловины для работы на угле из пнеового осмола мм — 130
Колосниковая решетка — передвижная, чугунная, литая, 140×180 мм
Зазор между колосниками мм — 10
Водяной бак — приварной (к газогенератору)
Емкость водяного бака л — 60
Внутренний диаметр сечения водяного крана мм — 0,9
Расход воды (часовой) л — 7—8
Высота активной зоны мм — 225
Размер загрузочного люка мм — 330

Система очистки и охлаждения газа
Грубая очистка газа — инерционная
Тип грубого очистителя — горизонтальный, цилиндрический с дыхательной секцией перфорированных дисков
Размеры грубого очистителя:
длина мм — 1905
диаметр мм — 204
соединение очистителя с газогенератором — фланцевое, жесткое
Соединение грубого очистителя с тонким очистителем — эластичное, при помощи дюритового шланга
Крепление грубого очистителя к раме автомобиля — эластичное на резиновых амортизаторах
Тонкая очистка газа — комбинированная, барбатажная и поверхностью влажная с применением в качестве охладителя металлических трубочек диаметром и высотой 15 мм.

Высота тонкого очистителя в мм — 1650
Диаметр тонкого очистителя мм — 380
Количество воды, заливаемое в тонкий очиститель для осуществления барбатажа л — 26
Высота барбатажного слоя воды в тонком очистителе мм — 40
Вход газа в тонкий очиститель — центрированный
Смеситель — типа Урал — ЗИС-21
Раздувочный электровентилятор — типа Урал — ЗИС-21
Газопровод от тонкого очистителя к смесителю — типа Урал — ЗИС-21 (отстойник заменен соединительным патрубком)

В. Общие данные

Вес газогенераторной установки без топлива и воды кг 325
Расход топлива на 100 км пробега по шоссе: — а) древесного угля, влажностью 15—20%, абс. кг 50
— б) воды в л — 20
— в) бензина л — 1—1,5
Периодичность до-грузки бункера через — 2 — 3 часа.
Периодичность долььки воды в тонкий очиститель — 2 — 3 часа
Время на резервную догрузку бункера углем — 2 — 3 минуты

Рис. 3. Схема газогенераторной установки ЦНИИМЭ-16.

Описание газогенераторной установки ЦНИИМЭ-16

Схема газогенераторной установки приведена на рис. 3. Газогенераторная установка ЦНИИМЭ-16 к автомобилю ЗИС-21 рис. 3 состоит из:
1) газогенератора (1)
2) грубого очистителя—охладителя (13)
3) очистителя для тонкой очистки газа (15)
4) вентилятора—режки, смесителя, системы трубопроводов и предохранительных щитков над грубым очистителем и со стороны газогенератора.

Газогенератор размещён с правой стороны по ходу автомобиля (рис. 4 и 5) в вырезе кабины и крепится на стандартных кронштейнах газогенератора ЗИС-21.

Грубый очиститель (2) расположен под кузовом автомобиля непосредственно за кабиной и газогенератором (рис. 4). Грубый очиститель крепится к газогенератору при помощи болтового фланцевого соединения.

Рис. 4. Схема размещения газогенераторной установки ЦНИИМЭ-16 на автомобиле ЗИС-21.
1) газогенератор; 2) грубый очиститель; 3) очиститель для тонкой очистки газа; 4) вентилятор—режки

Отстойником служит соединительный патрубок специального профиля с отверстием в нижней части для спуска конденсата.

Газогенератор

Газогенератор ЦНИИМЭ-16 работает по принципу поверхностного процесса газификации и предназначен для паровоздушного дутья, одновременно (рис. 6).

Корпус газогенератора цилиндрической формы, диаметром 550 мм и высотой 1780 мм. Уменьшение высоты газогенератора на 120 мм по сравнению с газогенератором ЗИС-21 предусмотрено для увеличения дорожного просвета.

Кожух газогенератора изготовлен из 2-х мм листовой стали. На высоте 380 мм от днища кожух делится на 2 части диском (4) (диафрагмой), приваренным к стенкам газогенератора.
ратора. Верхняя часть газогенератора (2) является рабочей камерой горения и бункером, а нижняя часть газогенератора (3) представляет собой зольник.

Подача паровоздушной смеси в активную зону топливника осуществляется через одну массивную стальную фурму (1).

Фурма цилиндрическая диаметром 100 мм, длиной 280 мм (8); фурма монтируется в асбестовом уплотнителе — сальнике (5), обеспечивающем возможность продольного перемещения фурмы внутрь газогенератора по мере обгорания ее конца.

Рис. 5. Схема размещения газогенераторной установки ЦНИИМЭ-16 на автомобиле ЗИС-21.

Фурма имеет с внешнего конца испарительную камеру (6) диаметром 80 мм и длиной 125 мм, которая снаружи закрывается крышкой с обратным клапаном (7).

По центру фурмы от испарительной камеры идет канал (8) диаметром 50 мм с расположенным в нем воздушными жиклером (9) диаметром 30 мм.

С внешней стороны газогенератора над фурмой приварен водяной бак (10) емкостью 60 л. Внутренней стенкой водяного бака является стенка бункера.

