В. А. Байков, А. В. Жибер

УРАВНЕНИЯ
МАТЕМАТИЧЕСКОЙ
ФИЗИКИ

Учебное пособие

Москва ♦ Ижевск
2003
Байков В.А., Жибер А.В.

Основу этой книги составляют лекции по базовому университетскому курсу "Уравнения математической физики" для студентов факультета прикладной математики Ульяновского государственного авиационного технического университета, прочитанные в течение последних лет профессором В.А. Байковым и профессором А.В. Жибером. Курс в основном посвящен изучению уравнений в частных производных второго порядка с одной независимой функцией, в частности волнового уравнения, уравнения теплопроводности и уравнения Лапласа. Также изложены простейшие вопросы теории интегральных уравнений и специальных функций.

Предназначено для студентов 3 курса естественно-научного факультета, изучающих дисциплину "Уравнения математической физики".

ISBN 5-93972-242-3

© В.А. Байков, А.В. Жибер, 2003
© Институт компьютерных исследований, 2003

http://red.ru

Оглавление

Преисчисление 9

I Введение 10

Лекция 1. Основные уравнения математической физики 10
 § 1. Уравнение колебаний 10
 § 2. Уравнение диффузии 14
 § 3. Стационарное уравнение 15
 Задачи .. 16

Лекция 2. Классификация уравнений в частных производных второго порядка с двумя независимыми переменными 18
 § 1. Замена независимых переменных 18
 § 2. Уравнения характеристики 19
 § 3. Канонические формы уравнения 21
 Задачи .. 24

Лекция 3. Классификация уравнений второго порядка со многими независимыми переменными в точке. Характеристические поверхности 25
 § 1. Классификация уравнений в точке 25
 § 2. Характеристики .. 29
 Задачи .. 31

Лекция 4. Постановка основных краевых задач для дифференциального уравнения второго порядка 31
 § 1. Классификация краевых задач 31
 § 2. Задача Коппи .. 33
 § 3. Краевая задача для уравнений эллиптического типа. Смешанная задача .. 34
 § 4. Корректность постановки задач математической физики. Теорема Ковалевской. Пример Адмиара 35
 Задачи .. 38
Лекция 18. Уравнения Лапласа и Пуассона в пространстве, Теорема максимума, Фундаментальное решение, Формула Грина, Потенциалы объема простого слоя и двойного слоя	139
§ 1. Теорема максимума	140
§ 2. Фундаментальное решение, Формула Грина	142
§ 3. Потенциалы объема, простого слоя и двойного слоя	145
Задачи	146

Лекция 19. Основные свойства гармонических функций, Теорема о среднем арифметическом, Поведение гармонической функции вблизи особой точки, Поведение гармонических функций на бесконечности	147
§ 1. Теорема о среднем арифметическом	147
§ 2. Изолированные особые точки	150
§ 3. Поведение гармонической функции на бесконечности	152

Лекция 20. Уравнение Пуассона в пространстве, Ньютонов потенциал	154
§ 1. Теорема единственности	154
§ 2. Построение решения уравнения Пуассона	155

Лекция 21. Решение задачи Дирихле для шара	160
§ 1. Функция Грина для задачи Дирихле	160
§ 2. Решение внутренней задачи Дирихле для шара	162
Задачи	166

Лекция 22. Задачи Дирихле и Неймана для полупространства	167
§ 1. Теоремы единственности решений задач Дирихле и Неймана	167
§ 2. Построение решений задач Дирихле и Неймана	170

Лекция 23. Свойства потенциалов объема, простого и двойного слоя	173
§ 1. Потенциалы объема	174
§ 2. Поверхности Ляпунова	176
§ 3. Потенциал двойного слоя	177
§ 4. Потенциал простого слоя	179

Лекция 24. Сведение задач Дирихле и Неймана к интегральным уравнениям	180
§ 1. Постановка задач и единственность их решений	180
§ 2. Интегральные уравнения для краевых задач	184

Лекция 25. Уравнения Лапласа и Пуассона на плоскости	186
§ 1. Основные задачи	188
§ 2. Логарифмический потенциал	190
Задачи	193

Лекция 26. Уравнения Фредгольма второго порядка и Вольтерра	194
§ 1. Классификация интегральных уравнений	194
§ 2. Метод последовательных приближений. Понятие о резольвенте	195
§ 3. Уравнение Вольтерра	199
Задачи	200

Лекция 27. Интегральные уравнения с выраженным ядром, Теоремы Фредгольма	202
§ 1. Уравнение с выраженным ядром	202
§ 2. Теоремы Фредгольма	207
Задачи	208

Лекция 28. Интегральные уравнения с симметричным ядром	209
§ 1. Свойства собственных функций и собственных значений	210
§ 2. Теорема о криволинейном спектре	214
§ 3. Спектр интегрированных (поворотных) ядер	216

Лекция 29. Теорема Гильберта—Шмидта	217
§ 1. Разложение интегрированных ядер	218
§ 2. Теорема Гильберта—Шмидта	220
§ 3. Решение неоднородного уравнения	223
Задачи	225

Лекция 30. Функции Бесселя. Полное разложение переменных в уравнении колебаний круговой мембраны	227
§ 1. Функции Бесселя	227
§ 2. Полное разложение переменных в уравнении колебаний круговой мембраны	230
Задачи	234
Предисловие

Курс «Уравнения математической физики» является базовым университетским курсом для студентов факультета прикладной математики. Для того чтобы понять его в полной мере, необходимо знание и свободное оперирование основными понятиями дисциплин «аналитическая геометрия», «высшая алгебра» и «математический анализ», поэтому в университете он входит в программу обучения студентов в пятом и шестом семестрах третьего курса.

Отметим, что выбор материала был ограничен как объемом лекционных часов, так и желанием научить «прикладников» приемам и методам решения прикладных задач. Желающих более глубоко разобраться в предмете можно отослать к работам [1]–[9].

При подборе задач в качестве базового был взят «Сборник задач по уравнениям математической физики» под редакцией В.С. Владимирова [10], а при подготовке курса лекции мы использовали в основном книги [11]–[14].
I. Введение

Лекция 1. Основные уравнения математической физики
(уравнение колебаний, уравнение диффузии, уравнения Пуассона и Лапласа)

Преем теории уравнений математической физики составляет изучение дифференциальных, интегральных и функциональных уравнений, описывающих явления природы. Точные рамки этой дисциплины определяют довольно трудоемко. Кроме того, большое разнообразие вопросов, относящихся к уравнениям математической физики, не позволяет охватить их сколько-нибудь полно в университетском курсе.

Наш курс будет посвящен в основном изучению уравнений в частных производных второго порядка с одной неизвестной функцией, в частности волнового уравнения, уравнения теплопроводности и уравнения Лапласа, обычно называемых классическими уравнениями математической физики.

§1. Уравнение колебаний

Многие задачи механики (колебания струн, стержней, мембран и трехмерных объемов) и физики (электромагнитные колебания) приводят к уравнению колебаний вида

$$p \frac{\partial^2 u}{\partial t^2} = \text{div}(p \text{grad} u) - q + F(x,t),$$

где неизвестная функция $u(x,t)$ зависит от n ($n=1,2,3$) пространственных переменных $x=(x_1,x_2,...,x_n)$ и времени t коэффициенты p, q и F определяются свойствами среды; $F(x,t)$ - плотность внешнего возмущения. В уравнении (1) в соответствии с определением операторов div и grad

$$\text{div}(p \text{grad} u) = \sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left(p \frac{\partial u}{\partial x_i} \right).$$

Продемонстрируем вывод уравнения (1) на примере малых поперечных колебаний струны. Струной называется упругая нить, не сопротивляющаяся изгибу.

Пусть в плоскости (x,τ) струна совершает малые поперечные колебания около своего положения равновесия, совпадающего с осью x. Обозначим через $u(x,\tau)$ величину отклонения струны от положения равновесия в точке x в момент времени τ, так что $u=u(x,\tau)$ есть уравнение струны в момент времени τ. Мы будем пренебрегать величинами малого порядка малости по сравнению с $\tan \alpha \approx \frac{\partial u}{\partial x}$.

Так как струна не сопротивляется изгибу, то ее напряжение $\bar{T}(x,\tau)$ в точке x в момент времени τ направлено по касательной к струне в точке x (Рис. 1).
Любой участок струны \((a,b)\) после отклонения от положения равновесия в рамках нашего приближения не изменяет своей длины
\[
l = \left[b - a \right] \sqrt{1 + \left(\frac{\partial u}{\partial x} \right)^2} \iff b - a
\]
и, следовательно, в соответствии с законом Гука величина напряжения \(\bar{T}(x,t)\) будет оставаться постоянной, не зависящей от \(x\) и \(t\), \(\bar{T}(x,t) = T_0\).

Обозначим через \(F(x,t)\) плотность внешних сил, действующих на струну в точке \(x\) в момент времени \(t\) и направленных перпендикулярно оси \(x\). Напомним, пусть \(\rho(x)\) обозначает линейную плотность струны в точке \(x\) так, что \(\rho(x)dx\) — масса элемента струны \((x, x+dx)\). Составим теперь уравнение движения струны. На ее элемент \((x, x+dx)\) действуют силы напряжения \(\bar{T}(x, dx, t)\), \(-\bar{T}(x, t)\) (рис.1) и внешняя сила, сумма которых, согласно законам Ньютона, должна быть равна произведению массы этого элемента на его ускорение. Проецируя это векторное равенство на ось \(y\), получим
\[
T_0 \sin \alpha \left. \left(\frac{\partial u}{\partial x} \right) \right|_{x=\Delta x} + F(x,t) \Delta x - \rho(x) \Delta x \left(\frac{\partial^2 u(x,t)}{\partial t^2} \right) = 0.
\]
(2)

Но в рамках нашего приближения
\[
\sin \alpha = \frac{\tan \alpha}{1 + \tan^2 \alpha} \iff \sin \alpha = \frac{\partial u}{\sqrt{1 + \partial^2 u}},
\]
и, следовательно, из (2) имеем
\[
\rho \left(\frac{\partial^2 u(x,t)}{\partial t^2} \right) = T_0 \frac{1}{\Delta x} \left[\frac{\partial u(x+\Delta x,t)}{\partial x} - \frac{\partial u(x,t)}{\partial x} \right] + F(x,t),
\]
t.e.
\[
\rho \left(\frac{\partial^2 u}{\partial t^2} \right) = T_0 \left(\frac{\partial^2 u}{\partial x^2} \right) + F.
\]
(3)

Уравнение (3) и есть уравнение малых поперечных колебаний струны.