Водяной бак имеет заливной, герметично закрываемый патрубок с фильтром и спускной пробкой.

Водяной бак соединен с испарительной камерой фурмы двумя трубками: трубкой (11) диаметром 8 мм для подачи воды и пароотводной трубкой диаметром 10 мм (12), служащей для перепуска пара.

Трубка для подачи воды из водяного бака в испарительную камеру фурмы верхним концом соединена с сетчатым фильтром, а нижним концом с краном (13), вставленным в сверление фурмы с верхней стороны фурмы на расстоянии 20 мм от наружного конца.

Кран укрепляется на фурме стопорным болтом и отрегулирован на подачу 8 л воды в час (при полном баке).

Рис. 6. Газогенератор ЦНИИМЭ-16 (общий вид)

Колосниковая решетка имеет эллипсоидную форму с усеченными концами. Рабочий просвет решетки 140×180 мм, зазор между колосниками 10 мм. Колосниковая решетка помещается в коробке (15), изготовленной из углового железа. Коробка имеет возможность передвигаться в поперечном направлении к оси фурмы в направляющих коробчатого сечения.

Для перемещения решетки служит тяга, пропущенная через втулку в стенке зольника газогенератора. Тяга соединена пальцем с бобышкой, приваренной к коробке.
Выступающий конец тяги имеет два отверстия— одно для шпилечного ограничителя перемещения решетки внутрь, другое на конце тяги для соединения тяги шпинделем с надеваемой на тягу трубкой, облегчающей перемещение решетки.

На диафрагму накладывается сменная, чугунная, литая горловина (10), фиксируемая на диафрагме четырьмя упорами.

Рис. 7. Фурма газогенератора ЦНИИМЭ-16.

Сменная горловина предназначена для увеличения жаро-напряженности в этом участке газогенератора и для защиты диафрагмы от действия высоких температур.

Для штурвика топлива имеется штурвальный люк диаметром 20 мм с винтовой герметизированной закрывающейся крышки.

Штурвальный люк помещается на 60 мм выше диафрагмы перпендикулярно к оси фурмы.

В верхней части бункера имеется загрузочный люк (17), в нижней части газогенератора смотровой люк (18), расположенный над диафрагмой и зольниковый люк (19) с винтовой крышкой.

Отбор газа осуществляется через газоотборный патрубок (20), вваренный в стенку газогенератора.

Грубый очиститель-охладитель газа

Грубая очистка газа от крупных уносов и частичное охлаждение газа происходит в одном корпусе инерционного очистителя (13 см. рис 3) типа ЗИС-21, помещенного под полом кузова позади кабины поперек рамы автомобиля.

В корпусе грубого очистителя-охладителя помещается одна секция перфорированных дисков.

Во избежание повреждения фланцевого соединения между газогенератором и грубым очистителем-охладителем последний на раме автомобиля крепится эластично. Для этого каждый кронштейн грубого очистителя-охладителя помещается между двумя резиновыми амортизаторами.

Очиститель тонкой очистки газа

Тонкий очиститель приведен на рисунке 8.

Окончательная очистка газа производится в тонком очистителе, работающем по принципу влажной (барбатажной) и поверхностно-влажной очистки газа.

Тонкий очиститель выполнен в форме цилиндра и габариты его соответствуют габаритам тонкого очистителя ЗИС-21А—(высота 1650 мм и диаметр 380 мм).

Тонкий очиститель крепится с левой стороны автомобиля. Верхняя часть очистителя заполнена 2-мя слоями металлических колец (трубочек), а нижняя часть на высоту 400 мм от дна заполнена водой.

Решетка с нижним слоем колец помещается на 25 мм ниже уровня воды в ячейках лучшего дробления потока газа и лучшей его очистки при прохождении слоем воды.

Газопримымяемый (входной) патрубок пропускается через решетку нижнего слоя колец в отверстие диаметром 80 мм. Глубина барбатажа 40 мм.

При поступлении из газопримываемого патрубка в тонкий очиститель газ проходит через 40 мм слой воды, где частично очищается и увлажняется. Затем газ, проходя через слой воды, благодаря уменьшению скорости теряет унос, которые собираются в нижнюю часть очистителя выпадающей на колцах влагой.

Тонкий очиститель снабжен:

а) тремя люками: (2, 3 и 4) два из них— верхний и средний предназначены для загрузки и выгрузки колец при их промывке, а нижний люк предназначен для очистки поддона тонкого очистителя от уносов.

б) патрубком (5) с герметично закрывающейся крышкой для заливки воды;

в) спусковой пробкой, предназначенной для частичного спуска воды из тонкого очистителя при длительных отключениях газогенератора в период зимней работы во избежание обделения газопримываемого патрубка, нижнего слоя металлических колец и патрубка для заливки воды;

г) входным патрубком (1);

д) газоотборным патрубком (6), аналогичным ЗИС-21А.

Газопровод от тонкого очистителя к двигателю и вентилятору использован стандартный ЗИС-21А.
Отстойник заменен соединительным патрубком, расположенным на пути газа к смесителю. В нижней части патрубка имеется спускное отверстие для стекания конденсата.