Если плотность \(\rho\) постоянна, \(\rho(x) = \rho\), то уравнение колебаний струны принимает вид
\[
\frac{\partial^2 u}{\partial t^2} = \frac{a^2}{\rho} \left(\frac{\partial^2 u}{\partial x^2} + f \right),
\]
(4)
где обозначено \(a^2 = \frac{T_0}{\rho}\), \(f = \frac{F}{\rho}\). Уравнение (4) мы будем также называть однономерным волновым уравнением.

Уравнение вида (1) описывает также малые продольные колебания упругого стержня
\[
\rho S \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial x} \left(E S \frac{\partial u}{\partial x} \right) + F(x,t),
\]
(5)
где \(S(x)\) — площадь поперечного сечения стержня и \(E(x)\) — модуль Юнга в точке \(x\).

Аналогично, выводится уравнение малых поперечных колебаний мембраны
\[
\rho \frac{\partial^2 u}{\partial t^2} = T_0 \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \right) + F,
\]
(6)
Если плотность \(\rho\) постоянна, то уравнение колебаний мембраны принимает вид
\[
\frac{\partial^2 u}{\partial t^2} = \frac{a^2}{\rho} \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} \right) + f,
\]
(7)
Уравнение (7) мы будем называть двумерным волновым уравнением.

Трехмерное волновое уравнение
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2} + \frac{\partial^2 u}{\partial x_3^2} \right) + f
\]
описывает процессы распространения звука в однородной среде и электромагнитных волн в однородной непроводящей среде. Этому уравнению удовлетворяет плотность газа, его давление и потенциал скоростей, а также со-
За счет тепловых источников в объеме \(V\) возникает количество тепла
\[
Q_2 = \iiint_V F(x,t) \, dx \, dt.
\]
Так как температура в объеме \(V\) за промежуток времени \((t, t + \Delta t)\) выросла на величину
\[
u(x,t + \Delta t) - u(x,t) \approx \frac{\partial u}{\partial t} \Delta t,
\]
то для этого необходимо запрятить количество тепла
\[
Q_3 = \iiint_V c \rho \frac{\partial u}{\partial t} \, dx \, dt.
\]
С другой стороны, \(Q_1 = Q_1 + Q_2\) и поэтому
\[
\iiint_V \left[\div \left(k \, \grad u \right) + F + c \rho \frac{\partial u}{\partial t} \right] \, dx \, dt = 0,
\]
откуда, в силу производности объема \(V\), получаем уравнение распространения тепла
\[
c \rho \frac{\partial u}{\partial t} = \div \left(k \, \grad u \right) + F(x,t).
\]
Если среда однородна, т.е. \(c, \rho\) и \(k\) — постоянные, то уравнение (10) принимает вид
\[
\frac{\partial u}{\partial t} = \alpha^2 \Delta u + f,
\]
где \(\alpha^2 = \frac{k}{c \rho}, \quad f \equiv \frac{F}{c \rho}.
\]
Уравнение (11) называется уравнением теплопроводности.

§3. Стационарное уравнение

Для стационарных процессов \(F(x,t) = F(x), \quad u(x,t) = u(x)\) и уравнения колебаний (1) и диффузии (9) принимают вид
\[
-\div (p \, \grad u) + qu = F(x).
\]
При \(p=\text{const} \), \(q=0 \) уравнение (12) называется уравнением Пуассона

\[
\Delta u = -f, \quad f = \frac{E}{p};
\]

при \(f = 0 \) уравнение (13) называется уравнением Лапласа

\[
\Delta u = 0.
\]

Рассмотрим потенциальное течение жидкости без источников, а именно, пусть внутри некоторого объема \(V \) с границей \(S \) имеется волна стационарное течение несжимаемой жидкости (плотность \(\rho = \text{const} \)), характеризуемое скоростью \(\mathbf{u}(x_1, x_2, x_3) \). Если течение жидкости не вихревое (rot \(\mathbf{u} = 0 \)), то скорость \(\mathbf{u} \) является потенциальным вектором, т.е.

\[
\mathbf{u} = \text{grad } u,
\]

где \(u \) — скалярная функция, называемая потенциалом скорости. Если отсутствуют источники, то

\[
\text{div } \mathbf{u} = 0.
\]

Теперь из формул (14) и (15) получим:

\[
\text{div grad } u = 0
\]

или

\[
\Delta u = 0,
\]

т.е. потенциал скорости удовлетворяет уравнению Лапласа.

Задачи

1. Абсолютно гибкая однородная нить закреплена на одном из концов и под действием своего веса находится в вертикальном положении равновесия. Вывести уравнение малых колебаний нити.

Ответ: \(\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial u}{\partial x} \right)_0 \), где \(u(x,t) \) — смещение точки, \(l \) — длина нити, \(g \) — ускорение силы тяжести.

2. Вывести уравнение поперечных колебаний струны в среде, сопротивление которой пропорционально первой степени скорости.

Ответ: \(\frac{\partial^2 u}{\partial t^2} \left(\frac{\partial u}{\partial x} \right)_0 \), \(a^2 = \frac{\rho}{\mu} \).

3. Тонкая однородная нить длиной \(l \) прикреплена верхним концом \((x = 0) \) к вертикальной оси, вращающейся вокруг этой оси с постоянной угловой скоростью \(\omega \). Вывести уравнение малых колебаний нити около своего вертикального положения равновесия.

Ответ: \(\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial u}{\partial x} \right)_0 \), \(a^2 = g \).

4. Вывести уравнение диффузии в среде, движущейся со скоростью \(u(x) \) в направлении оси \(x \), если поверхностями равной концентрации в каждый момент времени являются плоскости, перпендикулярные оси \(x \).

Ответ: \(c \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial x} (u \cdot u) \).

5. Вывести уравнение диффузии в неподвижной среде для вещества, частицы которого: а) распадаются со скоростью, пропорциональной концентрации; б) размягчаются со скоростью, пропорциональной их концентрации.

Ответ: а) \(c \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right) - u \cdot \beta \); б) \(c \frac{\partial u}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial u}{\partial x} \right) \).

6. Исходя из Максвелла в вакууме:

\[
\begin{align*}
\text{rot } \mathbf{E} &= \frac{1}{c} \frac{\partial \mathbf{H}}{\partial t}, \\
\text{div } \mathbf{E} &= 0, \\
\text{div } \mathbf{H} &= 0, \\
\text{rot } \mathbf{H} &= \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t},
\end{align*}
\]

где \(\mathbf{H} \) — напряженность магнитного поля, \(\mathbf{E} \) — напряженность электрического поля. Вывести уравнение для потенциала электрического поля постоянного электрического тока, вывести уравнение для потенциала.
Лекция 2. Классификация уравнений в частных производных второго порядка с двумя независимыми переменными

Нашей целью является приведение к каноническому виду в области уравнения с частными производными второго порядка с двумя независимыми переменными линейного относительно старших производных

\[a_{11}u_{xx} + 2a_{12}u_{xy} + a_{22}u_{yy} + F(x, y, u, u_x, u_y) = 0, \]
(1)

gде коэффициенты \(a_{11}, a_{12}, a_{22}\) являются функциями \(x\) и \(y\).

§1. Замена независимых переменных

Перейдем от независимых переменных \(x\) и \(y\) к независимым переменным \(\xi\) и \(\eta\). Пусть

\[\xi = \xi(x, y), \quad \eta = \eta(x, y) \]
(2)

два аргумента непрерывно дифференцируемы, причем якобиан

\[D = \begin{vmatrix} \frac{\partial \xi}{\partial x} & \frac{\partial \xi}{\partial y} \\ \frac{\partial \eta}{\partial x} & \frac{\partial \eta}{\partial y} \end{vmatrix} \]

нигде в рассматриваемой области не обращается в нуль. Тогда систему (2) можно однозначно решить относительно \(x\) и \(y\) в некоторой области точек \((\xi, \eta)\). Полученные функции \(x = x(\xi, \eta)\) и \(y = y(\xi, \eta)\) будут также двумя непрерывно дифференцируемыми функциями от \(\xi\) и \(\eta\). С помощью преобразования (2) мы получаем новое уравнение, эквивалентное исходному (1). Естественно возникает задача: как выбрать \(\xi\) и \(\eta\), чтобы уравнение в этих переменных имело наиболее простую форму? Для решения этой задачи преобразуем производные к новым переменным. Полагая

\[u(x(\xi, \eta), y(\xi, \eta)) = u(\xi, \eta), \]

получаем

\[u_x = u_\xi \xi_x + u_\eta \eta_x, \quad u_y = u_\xi \xi_y + u_\eta \eta_y, \]

\[u_{xx} = u_{\xi\xi} \xi_x^2 + 2u_{\xi\eta} \xi_x \eta_x + u_{\eta\eta} \eta_x^2 + u_{\xi\xi} \xi_y^2 + u_{\eta\eta} \eta_y^2, \]

\[u_{yy} = u_{\xi\xi} \xi_y^2 + 2u_{\xi\eta} \xi_y \eta_y + u_{\eta\eta} \eta_y^2 \]

(3)

В новых переменных \(\xi\) и \(\eta\) уравнение (1), согласно формулам (3), записывается так:

\[\tilde{a}_{11}u_{\xi\xi} + 2\tilde{a}_{12}u_{\xi\eta} + \tilde{a}_{22}u_{\eta\eta} + F(\xi, \eta, u, u_\xi, u_\eta) = 0, \]

(4)

gде

\[\tilde{a}_{11} = a_{11} \xi_x^2 + 2a_{12} \xi_x \xi_y + a_{22} \xi_y^2, \]

\[\tilde{a}_{12} = a_{11} \xi_y + a_{12} (\xi_x \xi_y + \eta_x \eta_y) + a_{22} \eta_y^2, \]

\[\tilde{a}_{22} = a_{11} \eta_x^2 + 2a_{12} \eta_x \eta_y + a_{22} \eta_y^2, \]

\[F = F(a_{11} u_{\xi\xi} + a_{12} u_{\xi\eta} + a_{22} u_{\eta\eta} + a_{11} u_{\xi\xi} + a_{12} u_{\xi\eta} + a_{22} u_{\eta\eta}). \]

Выберем переменные \(\xi\) и \(\eta\) так, чтобы коэффициент \(\tilde{a}_{11}\) был равен нулю. Рассмотрим уравнение с частными производными первого порядка

\[a_{11}z_x^2 + 2a_{12}z_xz_y + a_{22}z_y^2 = 0. \]

(5)

Пусть \(z = \varphi(x, y)\)—какое-нибудь частное решение этого уравнения. Если положить \(\xi = \varphi(x, y)\), то коэффициент \(\tilde{a}_{11}\), очевидно, будет равен нулю. Итак, задача о выборе новых независимых переменных сводится к решению уравнения (5).