Электровентилятор для розжига газогенератора использован стандартный ЗИС-21А.

Рис. 8. Тонкий очиститель газогенераторной установки ЦНИИМЭ-16.

В целях предохранения переднего борта и пода кузова от нагрева на автомобиле устанавливаются два щитка из 1,5—2 мм листовой стали.

Один щиток высотой 500 мм и шириной 400 мм крепится вертикально на болты заднего кронштейна газогенератора, второй щиток длинной 700 мм и шириной 500 мм крепится к полу кузова над грубым очистителем со стороны газогенератора. Щиток изолируется от досок кузова.

Детали управления в кабине водителя сохранены стандартные Урал—ЗИС-21.

ТОПЛИВО

Технические требования, предъявляемые к древесному углю

Уголь, применяемый для автомобильных газогенераторов ЦНИИМЭ-16, должен обеспечивать быстрый розжиг, а также пребег автомобиля без перезаправки газогенератора и чистки от шлака, золы и угольной мелочи на протяжении 700 км.

Древесный уголь в качестве автомобильного топлива должен удовлетворять следующим требованиям:

1. Древесный уголь должен быть хорошо выжженным при температуре 400—650 °C.

2. Пережженный уголь плохо газифицируется и легко измельчается как в самом газогенераторе, так и при транспортировке.

3. Зольность угля (за счет примеси песка) не должна превышать 3%, более высокое содержание золы ведет к повышенному шлакованию и ухудшению работы газогенератора.

4. Влажность угля для нормальной эксплуатации должна быть не выше 15—20%: конструция газогенератора допускает использование угля влажностью до 50% без снижения эксплуатационных показателей.

Изделие высокая влажность понижает температурный режим газогенератора, приводит к меньшему разложению влаги (паров), вводимой с воздухом через фурмы, что в свою очередь ухудшает процесс газификации и понижает теплоотводность способность газа.

Древесный уголь отличается большей гигроскопичностью, он очень легко поглощает влагу воздуха, особенно в сырую погоду. При хранении угля под открытым небом в дождливое время, через несколько дней содержание влаги в нем увеличивается до 60—80% абс. и выше.

5. Размер кусков угля должен находиться в пределах от 5 до 60 мм (в смеси), количество кусков от 5 до 10 мм не должно превышать 30%.

Один мелкий уголь размером кусков от 5 до 10 мм для работы непригоден.

При работе газогенератора на угле, получаемом из сосового пниевого осмола, уголь должен подвергаться грохочению через грохот с ячеей 10—15 мм, грохочение должно производиться только после дробления, так как во время дробления с поверхности кусков угля и в щелиях угля осыпаются песок, земля, глина и т. п., приставшие ранее при выкапывании из земли.
6. Не допускаются налипчивые в углах: песка, земли, камней, глины, металла и т. п., присутствие их приводит к преждевременному засорению установки и шлакованию золя.
Особенно большое засорение подвергается угол при длительном хранении в неразобранных кучках (уложении), так как земля, песок и глина с потоками влаги (дождя) проникают внутрь кучи угля и не только осаждаются на поверхности кусков угля, но и заполняют все его трещины.
6. Указанным техническим требованиям вполне могут соответствовать углы нормального выжига печного ретортного и кучного, т. е. не имеющие большого недопалка (крупных головней, кусков размером выше 70 мм), а также и пережогов, снижающего качество газа.
Пережженный уголь слабый, хрупкий, легко крошатся руками, имеет на поверхности признаки горения, (сплошные светлые трещины, идущие вдоль волокон и хорошо видимые с торца), а также расслоенные годичные кольца.
Для получения древесного угля пригодны все виды древесины без поражения гнилью, но при наличии выбора следует предпочесть древесину твердостойких пород и избегать славной древесины, так как еловый уголь неприятен, быстро подвергается разрушению и размельчению в газогенераторе во время газификации.

Хранение угля

Хранение древесного угля, как правило, должно производиться в складе или под навесом, имеющим накрытие. Склад должен предохранять уголь от осадков (дождя и снега), от подмокания снизу и засорения землей при складских перевалочных операциях.
Хранение угля под открытым небом может допускаться лишь в исключительных случаях и только на короткое время в ожидании вывода его на склад. В этом случае необходимо стараться укрыть уголь при помощи глинистой кучи и ссыпать на подготовленную заранее сухую площадку в плотный покатый штабель (кучу) высотой 2-2.5 м. Бока штабеля делаются крутыми, сверху штабель обсыпается мелкой землей и покрывается корой и ветками.
Повреждение в угол незначительного количества осипавшейся хвои будет иметь меньший вред, чем избыточное его увлажнение.
Склад древесного угля должен быть обеспечен необходимым противопожарным оборудованием и надзором, согласно существующим правилам пожарной безопасности.

Оптуск древесного угля и его транспортировка

Для заправки на складе автомобильных газогенераторов ЦНИИМЭ-16 древесный уголь, как правило, должен опускаться объемной мерой в м³ или литрах.
В случае весового учета расхода угля за эталон принимается уголь естественной влажности длительного хранения, с содержанием влаги 12-18%.