§2. Уравнения характеристик

Уравнение (5) связано со следующим обыкновенным дифференциальным уравнением

\[a_1 d_x^2 - 2a_{12} d_x d_y + a_{22} d_y^2 = 0, \]

(6)
укоторое мы будем называть характеристическими, а его интегралы — характеристиками. Эта связь устанавливается в следующем предложении:

Лемма. Если \(z = \varphi(x, y) \) — решение уравнения (5), то соотношение \(\varphi(x, y) = C \) представляет собой интеграл уравнения (6). Обратно, если \(\varphi(x, y) = C \) — интеграл уравнения (6), то функция \(z = \varphi(x, y) \) удовлетворяет уравнению (5).

Доказательство. Пусть \(z = \varphi(x, y) \) удовлетворяет уравнению (5). Соответствие \(\varphi(x, y) = C \) задает функцию \(y = f(x, C) \), для которой

\[
\frac{dy}{dx} = \frac{-\varphi_x(x, y)}{\varphi_y(x, y)} \bigg|_{y=f(x,C)}.
\]

Следовательно, \(y = f(x, C) \) удовлетворяет уравнению (6), так как

\[
a_{11} \left(\frac{dy}{dx} \right)^2 - 2a_{12} \frac{dy}{dx} + a_{22} = \left[a_{11} \left(\frac{\varphi_x}{\varphi_y} \right)^2 + 2a_{12} \frac{\varphi_x}{\varphi_y} + a_{22} \right]_{y=f(x,C)} = 0.
\]

Докажем вторую часть леммы. Пусть \(\varphi(x, y) = C \) — интеграл уравнения (6). Через произвольную точку \((x_0, y_0)\) проведем интегральную кривую уравнения (6), полагая \(\varphi(x_0, y_0) = C_0 \) и рассмотрев кривую \(y = f(x, C_0) \). Очевидно, \(y_0 = f(x_0, C_0) \). Для всех точек этой кривой имеем:

\[
a_{11} \left(\frac{dy}{dx} \right)^2 - 2a_{12} \frac{dy}{dx} + a_{22} = \left[a_{11} \left(\frac{\varphi_x}{\varphi_y} \right)^2 + 2a_{12} \frac{\varphi_x}{\varphi_y} + a_{22} \right]_{y=f(x,C_0)} = 0.
\]

Полагая в последнем равенстве \(x = x_0 \), получим:

\[
a_{11} \varphi_x^2(x_0, y_0) + 2a_{12} \varphi_x(x_0, y_0) \varphi_y(x_0, y_0) + a_{22} \varphi_y^2(x_0, y_0) = 0,
\]

что и требовалось доказать.

Полагая \(\xi = \varphi(x, y) \), где \(\varphi(x, y) = C \) есть интеграл уравнения (6), мы обрываем в ноль коэффициент при \(u_{\xi \xi} \). Если \(\psi(x, y) = C \) — другой интеграл уравнения (6), независимый от \(\varphi(x, y) \), то, полагая \(\eta = \psi(x, y) \), мы обрываем в нуль также и коэффициент при \(u_{\eta \eta} \).

I. Введение

Уравнение (6) распадается на два уравнения:

\[
\frac{dy}{dx} = \frac{a_{12} \pm \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}},
\]

(7)

\[
\frac{dy}{dx} = \frac{a_{12} - \sqrt{a_{12}^2 - a_{11}a_{22}}}{a_{11}}.
\]

(8)

Знак полукруглого выражения определяет тип уравнения (1). Это уравнение мы будем называть в точке \(M \) уравнением гиперболического типа, если в точке \(M \) \(\Delta = a_{12}^2 - a_{11}a_{22} > 0 \), эллиптического типа, если \(\Delta < 0 \), и параболического типа, если \(\Delta = 0 \).

Нетрудно убедиться в правильности соотношения

\[
a_{12}^2 - a_{11}a_{22} = (a_{12}^2 - a_{11}a_{22})D^2,
\]

из которого следует интерпретация типа уравнения при преобразовании переменных, так как якообиан \(D \) преобразования переменных отличен от нуля.

§3. Канонические формы уравнения

Рассмотрим область \(G \), во всех точках которой уравнение имеет один и тот же тип. Разберем каждый из этих типов в отдельности.

1. Для уравнений гиперболического типа \(\Delta > 0 \) и параболического типа (7) и (8) действительно и различны. Общие интегралы их \(\varphi(x, y) = C \) и \(\psi(x, y) = C \) определяют действительные семейства характеристик. Полагая

\[
\xi = \varphi(x, y), \quad \eta = \psi(x, y),
\]

приводим уравнение (4) к виду

\[
u_{\xi\xi} = \Phi(\xi, \eta, \nu, \nu_x, \nu_y),
\]

(9)

где \(\Phi = -\frac{F}{2a_{12}} \). Уравнение (10) называется канонической формой гиперболического уравнения (1). Часто пользуются другой канонической формой.

Положим

\[
\xi = x' + y', \quad \eta = x' - y',
\]

(10)
Уравнения математической физики

t.e.

\[x' = \frac{\xi + \eta}{2}, \quad y' = \frac{\xi - \eta}{2}, \]

gде \(x' \) и \(y' \) — новые переменные. Тогда, полагая \(u(\xi, \eta) = W(x', y') \), будем иметь

\[u_{\xi} = \frac{1}{2}(W_{x'} + W_{y'}), \quad u_{\eta} = \frac{1}{2}(W_{x'} - W_{y'}), \quad u_{\xi\eta} = -\frac{1}{4}(W_{x''x'} - W_{y''y'}). \]

В результате уравнение (10) примет вид

\[W_{xx'} + W_{yy'} = \Phi_1, \quad (\Phi_1 = 4\Phi), \]

2. Для уравнения параболического типа \(\Delta = 0 \) уравнения (7) и (8) совпадают, и мы получаем один общий интеграл уравнения (6): \(\Phi(x, y) = \text{const} \).

Положим в этом случае

\[\xi = \varphi(x, y) \quad \text{и} \quad \eta = \psi(x, y), \]

где \(\varphi(x, y) \) — любая функция, не зависящая от \(\varphi \). При таком выборе переменных коэффициенты

\[a_{11} = a_{12} = 0, \quad a_{22} = \frac{1}{2} \left(\sqrt{a_{11}} \xi + \sqrt{a_{22}} \eta \right), \]

так как \(a_{12} = \sqrt{a_{11}} \sqrt{a_{22}} \); отсюда следует,

\[a_{12} = a_{11} \xi_{x} \eta_{y} + a_{12} (\xi_{x} \eta_{x} + \xi_{y} \eta_{y}) + a_{22} \xi_{y} \eta_{y} =
\]

\[= \left(\sqrt{a_{11}} \xi_{x} + \sqrt{a_{22}} \eta_{y} \right) \left(\sqrt{a_{11}} \eta_{x} + \sqrt{a_{22}} \eta_{y} \right) = 0. \]

Таким образом, мы получаем каноническую форму для уравнения параболического типа

\[u_{\eta\eta} = \Phi(\xi, \eta, u, u_{\xi}, u_{\eta}) \quad \Phi = \frac{F}{a_{22}}, \]

3. Для уравнения эллиптического типа \(a_{12} = 0 \) и правые части уравнений (7) и (8) комплексные. Пусть

\[\varphi(x, y) = C \]

— комплексный интеграл уравнения (7). Тогда

\[\varphi^*(x, y) = C, \]

где \(\varphi^* \) — совпадение к \(\varphi \) функция будет представлять собой общий интеграл совмещенного уравнения (8). При этом уравнение эллиптического типа (1) приводится к (10) при замене переменных

\[\xi = \varphi(x, y), \quad \eta = \varphi^*(x, y). \]

Чтобы не имея дела с комплексными переменными, введем новые переменные \(x' \) и \(y' \), равные

\[x' = \frac{\varphi + \varphi^*}{2}, \quad y' = \frac{\varphi - \varphi^*}{2}, \]

так что

\[\xi = x' + iy', \quad \eta = x' - iy'. \]

В этом случае, полагая \(u(\xi, \eta) = W(x', y') \), будем иметь

\[u_{\xi} = \frac{1}{2}(W_{x'} + iW_{y'}), \quad u_{\eta} = \frac{1}{2}(W_{x'} - iW_{y'}), \quad u_{\xi\eta} = -\frac{1}{4}(W_{x''x'} + W_{y''y'}). \]

Следовательно, уравнение (10) принимает вид

\[W_{xx'} + W_{yy'} = \Psi(x', y', W_{x'}, W_{y'}), \quad \Psi = 4\Phi, \]

В заключение рассмотрим несколько примеров.

Пример 1. \(u_{xx} - u_{yy} = 0 \).

Здесь \(a_{11} = 1, \ a_{12} = 0, \ a_{22} = -1, \ \Delta = a_{12}^{2} - a_{11}a_{22} = -1 \). Следовательно, в области \(u > 0 \) уравнение гиперболика, в области \(u < 0 \) — эллиптическое.