Насыпной вес 1 м³ угля в кг:

<table>
<thead>
<tr>
<th>Качество угля</th>
<th>Выжига</th>
<th>Выжига</th>
</tr>
</thead>
<tbody>
<tr>
<td>угля из сосны</td>
<td>160</td>
<td>151</td>
</tr>
<tr>
<td>из ели</td>
<td>140</td>
<td>132</td>
</tr>
<tr>
<td>из березы</td>
<td>202</td>
<td>193</td>
</tr>
<tr>
<td>из осины</td>
<td>162</td>
<td>154</td>
</tr>
<tr>
<td>смесь 50% березы и 50% других пород</td>
<td>182</td>
<td>173</td>
</tr>
</tbody>
</table>

При выдаче угля рекомендуется его расфасовывать в специальную тару-мешки и рогожные кульки. Вес заполненного угля мешка, пакета не должен превышать 20-30 кг.
Транспортируемый угол надлежит предохранять от попадания влаги и дорогой пыли, прикрывая его при необходимости брезентом.
Склад должен иметь следующий инвентарь:
1) весы десятничные,
2) мерные ящики (носилки) или корзины емкостью в 1/5 и 1/10 м³,
3) лопаты стальные скошевые или штыковые,
4) вилы угольные с проветриваемыми ручками в 40 мм,
5) лопаты деревянные и фанерные для разравнивания угля по складу,
6) топор и пилу.

ПОДГОТОВКА К РАБОТЕ И ОБСЛУЖИВАНИЕ ГАЗОГЕНЕРАТОРНОЙ УСТАНОВКИ ЦНИИМЭ-16

В целях обеспечения нормальной работы газогенераторной установки ЦНИИМЭ-16 надлежит неуклонно придерживаться приведенных ниже правил по обслуживанию.

Подготовка газогенераторной установки к работе
1. Проверить плотность прилегания крышек всех люков газогенератора, грубого и тонкого очистителя и особенно загрузочного люка газогенератора, подсосов воздуха не допускать.
2. Проверить плотность соединения всех патрубков (с фланцами и шлангами).
3. Проверить плотность прикрытия (верхней) дроссельной заслонки смесителя, в противном случае будет затруднен запуск двигателя на бензине.
4. Проверить опережение зажигания и установить зазоры между электродами у запальных свечей, которые не должны превышать 0,35 мм.
5. Проверить соединение с фурмой водяного кранника и пароотводной трубки.
6. Проверить работу тяг управления газом, бензином, опережением и раздувочным вентилятором.

Заправка газогенератора топливом (древесным углем и водой)

1. Загрузить в газогенератор через загрузочный люк газогенератора уголь из мешков или кулей.
2. Нафить в водяной бак газогенератора до верхней кромки залывного патрубка чистой воды из колодца или другого водоема и плотно закрыть его крышкой.
3. Залить в поддон тонкого охладителя воду до верхней кромки залывного патрубка и закрыть его крышкой.

Рожжиг газогенератора

1. Открыть заслонку трубы электровентилятора, выключить электровентилятор, к фурме подвести зажженный факел и вставить в открытие фурмы. Как только уголь загорится в топливнике, вынуть факел и открыть водяной кранник, установив рычаг кранника на первое деление фиксатора.

ПРИМЕЧАНИЕ: При розжиге газогенератора зимой водяной кранник иногда замерзает, в этом случае следует подождать пока нагреется фурма, после чего открыть кранник.

2. Через 2—3 минуты после того, как угол разогрется до белого цвета, попробовать зажечь газ на выходе из вентилятора. Если газ горит устойчиво, необходимо вентилятор выключить, закрыть заслонку вентилятора и завести двигатель с топливом на газе, увеличив несколько опережение зажигания. Если по прошествии 4—5 минут работы раздувочного вентилятора газ при пробе горит плохо и двигатель на газе стартером не заводится, во избежание разрядки аккумуляторов надлежит двигатель завести на бензине, на позднем зажигании, при этом предварительно полностью дроссельную заслонку смесителя.

Как только двигатель прогреется до +50—60° следует переводить его с бензина на газ, для этого необходимо несколько прикрыть воздушную заслонку карбюратора, периодически открывать дроссельную заслонку газосмесителя, одновременно постепенно изменять открытие воздушной дроссельной заслонки смесителя.

При увеличении оборотов двигателя увеличить опережение зажигания и, регулируя подачу воздуха при помощи воздушной заслонки смесителя, довести работу двигателя до больших оборотов, после чего медленно прикрыть дроссельную заслонку карбюратора.

Если двигатель при переходе на газ станет глохнуть, снять ногу с акселератора и начать перевод двигателя с бензина на газ снова, но на более увеличенных оборотах двигателя, прикрыв немного больше, чем в предыдущий раз воздушную заслонку карбюратора.

При наступлении устойчивой работы двигателя на газе закрыть бензокранник и прикрыть дроссель карбюратора.

При неисправности раздувочного электровентилятора или аккумуляторов рожжиг газогенератора может производиться в этом случае двигателем, при этом:
а) необходимо завести двигатель на бензине на позднем зажигании (при полностью закрытых заслонках смесителя: дроссельной и воздушной);
b) как только двигатель прогреется, уменьшить поступление воздуха через карбюратор почти полным прикрытием воздушной заслонки карбюратора: при этом из-за переобогащения бензино-воздушной смеси обороты двигателя уменьшаются;
c) для увеличения подачи воздуха с целью обеднения смеси следует прикрыть дроссельную заслонку смесителя;
d) под влиянием разрежения, создаваемого работающим двигателем, воздух начинает поступать в смеситель из системы газогенераторной установки, входя в нее через фурму;
e) к фурме подносится зажженный факел, зажигается уголь и подается вода, как указывалось выше;
f) через 2—3 минуты после рожжига газогенератора обороты двигателя начнут падать из-за переобогащения горючей бензиновой смеси газом;
g) для уменьшения оборотов двигателя и с целью обеднения горючей смеси надлежит прикрыть воздушную заслонку смесителя и прибавить опережение зажигания;
h) при увеличении оборотов двигателя надлежит двигатель переводить для работы на газ по способу, приведенному выше.

ПРИМЕЧАНИЕ: При розжиге газогенератора в случае недостаточной тяги вентилятора (слабы аккумуляторы) или при розжиге газогенератора двигателем надлежит из тонкого охладителя через струйную пробку снять часть воды для понижения уровня.

Как только двигатель перейдет на газ и начнет работать устойчиво, воду из ведра следует вылить обратно в тонкий охладитель через воронку.
Обслуживание газогенераторной установки в процессе эксплуатации

Топливо загружают в бункер через 2—3 часа работы или через 40—50 км пробега, запрещается выигрывать более 2/3 топлива, находящегося в бункере: при большем выигрыше топлива наливают сильно греются стенки бункера и может нарушиться целостность прокладки под крышкой загрузочного люка.

Заправка газогенератора древесным углем может производиться при работающем двигателе на газе, а также и при остановленном двигателе.

При заправке горячего газогенератора при остановленном двигателе—после открытия крышки загрузочного люка необходимо дождаться хлопка (вспышки) газа, после чего возможно производить засыпку древесного угля.

В тонком очищателе уровень воды должен быть не ниже верхней кромки заливного патрубка.

После остановки двигателя на 10—15 мин. двигатель можно заводить стартером на газе, открыв предварительно водяной кран, сразу после запуска на газе не следует давать двигателю больших оборотов.

Водяной кран при каждой длительной остановке двигателя закрывается.

При работе в зимнее время

В случае длительной остановки (свыше 30 мин.) закрывается водяной кран, на фурме проверяется уровень воды в тонком очищателе и одновременно во избежание обледенения через спускную пробку поступает (в ведро) часть воды из тонкого очистителя.

После запуска двигателя и устойчивой работы его на газе вода, стекая из тонкого очистителя, заливается в тонкий очиститель обратно через воронку.

При остановке более чем на 10—12 часов зимой при беззаторном хранении надлежит спустить воду полностью, как из водяного бака, так и из тонкого очистителя.

При остановке двигателя надлежит полностью закрывать дроссельную и воздушную заслонку смесителя, а также проверить плотность прикрытия обратного клапана фурмы и заслонки раздвоенного вентилятора.

Очистка газогенераторной установки

В целях улучшения качества газа и эксплуатационных показателей автомобиля, а также уменьшения износов двигателя, газогенератор и очистители должны подвергаться регулярной очистке от уносов.

Срок очистки газогенератора и очистителей зависит от качества употребляемого древесного угля, породы древесины и степени засоренности землей, песком и т. п.

При работе на древесном угле из древесины хвойных пород, сосного пневоого осмола и кучного углеконечения срок очистки сокращается.

Очистка газогенератора

Раз в смену после пробега 100—120 км производится частичная очистка зоны горения от золы и угольной мелочи, для этого отверстия с выступающего конца тяги решетки заглушка, вынимается шплинт из отверстия тяги решетки, на выступающий конец тяги надевается трубка так, чтобы отверстия в трубке совпадали с отверстием под шплинт на конце тяги, затем трубка и тяга соединяются шплинтом, после чего скользящая решетка быстро откидывается на себя и возвращается в исходное положение, при этом собирается в зольник 2—3 литра золы с мелочью, после чего трубка снимается, а заглушка устанавливается на место.

При работе на угле из соснового пневового осмола и ямного углеконечения очистка зоны горения производится через 50—60 км.

Очистка газогенератора с выгрузкой из него всего угля производится через 700—800 км пробега, а при работе на древесном угле низкого качества через 300—400 км.

Очистка зольника газогенератора производится после 400—500 км пробега автомобиля при перезаправке газогенератора.

Очистка грубого очистителя производится через 600—800 км.

Очистка поддона тонкого очистителя от уносов производится через 400—500 км пробега, а с промывкой металлических колец через открыые люки (без выемки) производится через 700—800 км пробега.