а) Рассмотрим сначала область гиперболики. Дифференциальные уравнения характеристик имеют вид

\[\frac{dy}{dx} = -\sqrt{y}, \quad \frac{dy}{dx} = \sqrt{y}, \]

а \(x - 2\sqrt{y} = C \), \(x + 2\sqrt{y} = C \) — их общие интегралы.

Произведя замену независимых переменных \(\xi = x - 2\sqrt{y}, \ \eta = x + 2\sqrt{y} \), получим каноническую форму преобразованного уравнения

\[u_{\xi\eta} = \frac{1}{2(\xi - \eta)}(u_{\xi} - u_{\eta}), \]
Пример 2. $x u_{xx} - 2\sqrt{xy} u_{xy} + y u_{yy} + 0,5 u_y = 0$.
Здесь $a_{11} = x, a_{12} = -\sqrt{xy}, a_{22} = y, \Delta = 0$. Следовательно, это уравнение входит параболического типа. Оно имеет одно семейство характеристик, описываемых уравнением
$$\frac{dy}{dx} = \frac{\sqrt{y}}{\sqrt{x}}.$$
Общий интеграл этого уравнения $\sqrt{x} + \sqrt{y} = C$. Поэтому полагаем $\xi = \sqrt{x} + \sqrt{y}$, η можно положить равной любой функции $\psi(x, y)$, независимой от ξ. Полагаем, например, $\eta = \sqrt{x}$. Тогда получаем следующий канонический вид уравнения
$$u_{\eta\eta} - \frac{1}{\eta} (u_\xi + u_\eta) = 0.$$

Задачи

1. Привести к каноническому виду уравнения:
 a) $x^2 u_{xx} - y^2 u_{yy} = 0$,
 b) $y^2 u_{xx} + x^2 u_{yy} = 0$,
 в) $x^2 u_{xx} + 2xy u_{xy} + y^2 u_{yy} = 0$,
 г) $x^2 u_{xx} - y^2 u_{yy} = 0$.

Лекция 3. Классификация уравнений второго порядка
со многими независимыми переменными
в точке. Характеристические поверхности

Прежде чем формулировать математические постановки решения различных физических задач, складывающихся с линейным дифференциальным второго порядка относительно старших производных, необходимо классифицировать эти уравнения.

В случае уравнений с двумя независимыми переменными этот вопрос исследован на предыдущей лекции. В этой лекции рассматривается уравнение вида

$$\sum \sum \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} u + \Phi(x, u, \partial u) = 0$$

(1)

с непрерывными коэффициентами $a_{ij}(x)$, $x = (x_1, x_2, \ldots, x_n)$.

§1. Классификация уравнений в точке

Выясним, как преобразуется уравнение (1) при производной независимой замене независимых переменных $\xi = \xi(x)$, т.е.

$$\xi_i = \xi_i(x_1, x_2, \ldots, x_n), \quad i = 1, 2, \ldots, n;$$
Уравнения математической физики

\[
D = \begin{bmatrix}
\frac{\partial \xi_1}{\partial x_1} & \frac{\partial \xi_1}{\partial x_2} & \ldots & \frac{\partial \xi_1}{\partial x_n} \\
\frac{\partial \xi_2}{\partial x_1} & \frac{\partial \xi_2}{\partial x_2} & \ldots & \frac{\partial \xi_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial \xi_n}{\partial x_1} & \frac{\partial \xi_n}{\partial x_2} & \ldots & \frac{\partial \xi_n}{\partial x_n}
\end{bmatrix} \neq 0. \tag{2}
\]

Так как \(D \neq 0 \), то в некоторой окрестности можно выразить переменные \(x \) через \(\xi \), \(x = x(\xi) \). Обозначим \(u(x(\xi)) = u(\xi) \), тогда \(u(\xi(x)) = u(x) \). Считая \(\xi_i \in C^2 \), имеем

\[
\frac{\partial u}{\partial x_i} = \sum_{i=1}^{n} \frac{\partial u}{\partial \xi_k} \frac{\partial \xi_k}{\partial x_i} = \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{\partial^2 u}{\partial x_i \partial \xi_k} \frac{\partial \xi_k}{\partial x_j} + \sum_{k=1}^{n} \frac{\partial u}{\partial \xi_k} \frac{\partial^2 \xi_k}{\partial x_i \partial x_j} + \sum_{k=1}^{n} \frac{\partial u}{\partial \xi_k} \frac{\partial^2 \xi_k}{\partial x_i \partial x_j} = 0. \tag{3}
\]

Подставляя выражения для производных (3) в уравнение (1), получим

\[
\sum_{k=1}^{n} \sum_{i=1}^{n} a_{ij} \frac{\partial \xi_k}{\partial x_i} \frac{\partial \xi_k}{\partial x_j} = \sum_{k=1}^{n} \frac{\partial^2 u}{\partial \xi_k^2} \frac{\partial u}{\partial \xi_k} + \Phi^*(\xi, u, Vu) = 0. \tag{4}
\]

Здесь \(\Phi^*(\xi, u, Vu) = \Phi(x, u, Vu) \). Обозначим теперь через \(\alpha_{kl} \) новые коэффициенты при вторых производных

\[
\alpha_{kl} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial \xi_k}{\partial x_i} \frac{\partial \xi_l}{\partial x_j} \tag{5}
\]

и полагая

\[
\Phi(\xi, u, Vu) = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ij} \frac{\partial^2 \xi_k}{\partial x_i \partial x_j} + \Phi^*(\xi, u, Vu),
\]

перепишем уравнение (4) в виде (1):

\[
\sum_{k=1}^{n} \sum_{i=1}^{n} \alpha_{kl} \frac{\partial^2 u}{\partial \xi_k \partial u} + \Phi(\xi, u, Vu) = 0. \tag{6}
\]

I. Введение

Далее фиксируем точку \(x_0 \) и положим \(\xi = \xi(x_0) \), \(\alpha_{kl} = \frac{\partial^2 \xi_k(x_0)}{\partial x_i \partial x_j} \). Тогда формула (5) в точке \(x_0 \) записим в виде

\[
\alpha_{kl}(\xi_0) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_0) \alpha_{kl}(\xi_0). \tag{7}
\]

Полагая формула преобразования коэффициентов \(a_{ij} \) в точке \(x_0 \) совпадает с формулой преобразования коэффициентов квадратичной формы

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}(x_0) p_i p_j \tag{8}
\]

при ненарушенном линейном преобразовании

\[
p_i = \sum_{k=1}^{n} \alpha_{ik} q_k, \quad \det(\alpha_{kl}) \neq 0, \tag{9}
\]

переводящим формулу (8) в форму

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} (\xi_0) q_i q_j \tag{10}
\]

Итак, чтобы упростить уравнение (1) в точке \(x_0 \) с помощью замены переменных (2), достаточно упростить в этой точке квадратичную форму (8) с помощью ненарушенного линейного преобразования (9). Но в курсе линейной алгебры доказывается, что всегда существует преобразование (9), при котором квадратичная форма (10) принимает следующий канонический вид:

\[
\sum_{k=1}^{n} q_k^2 - \sum_{k=r+1}^{n} q_k^2, \quad m \leq n; \tag{11}
\]

кроме того, в силу закона инерции квадратичных форм, целые числа \(m \) и \(n \) не зависят от преобразования (9). Это позволяет классифицировать уравнения (1), а именно:

1) если в форме (11) \(m=n \) и все слагаемые одного знака (т.е. либо \(r=m \), либо \(r=0 \)), то уравнение (1) называется уравнением элиптического типа;
2) если $m=n$, то имеются слагаемые разных знаков (т.е. 1 $r \leq n-1$), то уравнение (1) — гиперболического типа (при $r=1$ или $r=n-1$ — нормально-гиперболического типа).

3) если $m<n$, то это уравнение (1) — параболического типа (при $r=n-1$ — нормально-параболического типа).

Пусть коэффициенты a_{ij} в уравнении (1) постоянны, т.е. не зависят от x, и пусть преобразование (9) приводит квадратичную форму (8) к каноническому виду (11). Тогда линейная замена независимых переменных

$$
\xi_j = \sum_{k=1}^{n} a_{jk} x_k
$$

приводит уравнение (1) к следующему каноническому виду

$$
\sum_{k=1}^{m} \frac{\partial^2 u}{\partial x_k^2} - \sum_{k=r+1}^{n} \frac{\partial^2 u}{\partial x_k^2} + \Phi(\xi, u, \partial u) = 0.
$$

(12)

Примеры. Уравнение Лапласа — эллиптического типа, волновое уравнение — гиперболического типа и уравнение теплопроводности — параболического типа.

Замечание. Выше мы привели способ приведения уравнения (1) к каноническому виду в каждой отдельной точке, где задано это уравнение. В связи с этим возникает вопрос: нельзя ли одним и тем же преобразованием (2) привести уравнение (1) к каноническому виду (12) в достаточно малой окрестности каждой точки? Чтобы это приведение можно было сделать для любого уравнения, необходимо, чтобы число условий

$$
\partial_{x_k} = 0, \quad k \neq s, \quad k, s = 1, 2, ..., n;
$$

$$
\partial_{x_k} v_k, \quad k = 2, 3, ..., n, \quad \partial_{x_1} \neq 0,
$$

gде $v_k = 0, \pm 1$ не превосходят числа неизвестных функций ξ_k, $k = 1, 2, ..., n$.

$$
\frac{n(n-1)}{2} + n - 1 \leq n, \quad \text{т.е.} \quad n \leq 2.
$$

Как мы показали в лекции 2, это приведение для $n = 2$ всегда можно сделать (для $n = 1$ это очевидно).