Промывка металлических колец с выемкой их из тонкого очистителя производится через 8000—10000 км пробега, а при работе на угле из соснового пневового осмола через 4000—5000 км пробега.
Основные специфические неисправности автомобиля ЗИС-21 с газогенераторной установкой ЦНИИМЭ-16, причины их возникновения и способы их устранения.

<table>
<thead>
<tr>
<th>Причины неисправности</th>
<th>Способ устранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>Неплотности в соединении трубопроводов, крышках люков.</td>
<td>б) проверить, хорошо ли закрыты крышки люков газогенератора и шланговые соединения газопроводов, особенно под двигателем. Устранить подсосы воздуха.</td>
</tr>
<tr>
<td>Цеплоплотно прикрыты дроссельная заслонка и заслонка воздуха смесителя.</td>
<td>в) отрегулировать тросы управления заслонками смесителя.</td>
</tr>
<tr>
<td>Крыльчатка вентилятора вращается с достаточным числом оборотов.</td>
<td>Крыльчатка вентилятора вращается с достаточным числом оборотов.</td>
</tr>
<tr>
<td>Не полностью открыва заслонка вентилятора.</td>
<td>а) проверить положение рычага заслонки вентилятора.</td>
</tr>
<tr>
<td>Засорена газогенераторная установка в целом или отдельные агрегаты.</td>
<td>б) очистить участок засорения. Для быстрого определения участка засорения при работающем вентиляторе поочередно, последовательно открывают крышки люков газогенераторной установки, начиная с верхнего люка газогенератора и кончая верхней крышкой топочного огнестойкого. Если после открывания очередного люка вентилятор заметно улучшается (уменьшается или исчезают обороты и усиливается выброс газов), то это указывает на то, что место засорения находится между последним и ранее проверенным люкам.</td>
</tr>
<tr>
<td>Крыльчатка вентилятора разбивается на куски, оборотов, но воздух в газогенератор не поступает.</td>
<td>Вентилятор развивается достаточное число оборотов, воздух в фурму поступает хорошо, но розжиг газогенератора происходит длительное время.</td>
</tr>
<tr>
<td>а) очень крупный угол разметки свыше 10 мм.</td>
<td>а) перезаправить газогенератор, крупный угол раздобыть.</td>
</tr>
<tr>
<td>б) неплотности в соединении трубопроводов, крышках люков.</td>
<td>б) проверить, хорошо ли закрыты крышки люков газогенератора и шланговые соединения газопроводов, особенно под двигателем. Устранить подсосы воздуха.</td>
</tr>
<tr>
<td>в) цеплоплотно прикрыты дроссельная заслонка и заслонка воздуха смесителя.</td>
<td>в) отрегулировать тросы управления заслонками смесителя.</td>
</tr>
<tr>
<td>Крыльчатка вентилятора вращается с достаточным числом оборотов, но слабо втягивается в газогенератор пламя факела и слабо выбрасывается вентилятором газ.</td>
<td>Крыльчатка вентилятора вращается с достаточным числом оборотов.</td>
</tr>
<tr>
<td>Крыльчатка вентилятора не развивает достаточного числа оборотов.</td>
<td>а) проверить положение рычага заслонки вентилятора.</td>
</tr>
<tr>
<td>б) засорена газогенераторная установка в целом или отдельные агрегаты.</td>
<td>б) очистить участок засорения. Для быстрого определения участка засорения при работающем вентиляторе поочередно, последовательно открываются крышки люков газогенераторной установки, начиная с верхнего люка газогенератора и кончая верхней крышкой топочного огнестойкого. Если после открывания очередного люка вентилятор заметно улучшается (уменьшается или исчезают обороты и усиливается выброс газов), то это указывает на то, что место засорения находится между последним и ранее проверенным люком.</td>
</tr>
</tbody>
</table>

Крыльчатка вентилятора не развивает достаточного числа оборотов.

а) разрежены аккумуляторы.

б) плохой контакт в проводке, щетках мотора или на выключателе.

Крыльчатка вентилятора вращается с достаточным числом оборотов, но воздух в газогенератор не поступает.

а) слишком медленно открыва заслонка обратного клапана или засасывает воздух из фурмы.
<table>
<thead>
<tr>
<th>Причины неисправности</th>
<th>Способ устранения</th>
</tr>
</thead>
<tbody>
<tr>
<td>б) очень влажный угол (свыше 60% влажности)</td>
<td>б) перезаправить газогенератор углем влажностью не свыше 50%, или подсушить угол, для чего открыть крышку загрузочного люка и обратный клапан фурмы на 15—20 мин.</td>
</tr>
<tr>
<td>в) подсос воздуха через зольниковый люк</td>
<td>в) сменить прокладку под крышкой зольникового люка, затянуть крышку.</td>
</tr>
<tr>
<td>г) появился шлак в горячие и на зольниковой решетке</td>
<td>г) спустить шлак в зольник (см. раздел „Уход за газогенератором“).</td>
</tr>
</tbody>
</table>

Неисправности двигателя и электрооборудования газогенераторной установки.

1) Двигатель не заводится несмотря на хорошее качество газа.