§2. Характеристики

Пусть функция $\omega(x), \quad x = (x_1, x_2, ..., x_n), \quad n \geq 2$, класса C^1 такова, что на поверхности $\omega(x) = 0$ $\forall o(x)
eq 0$ и

$$
\sum_{j=1}^{n} \sum_{k=1}^{m} a_{ij}(x) \frac{\partial \omega(x)}{\partial x_j} \frac{\partial \omega(x)}{\partial x_k} = 0.
$$

(13)

Тогда поверхность $\omega(x) = 0$ называется характеристической поверхностью (или характеристикой) дифференциального уравнения (1). Пусть $\omega \in C^2(G)$ и $\omega - c = 0$ — характеристика при $a < c < b$. Тогда, если в преобразовании (2) взять $\omega = \omega(x)$, то в силу (5), (13) коэффициент a_{ij} обратится в нуль в соответствующей области G. Поэтому зная одно или несколько семейств характеристик дифференциального уравнения дает возможность привести это уравнение к более простому виду.

Примеры характеристик.

1. Для уравнения колебаний струны

$$
u_{tt} - a^2 u_{xx} = f(x, t)
$$

характеристическое уравнение имеет вид

$$
\left(\frac{\partial \omega}{\partial t} \right)^2 - a^2 \left(\frac{\partial \omega}{\partial x} \right)^2 = 0
$$

или

$$
\frac{\partial \omega}{\partial t} - a \frac{\partial \omega}{\partial x} = 0, \quad \frac{\partial \omega}{\partial t} + a \frac{\partial \omega}{\partial x} = 0.
$$

Поэтому мы имеем два семейства характеристик

$$
x + at = c \quad \text{и} \quad x - at = c.
$$

2. Характеристическое уравнение для трехмерного волнового уравнения

$$
u_{tt} - a^2 (u_{xx} + u_{yy} + u_{zz}) = f(x, y, z, t)
$$

или

$$
\frac{\partial \omega}{\partial t} - a \frac{\partial \omega}{\partial x} = 0, \quad \frac{\partial \omega}{\partial t} + a \frac{\partial \omega}{\partial x} = 0.
$$

Поэтому мы имеем два семейства характеристик

$$
x + at = c \quad \text{и} \quad x - at = c.
$$
Задачи

1. $u_{xx} + 2u_{xy} - 2u_{xx} + 2u_{yy} + 6u_z = 0$.
2. $4u_{xx} - 4u_{yy} - 2u_{zz} + u_y + u_z = 0$.
3. $u_{yy} - u_{xz} + u_x + u_y - u_z = 0$.
4. $u_{xx} + 2u_{xy} + 2u_{yy} + 2u_{yz} + 2u_{yy} + 2u_{zz} + 3u_y = 0$.
5. $u_{xx} + 2\sum_{k=1}^{n} u_{x_k x_k} - 2\sum_{k=1}^{n} x_k x_{k+1} = 0$.
6. $\sum_{k=1}^{n} u_{x_k x_k} + \sum_{i<k} u_{x_i x_k} = 0$.

Лекция 4. Постановка основных краевых задач для дифференциального уравнения второго порядка

§1. Классификация краевых задач

Как было показано в лекции 1, линейное уравнение 2-го порядка

$$\rho \frac{\partial^2 u}{\partial t^2} = \text{div}(p \text{ grad } u) - qu + F(x,t)$$

описывает процессы колебаний, уравнение

$$\rho \frac{\partial u}{\partial t} = \text{div}(p \text{ grad } u) - qu + F(x,t)$$

описывает процессы диффузии, а уравнение

$$-\text{div}(p \text{ grad } u) + qu = F(x)$$

спирационарные процессы.

Пусть $G \subset \mathbb{R}^n$ — область, где происходит процесс и S — ее граница. Таким образом, G — область задания уравнения (3). Областью задания уравнения...
и

В, А, Байков, А, В, Жигар Уравнения математической физики (1) и (2) будем считать цилиндр \(\Omega_T = G \times (0, T) \) высотой \(T \) и с основанием \(G \). Его граница состоит из боковой поверхности \(S \times (0, T) \) и двух оснований: нижнего \(\overline{G} \times \{0\} \) и верхнего \(\overline{G} \times \{T\} \) (Рис. 2).

Рис. 2.

Будем предполагать, что коэффициенты \(\rho, p \) и \(q \) уравнений (1) – (3) не зависят от времени \(t \); даже, в соответствии с их физическим смыслом, будем считать, что \(\rho(x) > 0 \), \(p(x) > 0 \), \(q(x) \geq 0 \), \(x \in \overline{G} \).

При этих предположениях уравнение колебаний (1) – гиперболического типа, уравнение диффузии (2) – параболического типа и стационарное уравнение (3) – эллиптического типа.

Далее чтобы полностью описать физический процесс, необходимо, кроме самого уравнения, описывающего этот процесс, задать начальное состояние этого процесса (начальные условия) и режим на границе той области, в которой происходит процесс (граничные условия),

Различают три типа задач для дифференциальных уравнений.

а) Задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область \(G \) совпадает со всем пространством \(\mathbb{R}^n \), граничные условия отсутствуют.

б) Краевая задача для уравнений эллиптического типа: задаются граничные условия на границе \(S \), начальные условия, естественно, отсутствуют.

в) Смешанная задача для уравнений гиперболического и параболического типов: задаются и начальные, и граничные условия, \(G \neq \mathbb{R}^n \).

Опишем подробнее постановку каждой из перечисленных краевых задач для рассмотриваемых уравнений (1) – (3).

§2. Задача Коши

Для уравнения (1) задача Коши становится следующим образом: найти функцию \(u(x, t) \) класса \(C^2(t > 0) \cap C^1(t \geq 0) \), удовлетворяющую уравнению (1) в полупространстве \(t > 0 \) и начальным условиям при \(t = 0 \):

\[
\begin{align*}
 u|_{t=0} &= u_0(x), \\
 \frac{\partial u}{\partial t}|_{t=0} &= u_1(x).
\end{align*}
\]

(4)

При этом необходимо

\[
F \in C(t > 0), \quad u_0 \in C^1(\mathbb{R}^n), \quad u_1 \in C(\mathbb{R}^n).
\]

Для уравнения диффузии (2) задача Коши становится так: найти функцию \(u(x, t) \) класса \(C^2(t > 0) \cap C(t \geq 0) \), удовлетворяющую уравнению (2) в полупространстве \(t > 0 \) и начальному условию при \(t = 0 \):

\[
\begin{align*}
 u|_{t=0} &= u_0(x),
\end{align*}
\]

(5)

При этом необходимо \(F \in C(t > 0), \quad u_0 \in C(\mathbb{R}^n) \).

Приведенная постановка задачи Коши логически следует следующему обобщению. Пусть дано дифференциальное уравнение 2-го порядка

\[
\frac{\partial^2 u}{\partial t^2} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} + \sum_{i=1}^{n} a_i \frac{\partial^2 u}{\partial x_i \partial t} + \Phi \left(x, t, u, \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_n}, \frac{\partial u}{\partial t} \right),
\]

(6)

кусочно-гладкая поверхность \(\Sigma : t = \sigma(x) \) и функции \(u_0 \) и \(u_1 \) на \(\Sigma \). Задача Коши для уравнения (6) состоит в нахождении в некоторой части области
§3. Краевая задача для уравнений эллиптического типа.
Смещенная задача

Краевая задача для уравнения (3) состоит в нахождении функции \(u(x) \) класса \(C^2(G) \cap C^1(\partial G) \), удовлетворяющей в области \(G \) уравнению (3) и граничному условию на \(S \) вида

\[
\alpha u + \beta \frac{\partial u}{\partial n} \bigg|_S = v,
\]

где \(\alpha, \beta \) и \(v \) — заданные непрерывные функции на \(S \), причем \(\alpha \geq 0, \beta \geq 0, \alpha + \beta > 0 \).

Выделяют следующие типы граничных условий (7):

Граничное условие I рода (\(\alpha = 1, \beta = 0 \))

\[
u \bigg|_S = u_0.
\]

Граничное условие II рода (\(\alpha = 0, \beta = 1 \))

\[
\frac{\partial u}{\partial n} \bigg|_S = u_1.
\]

Граничное условие III рода (\(\beta = 1, \alpha \geq 0 \))

\[
\frac{\partial u}{\partial n} + \alpha u \bigg|_S = u_2.
\]

Соответствующие краевые задачи называются краевыми задачами I, II и III рода.

Для уравнений Лагранжа и Пуассона краевая задача I рода

\[
\Delta u = -f, \quad u \bigg|_S = u_0
\]

называется задачей Дирихле; краевая задача II рода

\[
\Delta u = -f, \quad \frac{\partial u}{\partial n} \bigg|_S = u_1
\]

называется задачей Неймана.

Для уравнения колебаний (1) смешанная задача ставится следующим образом: найти функцию \(u(x,t) \) класса \(C^2(\Omega_x) \cap C^1(\partial \Omega_x) \), удовлетворяющую уравнению (1) в цилиндре \(\Omega_{x,t} \), начальным условием (4) при \(t = 0, x \in \Omega \) и граничному условию (7) при \(x \in \partial S, t \geq 0 \).

Аналогично для уравнения диффузии (2) смешанная задача ставится так: найти функцию \(u(x,t) \) класса \(C^2(\Omega_x) \cap C^1(\partial \Omega_x) \), удовлетворяющую уравнению (2) в \(\Omega_{x,t} \), начальному условию (5) и граничному условию (7).

§4. Корректность постановки задач математической физики.

Теорема Коши. Пример Адамара

Поскольку задачи математической физики описывают реальные физические процессы, то математическая постановка этих задач должна удовлетворять следующим требованиям:

а) решение должно существовать в каком-то классе функций \(M_1 \);

б) решение должно быть единственным в некотором классе функций \(M_2 \);

в) решение должно непрерывно зависеть от данных задачи (начальных и граничных данных, свободного члена, коэффициентов уравнения и т.д.).

Непрерывная зависимость решения \(u \) от данных задачи \(\tilde{u} \) обозначает следующее: пусть последовательность данных \(\tilde{u}_k, k = 1,2,3, \ldots \), в каком-то смысле стремится к \(\tilde{u} \) и \(\tilde{u}_k, k = 1,2,3, \ldots \), \(u \) — соответствующие решения задачи; тогда \(u_k \to u, k \to \infty \) в смысле сходимости, выбранной надлежащим образом.

Требование непрерывной зависимости решения обусловливается тем обстоятельством, что данные физической задачи, как правило, определяются...
из эксперимента, приближенно, и поэтому нужно быть уверенным в том, что решение задачи не будет существенно зависеть от погрешностей измерений.

Задача, удовлетворяющая перечисленным требованиям а–с, называется корректно поставленной, а соответствующее множество функций $M_1 \cap M_2$ — классом корректности.

Наличие корректных постановок задач математической физики и методов построения их решений и составляет основное содержание предмета уравнений математической физики.

В этом параграфе мы выделим довольно общий класс задач Коши, для которых решение существует и единствено. А именно, рассмотрим следующую систему дифференциальных уравнений с N независимыми функциями u_1, u_2, \ldots, u_N:

$$
\frac{\partial^k u_i}{\partial t^k} = \Phi_i \left(x_1, u_1, u_2, \ldots, u_N, \frac{\partial^{\alpha_0 + \alpha_1 + \ldots + \alpha_n} u_j}{\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}} \right),
$$

(8)

$i = 1, 2, \ldots, N$. Здесь правые части Φ_i не содержат произвольные поряда выше k_j и произвольные по t порядка выше $k_j - 1$, т.е.

$$
\alpha_0 + \alpha_1 + \ldots + \alpha_n \leq k_j, \quad \alpha_0 \leq k_j - 1.
$$

Для системы уравнений (8) поставленную задачу Коши: найти решение u_1, u_2, \ldots, u_N этой системы, удовлетворяющее начальным условиям при $t = t_0$:

$$
\left. \frac{\partial^k u_i}{\partial t^k} \right|_{t=t_0} = \varphi_i(x), \quad k = 0, 1, \ldots, k_j - 1; \quad i = 1, 2, \ldots, N,
$$

(9)

где $\varphi_i(x)$ — заданные функции в некоторой области $G \subset \mathbb{R}^n$.

Теорема Ковалевской. Если все функции $\varphi_i(x)$ аналитичны в некоторой окрестности точки x_0 и все функции $\Phi_i \left(x_1, u_1, u_2, \ldots, u_N, \frac{\partial^{\alpha_0 + \alpha_1 + \ldots + \alpha_n} u_j}{\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}} \right)$ аналитичны в окрестности точки (x_0, t_0) и притом единственное в классе аналитических функций.

Для доказательства этой теоремы решение ищется в виде

$$
u_i(x, t) = \sum_{\alpha_0=0}^{\infty} \cdots \sum_{\alpha_n=0}^{\infty} \frac{\partial^{\alpha_0 + \alpha_1 + \ldots + \alpha_n} u_i}{\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}} (t - t_0)^{\alpha_0} (x_1 - x_0)^{\alpha_1} \cdots (x_n - x_0)^{\alpha_n},
$$

(10)

Из начальных условий (9) и из уравнений (8) последовательно определяются все производные $\frac{\partial^{\alpha_0 + \alpha_1 + \ldots + \alpha_n} u_i}{\partial x_1^{\alpha_1} \ldots \partial x_n^{\alpha_n}}$ в точке (x_0, t_0). Равномерная сходимость рядов (10) в окрестности точки (x_0, t_0) доказывается методом макорана. Единственность построенного решения в классе аналитических функций следует из теоремы единственности для аналитических функций.

В заключение приведем пример, показывающий, что может возникнуть непрерывная зависимость решения от начальных данных. Этот пример построен Адяковым.

Решение задачи Коши:

$$
\frac{\partial^2 u}{\partial t^2} + \frac{\partial u}{\partial x^2} = 0, \quad u |_{t=0} = 0, \quad \left. \frac{\partial u}{\partial t} \right|_{t=0} = -\frac{1}{k} \sin kx
$$

есть $u_k(x, t) = \frac{\sin kx}{k^2} \sin kx$. Если $k \to \infty$, то $\frac{1}{k} \sin kx \to 0$; тем не менее при $x \neq j\pi, \; j = 0, \pm 1, \ldots$ $u_k(x, t)$ не стремится к нулю при $k \to \infty$. Таким образом, задача Коши для уравнения Лапласа поставлена некорректно.
Задачи

1. Поставить краевую задачу о малых поперечных колебаниях струны в среде с сопротивлением, пропорциональным скорости, предполагая, что концы струны закреплены жестко.

Ответ: \(\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} - \rho \frac{\partial u}{\partial t} \); \(u(x,0) = \varphi(x) \), \(\frac{\partial u(x,0)}{\partial t} = \psi(x) \), \(u(0,t) = 0 \), \(u(l,t) = 0 \).

2. Поставить краевую задачу о поперечных колебаниях тяжелой струны относительно вертикального положения равновесия, если ее верхний конец \((x = 0) \) жестко закреплен, а нижний свободен.

Ответ: \(\frac{1}{g} \frac{\partial^2 u}{\partial t^2} = \frac{\partial u}{\partial x} \left[(y-x) \frac{\partial u}{\partial x} \right] \); \(u(x,0) = \varphi(x) \), \(\frac{\partial u(x,0)}{\partial t} = \psi(x) \), \(u(0,t) = 0 \), \(|u(l,t)| \leq M \).

3. Рассмотреть задачу 2 в предположении, что струна вращается с угловой скоростью \(\omega = \text{const} \) относительно вертикального положения равновесия.

Ответ: \(\frac{\partial^2 u}{\partial t^2} = g \frac{\partial u}{\partial x} \left[(y-x) \frac{\partial u}{\partial x} \right] + \omega^2 u \), дополнительные условия задачи 2.

4. На боковой поверхности тонкого стержня происходит конвективный теплообмен по закону Ньютона со средней температурой которой \(u_r = \varphi(t) \). Поставить краевую задачу об определении температуры стержня, если на одном конце его поддерживается температура \(f_1(t) \), а на другом полагается тепловой поток \(q(t) \).

Ответ: \(c_p \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - h[u - \varphi(t)] \); \(u(x,0) = f(x) \), \(u(0,t) = f_1(t) \), \(k u_x(l,t) = q(t) \).

5. Поставить краевую задачу о нагревании полубесконечного стержня, конец которого горит, причем фронт горения распространяется со скоростью \(v \) и имеет температуру \(\varphi(t) \).

Ответ: \(c_p \frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \left[k \frac{\partial u}{\partial x} \right] \); \(u(x,0) = 0 \), \(u(l,t) = \varphi(t) \).

6. Поставить краевую задачу об оставании тонкого круглого кольца, на поверхности которого происходит конвективный теплообмен по закону Ньютона со средней температурой \(u_0 \). Неравномерность распределения температуры по толщине пренебрегать.

Ответ: \(\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial \theta^2} - h[u - u_0] \); \(u(0,0) = \varphi(\theta) \), \(u(\theta + 2 \pi, t) = u(\theta, t) \).

7. Поставить краевую задачу о стационарном распределении температуры в тонкой прямоугольной пластине \(OACB \) со сторонами \(OA = a, OB = b \), если:

а) на боковых сторонах пластины поддерживаются заданые температуры;
б) на сторонах \(OA \) и \(OB \) заданы тепловые потоки, а стороны \(BC \) и \(AC \) теплоизолированы.

8. На плоскую мембрану, ограниченную кривой \(L \), действует стационарная поперечная нагрузка с плотностью \(f(x, y) \). Поставить краевую задачу об охлаждении точек мембраны от плоскости, если:

а) мембрана закреплена на краю;
б) край мембраны свободен;
в) край мембраны закреплен упрото.

9. Поставить краевую задачу о стационарном распределении температуры внешних точек полусферы, если сферическая поверхность поддерживается при заданной температуре \(f(\varphi, \theta) \), а основание полусферы — при нулевой температуре.
II. Гиперболические уравнения

Лекция 5. Уравнение колебаний струны и его решение методом Даламбера

§1. Формула Даламбера

Изучение методов построения решений краевых задач для уравнений гиперболического типа мы начинаем с задачи Коши для уравнения свободных колебаний струны:

\[
\begin{aligned}
\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} &= 0, \\
u(x,0) &= \varphi(x), \\
\frac{\partial u(x,0)}{\partial t} &= \psi(x),
\end{aligned}
\]

(1)

(2)

Преобразуем уравнение (1) к каноническому виду, содержащему смешанную произвольную. Уравнение характеризуется

\[
\left[\frac{dx}{dt} \right]^2 - a^2 = 0
\]

рассчитывается на два уравнения

\[
\frac{dx}{dt} - a = 0, \quad \frac{dx}{dt} + a = 0,
\]

интеграми которых являются

\[
x - at = C_1, \quad x + at = C_2.
\]

Теперь, полагая

\[
\xi = x + at, \quad \eta = x - at,
\]

уравнение (1) преобразуется к виду

\[
\frac{\partial^2 u}{\partial \xi \partial \eta} = 0,
\]

(3)

Общее решение уравнения (3) дается формулой

\[
u = f_1(\xi) + f_2(\eta),
\]

где \(f_1(\xi) \) и \(f_2(\eta) \) — произвольные функции. Возвращаясь к переменным \(x, t \), получаем:

\[
u = f_1(x + at) + f_2(x - at).
\]

(4)

Полученное решение зависит от двух произвольных функций \(f_1 \) и \(f_2 \).

Оно называется решением Даламбера.

Далее подставим формулу (4) в (2), будем иметь

\[
f_1(x) + f_2(x) = \varphi(x),
\]

(5)

\[
a f_1(x) - a f_2(x) = \psi(x),
\]

(6)

откуда, интегрируя второе равенство (6), получим

\[
f_1(x) - f_2(x) = \frac{1}{a} \int_{x_0}^{x} \psi(y) \, dy + C,
\]

(7)

где \(x_0 \) и \(C \) — постоянные. Из формул (5) и (7) находим

\[
f_1(x) = \frac{1}{2} \left[\varphi(x) + \frac{1}{a} \int_{x_0}^{x} \psi(y) \, dy + C \right],
\]

\[
f_2(x) = \frac{1}{2} \left[\varphi(x) - \frac{1}{a} \int_{x_0}^{x} \psi(y) \, dy - C \right].
\]

При этом, учитывая (4), имеем

\[
u(x,t) = \frac{1}{2} \left[\varphi(x + at) + \frac{1}{a} \int_{x_0}^{x+at} \psi(y) \, dy + \varphi(x - at) - \frac{1}{a} \int_{x_0}^{x-at} \psi(y) \, dy - C \right],
\]
Формула (8) называется формулой Даламбера.