а) стarter повернут, двигатель с недостаточным числом оборотов. Недостаточно разрежение, создаваемое двигателем для преодоления барботажного слоя.

б) неправильная дозировка воздуха и газа смесителя.

в) велики зазоры между электродами свечей.

г) плохо закрыта заслонка вентилятора.

2) Двигатель заводится на газе, но сразу же глохнет или развивает недостаточное обороты.

а) неправильно отрегулирован состав газо-воздушной смеси (бедная или богатая смесь).

б) не разогрелся достаточное уголь в газогенераторе.

в) сырые свечи, слишком влажный газ.

г) слишком большой отбор газа, при этом нарушается процесс газообразования (при недостаточно разогретой активной зоне).

д) прокладка в смесителе.

е) проверить состояние прокладки под впрыскивающим коллектором и смесителем, при повреждении смеситель.

3) Двигатель заводится на газе, но не развивает мощности.

а) неправильно отрегулирован состав газо-воздушной смеси.

б) позднее зажигание.

в) подсос воздуха через крышку загрузочного люка.

г) нет подачи воды в фурму, или подача воды недостаточна.

д) проверить уровень воды в испарительной камере фурмы и степень поступления воды. При недостаточном поступлении воды в испарительной камере фурмы, например, из-за власти, необходимо убедиться, что вода подается в испарительную камеру.
### Причины неисправности	Способ устранения
d) перебой в зажигании, вследствие загрязнения свечей или больших зазоров между электродами свечей. | д) вывернуть и прочистить свечи и отрегулировать кон такты, установить зазор между контактами в 0,35 мм.
e) выгорело топливо (уголь) оголилась фурия. | е) добавить.
ж) загрязнены очистители, увеличилось сопротивление прохода газа. | ж) произвести очистку грубо го очистителя, произвести очистку тонкого очистителя, с промывкой металлических колец.

4) Сильно греется газогенератор в верхней части.

a) выгорело в бункере топливо. | a) добавить в бункер уголь.
b) подсос через загрузочный люк, поднималась зона горения. | b) проверить состояние прокладки в лазу крышки, установить неисправность или сменить прокладку.
v) чрезмерно сыро топливо. | v) сменить древесный уголь в газогенераторе или подсушить, (см. раздел 5 пункт "б")

5) Сильно греется водяной бачок, вода кипит.

a) подсос воздуха через загрузочный люк. | a) устранить подсос, сменить или уплотнить прокладку.
b) выгорело топливо в бункере. | b) добавить уголь до нормы.
v) израсходовалась вода, понизился уровень. | v) наполнить водяной бачок до уровня заливного патрубка совершенно чистой водой из реки, ручья или колодца.

6) Сильно греется тонкий очиститель в усилении испаряется в нем вода.

a) появился шлак над решеткой зольника, не разлагается, влага поступающая в газогенератор. | a) спустить шлак в зольник (см. раздел 4, пункт "б").
b) сильно переувлажненный уголь, велика теплоемкость газа, содержащего много водяных паров. | b) сменить или подсушить уголь (см. раздел 5, пункт "б").

7) Сильно выделяется пыль из фурмы при остановке двигателя

a) засорилась зольниковая решетка и горловина зо льной и шлаком. | a) просушить шлак, золу и угольную мелочь и спустить в зольник.
b) покороблен или неплотно прикрывается обратный клапан (фурмы). | b) проверить плотность прилегания клапана, коробление выправить, шарнир исправить.

8) Большой расход древесного угля

a) угол повышенной влажности. | a) заменить угол на доброкачественный.
б) угол высушенный из гнилой древесины, только из одной хвойной древесины и сильно пережженный. | б)

9) Двигатель не заводится или плохо заводится на бензине

a) плохо прикрывается дроссельная (газовая) заслонка смесителя. | a) устранить неплотность при крывания дроссельной за слонки, очистить ее от нагара и отрегулировать тягу (гибкий трос).
b) подсосы воздуха через прокладки смесителя, в сасывающего коллектора и карбюратора. | b) проверить и сменить прокладки под карбюратором, смесителем и в сасывающими коллектором, подтянуть болты крепления коллектора.

10) Хлопки во всасывающемся коллекторе при работе двигателя на газе

a) плохое качество газа. | a) устранить подсосы воздуха, спустить шлак и проверить подачу воды в фурму.
b) установлено раннее зажи гание. | b) проверить и урегулировать установку зажигания.
v) слишком велики зазоры между электродами свечей. | v) отрегулировать зазор между электродами свечей, доведя зазор до 0,35 мм.
Причины неисправности	Способ устранения
g) преждевременная вспышка в цилиндрах двигателя, вследствие итдицирования тока в проводах высокого напряжения. | г) при выходе из крышки распределителя все провода к свечам отделить один от другого.
d) плохой угол, влажный, сильно пережженный, засоренный землей, песком. | д) сменить угол на лучший.
e) малые зазоры между клапанами и толкателями или клапаны неплотно прикрываются из-за коробления стержня и тарелки клапана. | е) проверить зазоры между клапанами и болтом толкателя, притереть и отрегулировать клапаны.