Напомним, что формула (8) удовлетворяет уравнению (1) и начальным условиям (2) при условии, что \(\phi(x) \in C^2(\mathbb{R}) \), а \(\psi(x) \in C^1(\mathbb{R}) \). Таким образом, изложеный метод доказывает как единственность, так и существование решения поставленной задачи.

§2. Неоднородное уравнение. Устойчивость решений

Рассмотрим задачу Коши для неоднородного уравнения колебаний:

\[
\frac{\partial^2 u}{\partial t^2} - a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad x \in \mathbb{R}, \quad t > 0,
\]

\[
u(x,0) = \phi(x) , \quad \frac{\partial \nu(x,0)}{\partial t} = \psi(x) , \quad x \in \mathbb{R}.
\]

Легко проверить, что решение задачи (9), (10) \(\nu \) представимо в форме

\[
\nu = u + \omega,
\]

где \(u \) - решение задачи Коши (1), (2), а \(\omega \) - решение следующей задачи:

\[
\frac{\partial^2 \omega}{\partial t^2} - a^2 \frac{\partial^2 \omega}{\partial x^2} + f(x,t), \quad x \in \mathbb{R}, \quad t > 0,
\]

\[
\omega(x,0) = 0, \quad \frac{\partial \omega(x,0)}{\partial t} = 0, \quad x \in \mathbb{R}.
\]

Пусть \(W(x,t;\tau) \) - решение вспомогательной задачи Коши:

\[
\frac{\partial^2 W}{\partial t^2} - a^2 \frac{\partial^2 W}{\partial x^2}, \quad x \in \mathbb{R}, \quad t > \tau,
\]

\[
W(x,t;\tau) \big|_{t=\tau} = 0, \quad \frac{\partial W(x,t;\tau)}{\partial t} \big|_{t=\tau} = f(x,\tau).
\]

Покажем, что решение \(\nu(x,t) \) задачи (12) определяется формулой

\[
\nu(x,t) = \int_0^t W(x,t;\tau) \, d\tau,
\]

где \(W(x,t;\tau) \) - решение задачи (13). Действительно

\[
\nu(x,0) = 0, \quad \frac{\partial \nu(x,t)}{\partial t} = W(x,t,t) + \int_0^t \frac{\partial W(x,t;\tau)}{\partial t} \, d\tau
\]

и следовательно, \(\frac{\partial \nu(x,t)}{\partial t} = 0 \) в силу начального условия (13). И, наконец,

\[
\frac{\partial^2 \nu}{\partial t^2} - a^2 \frac{\partial^2 \nu}{\partial x^2} = \frac{\partial^2 W(x,t;\tau)}{\partial t^2} \big|_{t=\tau} + \int_0^t \left(\frac{\partial^2 W(x,t;\tau)}{\partial t^2} - a^2 \frac{\partial^2 W(x,t;\tau)}{\partial x^2} \right) \, d\tau = f(x,t).
\]

Решение задачи (13) дается формулой Даламбера:

\[
W(x,t;\tau) = \frac{1}{2a} \int f(\xi,t) \, d\xi.
\]

Теперь, используя формулы (8), (11), (14) и (15), находим, что решение исходной задачи (9), (10) удовлетворяет формулой:

\[
u(x,t) = \phi(x+a\tau) + \phi(x-a\tau) - \frac{1}{a^2} \int f(x) \, dy + \frac{1}{2a} \int f(\xi,\tau) \, d\xi,
\]

Покажем, что задачи (1), (2) непрерывно зависят от начальных данных (устойчиво). А именно: каков бы ни был промежуток времени \([0,t_0]\) и каков бы ни была степень точности \(\varepsilon \), найдется такое \(\delta = \delta(\varepsilon,t_0) \), что всякое два решения уравнения (1) \(u_1(x,t) \) и \(u_2(x,t) \) в течение промежутка времени \(t_0 \) будут различаться между собой меньше чем на \(\varepsilon \):

\[|u_1(x,t) - u_2(x,t)| < \varepsilon, \quad 0 \leq t \leq t_0,\]

если только начальные значения

\[\begin{cases}
u_1(x,0) = \phi_1(x), & \nu_2(x,0) = \phi_2(x),
\end{cases}\]

и

\[\begin{cases}rac{\partial \nu_1(x,0)}{\partial t} = \psi_1(x), & \frac{\partial \nu_2(x,0)}{\partial t} = \psi_2(x)
\end{cases}\]

отличаются друг от друга меньше чем на \(\delta \):

\[|\phi_1(x) - \phi_2(x)| < \delta, \quad |\psi_1(x) - \psi_2(x)| < \delta, \quad \delta = \delta(\varepsilon,t_0).\]
Действительно функции $u_1(x,t)$ и $u_2(x,t)$ связаны со своими начальными данными формулой (8), поэтому имеем
\[
|u_1(x,t) - u_2(x,t)| \leq \frac{1}{2} |\phi_1(x+at) - \phi_2(x+at)| + \frac{1}{2} |\phi_1(x-at) - \phi_2(x-at)| + \\
\frac{1}{2a} \int |\psi_1(y) - \psi_2(y)| \, dy.
\]

Откуда, в силу неравенств (16) получаем:
\[
|u_1(x,t) - u_2(x,t)| \leq \frac{\delta}{2} + \frac{\delta}{2} + \frac{1}{2} \delta \cdot 2at \leq \delta (1 + t_0),
\]
что и доказывает наше утверждение, если положить
\[
\delta = \frac{\varepsilon}{1 + t_0}.
\]

§ 3. Метод продолжений

1. Полуограниченная прямая. Рассмотрим задачу о распространении волн на полуограниченной прямой $x \geq 0$. Эта задача имеет большое значение при изучении процессов отражения волн от конца и ставится следующим образом:

найти решение уравнений колебаний
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}
\]
при $0 < x < \infty, \ t > 0$,
(17)
удовлетворяющее граничному условию
\[
u(0,t) = \mu(t), \quad t \geq 0
\]
или
\[
\frac{\partial u(0,t)}{\partial x} = v(t), \quad t \geq 0
\]
(19)
и начальным условиям
\[
u(x,0) = \phi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x), \quad 0 \leq x < \infty.
\]
(20)

Исследуем сначала краевую задачу (17), (18), (20). Решение этой задачи можно представить так:
\[
u(x,t) = \nu(x,t) + w(x,t),
\]
(21)
где функции $v(x,t)$ и $w(x,t)$ — решения следующих задач
\[
\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial x^2}, \quad 0 < x < \infty, \ t > 0,
\]
(22)
\[
u(0,t) = 0, \quad t \geq 0,
\]
(23)
\[
\nu(x,0) = \phi(x), \quad \frac{\partial \nu(x,0)}{\partial t} = \psi(x), \quad 0 \leq x < \infty
\]
(24)
и
\[
\frac{\partial^2 w}{\partial t^2} = a^2 \frac{\partial^2 w}{\partial x^2}, \quad 0 < x < \infty, \ t > 0,
\]
(25)
\[
w(0,t) = \mu(t), \quad t \geq 0,
\]
(26)
\[
w(x,0) = 0, \quad \frac{\partial w(x,0)}{\partial t} = 0, \quad 0 \leq x < \infty
\]
(27)
соответственно.

Нетрудно проверить, что функция
\[
u(x,t) = \frac{\phi(x+at) + \phi(x-at)}{2} + \frac{1}{2a} \int_{-at}^{at} \psi(y) \, dy,
\]
(28)
где $\phi(x)$ и $\Psi(x)$ — четные продолжения $\phi(x)$ и $\Psi(x)$ удовлетворяют условиям (22)—(24). Последнюю формулу можно записать так:
\[
u(x,t) =
\left\{
\begin{array}{ll}
\frac{\phi(x+at) + \phi(x-at)}{2} + \frac{1}{2a} \int_{-at}^{at} \psi(y) \, dy, & \text{для } x > at, \ t > 0, \\
\frac{\phi(x+at) - \phi(x-at)}{2} + \frac{1}{2a} \int_{-at}^{at} \psi(y) \, dy, & \text{для } at > x, \ t > 0.
\end{array}
\right.
\]
(28)

Для решения задачи (25)—(27) будем исходить из формулы
\[
w(x,t) = f(x+at) = \mu(t),
\]
(29)
Определим функцию f из граничного условия
\[
w(0,t) = f(-at) = \mu(t),
\]
(30)
откуда

\[f(z) = \mu \left(\frac{z}{a} \right), \]

tак, что

\[w(x,t) = \mu \left(\frac{x-at}{a} \right) = \mu \left(t - \frac{x}{a} \right). \]

Однако эта функция определена лишь в области \(x - at \leq 0 \), так как \(\mu(t) \) определена для \(t \geq 0 \). Чтобы найти \(w(x,t) \) для всех значений аргументов, продолжим \(\mu(t) \) на отрицательные значения \(t \), полагая \(\mu(t) = 0 \) для \(t < 0 \). Тогда функция

\[w(x,t) = \mu \left(t - \frac{x}{a} \right) \tag{29} \]

будет определена для всех значений аргументов, и будет удовлетворять нулевым начальным условиям.

Теперь формулы (21), (28) и (29) дают решение исходной задачи (17), (18), (20):

\[
\begin{align*}
 u(x,t) &= \begin{cases}
 \frac{\phi(x+at)+\phi(x-at)}{2} + \frac{1}{2\alpha_{\text{neu}}} \int_{-\infty}^{\infty} \psi(y) \, dy, & \text{для } at < x, \\
 \mu \left(t - \frac{x}{a} \right) \frac{\phi(x+at)-\phi(x-at)}{2} + \frac{1}{2\alpha_{\text{neu}}} \int_{-\infty}^{\infty} \psi(y) \, dy, & \text{для } at > x.
 \end{cases}
\end{align*}
\]

Аналогично может быть построено решение задачи (17), (19), (20).