11) На электродах или торцах свечей белый налет (накипь)

а) чрезмерно влажное топливо (уголь). | а) сменить угол на более сухой, влажностью не выше 50%.
б) велика подача воды в фурму. | б) убавить подачу воды до нормы 7–8 кг/час.

12) Двигатель работает и при закрытой заслонке воздуха—смесителя

а) неплотно прикрывается заслонка воздуха—смесителя. | а) очистить и плотно пригнать заслонку воздуха—смесителя, проверить состояние тяги (гибкого троса).
б) подсосы воздуха через неплотное соединение на линии холодного газа. | б) проверить крепление люковых крышек в очистителях, шланговые соединения очистителей и газопроводов.
в) подсос через плохо прикрытую заслонку вентилятора. | в) подогнать плотно заслонку вентилятора к трубе.

ОСНОВНЫЕ ПРАВИЛА ТЕХНИКИ БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ

В газогенераторе ЦНИИМЭ-16 вырабатывается рабочий газ с большим содержанием СО (угарного газа), количество которого достигает 33%, вследствие чего этот газ имеет большую теплотворную способность, но в то же время является и более ядовитым, чем газ, вырабатываемый чугунными газогенераторами.

По приведенным причинам при эксплуатации газогенераторных автомобилей ЗИС-21 с древесно-угольными установками ЦНИИМЭ-16 соблюдение мер техники безопасности, приводимых ниже, обязательно, как для водителей автомобилей, так и для другого обслуживающего их персонала.

1) При загрузке газогенератора топливом или при осмотре горячего газогенератора вбегать вдыхать газ из-за возможности быстрого отравления. Автомобиль при загрузке располагать так, чтобы загрузка производилась с подветренной стороны.

2) При отсутствии специальной вентиляции совершенно запрещается розжиг газогенератора в помещении гаража раздвоенным вентилятором, при этом надлежит выезжать из гаража на бензине.

3) Запрещается въезжать в помещение гаража с двигателем, работающим на газе, так как после остановки двигателя происходит выделение ядовитого газа в помещении.

В случае обнаружения выхода газа из газогенератора в гараже немедленно должна быть включена вентиляция, а при отсутствии ее надлежит немедленно открыть ворота до окончания выхода газа и одновременно проверить плотность прикрытия заслонок смесителя, электровентилятора
и обратного клапана фурмы, если же обратный клапан фурмы прикрывается неплотно (покороблен), то отверстие обратного клапана закрыть мокрым асбестом.

4). Запрещается подносить к открытым люкам газогенератора и очистителей огонь, так как при этом могут вспыхнуть оставшийся в них газ и причинить ожоги.

5). Заправку горячего газогенератора углем производить лишь после хлопка, т. е. всыпки газа в газогенераторе, хлопок происходит через 5—10 сек. после открытия крышки загрузочного люка. При загрузке следует держать лицо в стороне от загрузочного люка.

6). В фурму, в случае необходимости проверки работы газогенератора, смотреть разрешается кратковременно, осторожно и только при работающем двигателе.

7). Запрещается заклинивать рессору крышки загрузочного люка газогенератора, так как всыпанным в газогенераторе газом, в случае наличия подсоса воздуха при заклиненной рессоре, может отворачивать крышка загрузочного люка и причинит увечье обслуживающему персоналу.

При подъеме крышки ломиком со стороны засора должна создаваться щель между крышкой загрузочного люка и горловиной размером около 10 мм.

8). Регулярно, не реже 2-х раз в неделю, проверять легкость перемещения предохранительного клапана в направляющих на водяном баке газогенератора.

9). Проверять прочность соединения и отсутствие засорения пароотводной трубки водяного бака с фурмой.

10). Не перевозить легко загорящихся грузов, такие как хлопок, вату, бензин и т. п., так как при заправке газогенератора или всыпке газа в газогенераторе из-за подсоса воздуха через загрузочный люк даже при закрытой крышки загрузочного люка могут вылетать искры.

При случайной остановке двигателя и воспламенении газа, выходящего из фурмы (при неплотном прилегании обратного клапана), погасить пламя можно следующими способами:

а) открыть полностью водяной краник на фурме, чтобы погасить пламя паром,

б) закрыть на 5—10 сек. входное отверстие фурмы мокрой тряпкой, концами,

в) включить раздувочный вентилятор,

г) приоткрыть на 2—3 сек. крышку загрузочного люка газогенератора, чтобы выпуском газа устранить в газогенераторе внутреннее давление, (последнее мероприятие проводить только за пределами склада).
ОГЛАВЛЕНИЕ

Введение ... 3
1. Техническая характеристика газогенераторной установки ЦНИИМЭ-16 для автомобиль Урал ЗИС-21 5
2. Описание газогенераторной установки ЦНИИМЭ-16 10
3. Топливо ... 17
4. Подготовка к работе и обслуживание газогенераторной уста-
новки ЦНИИМЭ-16 19
5. Основные специфические неисправности автомобиля ЗИС-21 с газогенераторной установкой ЦНИИМЭ-16, причины их пози-
ники и способы их устранения 24
6. Основные правила техники безопасности и противопожарные мероприятия 31