Отметим, что для этого начальное динамное необходимо выполнять чётным образом.

2. Задача для ограниченного отрезка. Здесь мы на примере следующей задачи:

\[
\frac{\partial^2 u}{\partial t^2} = \alpha^2 \frac{\partial^2 u}{\partial x^2} \quad \text{при } 0 < x < 1, \quad t > 0, \tag{30}
\]

\[u(x,0) = \phi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x), \quad 0 \leq x \leq 1, \tag{31}\]

\[u(0,t) = 0, \quad u(l,t) = 0, \quad t \geq 0 \tag{32}\]

покажем, как строить методом продолжения решения краевых задач для уравнения колебаний.

Будем искать решение задачи в виде

\[u(x,t) = \frac{\Phi(x+at) + \Phi(x-at)}{2} + \frac{1}{2\alpha_{\text{neu}}} \int_{-\infty}^{\infty} \psi(y) \, dy, \tag{33}\]

где функции \(\Phi \) и \(\psi \), подлежащие определению. Начальные условия (31) определяют \(\Phi \) и \(\psi \) на интервале \((0,l)\):

\[\Phi(x) = \phi(x), \quad \psi(x) = \psi(x). \]

Чтобы удовлетворить нулевым граничным условиям, наложим на функции \(\Phi(x) \) и \(\psi(x) \) требования нечетности относительно точек \(x = 0 \) и \(x = l \):

\[\Phi(x) = -\Phi(-x), \quad \Phi(x) = -\Phi(2l - x), \]

\[\psi(x) = -\psi(-x), \quad \psi(x) = -\psi(2l - x), \]

т.е. \(\Phi \) и \(\psi \) являются периодическими функциями с периодом \(2l \). Нетрудно видеть, что условия нечетности относительно начала координат и условия периодичности определяют \(\Phi(x) \) и \(\psi(x) \) на всей прямой. Подставляя их в формулу (33), получаем решение задачи (30) – (32).

Задачи

1. Бесконечная струна возбуждена начальным отклонением, отличным от нуля лишь на интервале \((c,2c)\), имеющим форму ломаной с вершинами в точках \(c, \frac{3}{2}c, 2c \). Построить (начертить) профиль струны для моментов времени \(t_k = \frac{c^2}{2\alpha}, \quad k = 1,2,3 \).

2. Бесконечной струне сообщена только на отрезке \(-c \leq x \leq c\) поперечная начальная скорость \(v_0 = \text{const} \). Решить задачу о колебаниях этой
§ 1. Уравнение свободных колебаний струны

И так, рассматривается следующая задача: найти функцию $u(x,t)$ такую, что

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < l, \quad t > 0,$$

$$u(0,t) = 0, \quad u(l,t) = 0, \quad t \geq 0,$$

$$u(x,0) = \varphi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x).$$

Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти некое решение.

Поставим основную вспомогательную задачу:

Найти решение уравнения (1), удовлетворяющее однородно-граничным условиям (2) и представимое в виде

$$u(x,t) = X(x)T(t).$$

Подставим предлагаемую форму решения (4) в уравнение (1), получим:

$$T''X = a^2 TX''$$

или, после деления на TX,

$$\frac{T''}{T} = a^2 \frac{X''}{X}.$$

Правая часть равенства (5) является функцией только переменного x, а левая — только t, поэтому правая и левая части равенства (5) при изменении своих аргументов сохраняют постоянное значение. Это значение удобно обозначить через $-\lambda a^2$, т.е.

$$\frac{T''}{T} = a^2 \frac{X''}{X} = -\lambda a^2.$$

Лекция 6. Метод разделения переменных на примере уравнения колебаний струны

Метод разделения переменных или метод Фурье является одним из наиболее распространенных методов решения уравнений с частными производными. Использование этого метода мы провели для задачи о колебаниях струны, закрепленной на концах.
Из соотношения (6) получаем обыкновенные дифференциальные уравнения для определения функций $X(x)$ и $T(t)$:

$$X''(x)+\lambda X(x)=0, \quad (7)$$

$$T''(t)+a^2\lambda T(t)=0. \quad (8)$$

Границные условия (2) дают:

$$u(0,t)=X(0)T(t)=0, \quad u'(\pi,t)=X'(\pi)T(t)=0.$$

Отсюда следует, что функция $X(x)$ должна удовлетворять дополнительным условиям

$$X(0)=X(\pi)=0. \quad (9)$$

Таким образом, мы приходим к простейшей задаче о собственных значениях.

Найти те значения параметра λ, при которых существуют нетривиальные решения задачи (7), (9).

Формулированную таким образом задачу часто называют задачей Штурма–Лиувилла.

Рассмотрим отдельно случаи, когда параметр λ отрицателен, равен нулю или положителен.

1. При $\lambda < 0$ задача не имеет нетривиальных решений. Действительно, общее решение уравнения (7) имеет вид

$$X(x)=c_1e^{\sqrt{\lambda}x}+c_2e^{-\sqrt{\lambda}x}.$$

Границные условия (9) дают

$$c_1+c_2=0, \quad c_1e^{\alpha x}+c_2e^{-\alpha x}, \quad \alpha=\sqrt{\lambda},$$

т. е.

$$c_1=-c_2 \quad и \quad c_1(e^\alpha-e^{-\alpha})=0.$$

Далее так как $\alpha>0$, то $e^\alpha-e^{-\alpha}\neq 0$, поэтому

$$c_1=0, \quad c_2=0$$

и, следовательно, $X(x)$ ≡ 0.

2. При $\lambda = 0$ также не существует нетривиальных решений. Действительно, в этом случае общее решение уравнения (7) имеет вид

$$X(x)=c_1x+c_2.$$

Границные условия (9) дают

$$c_2=0, \quad c_1=0, \quad \text{т.е.} \quad c_1=0, \quad \text{и следовательно,} \quad X(x)\equiv 0.$$

3. При $\lambda > 0$ общее решение уравнения (7) может быть записано в виде

$$X(x)=c_1\cos\sqrt{\lambda}x+c_2\sin\sqrt{\lambda}x.$$

Границные условия дают:

$$c_1=0, \quad c_2\sin\sqrt{\lambda}x=0.$$

Если $X(x)$ на равно тождественно нullo, то $c_2\neq 0$, поэтому

$$\sin\sqrt{\lambda}x=0,$$

или

$$\sqrt{\lambda}=\frac{n\pi}{l},$$

где n — любое целое число. Следовательно, нетривиальные решения задачи (7), (9) возможны лишь при значениях

$$\lambda = \lambda_n = \left(\frac{n\pi}{l}\right)^2.$$

а именно, существуют ненулевые решения

$$X_n(x)=\sin\frac{n\pi}{l}x.$$

Этими значениями λ_n соответствуют решения уравнения (8)

$$T_n(t)A_n\cos\frac{n\pi}{l}at+B_n\sin\frac{n\pi}{l}at,$$

где A_n и B_n произвольные постоянные.

Возвращаясь к задаче (1)–(3), заключаем, что функции

$$u_n(x,t)=X_n(x)T_n(t)=\left[A_n\cos\frac{n\pi}{l}at+B_n\sin\frac{n\pi}{l}at\right]\sin\frac{n\pi}{l}x$$
§2. Неоднородное уравнение. Общая первая краевая задача

Рассмотрим неоднородное уравнение колебаний

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad 0 < x < l, \quad t > 0 \tag{14}$$

с начальными условиями

$$u(x,0) = \phi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x), \quad 0 \leq x \leq l, \tag{15}$$

и однородными граничными условиями

$$u(0,t) = 0, \quad u(l,t) = 0. \tag{16}$$

Будем искать решение задачи в виде разложения в ряд Фурье $n = 0, x$

$$u(x,t) = \sum_{n=0}^{\infty} a_n(t) \sin \frac{n\pi x}{l}, \tag{17}$$

рассматривая при этом t как параметр. Представим функцию $f(x,t)$ в виде ряда Фурье:

$$f(x,t) = \sum_{n=0}^{\infty} f_n(t) \sin \frac{n\pi x}{l}, \quad f_n(t) = \frac{2}{l} \int_0^l f(x,t) \sin \frac{n\pi x}{l} dx. \tag{18}$$

Полагая ряд (17) и (18) в исходное уравнение (14)

$$\sum_{n=0}^{\infty} \left[a_n(t) + \frac{a^2}{l^2} n^2 \right] a_n(t) \sin \frac{n\pi x}{l} = 0,$$

ввиду, что оно будет удовлетворено, если все коэффициенты разложения равны

$$u_n(t) = \frac{a^2}{l^2} n^2 u_n(t) = f_n(t). \tag{19}$$

Для определения $u_n(t)$ мы получили обыкновенное дифференциальное уравнение с постоянными коэффициентами. Далее начальные условия (15) дают:

$$\frac{\partial u_n(0)}{\partial t} + a^2 \frac{a_n(0)}{l} = f_n(t).$$
и, следовательно,

\[u_0(0) = \frac{2}{l} \int_0^l \phi(\xi) \sin \frac{\pi \xi}{l} \, d\xi, \quad u_0'(0) = \frac{2}{l} \int_0^l \phi(\xi) \cos \frac{\pi \xi}{l} \, d\xi. \]

(20)

\[\phi_0 = u_0(0), \quad \psi_0 = u_0'(0). \]

Условия (20) полностью определывают решение уравнения (19), а именно

\[u_0(t) = \phi_0 \cos \frac{n \pi a}{l} t + \frac{1}{n \pi a} \psi_0 \sin \frac{n \pi a}{l} t + \int_0^t f_0(\tau) \sin \frac{n \pi a}{l} (t - \tau) \, d\tau. \]

(21)

Таким образом, искомое решение задачи (14)-(16) согласно формулам (17), (21) записывается в виде

\[u(x,t) = \sum_{n=1}^{\infty} \left\{ \phi_n \cos \frac{n \pi a}{l} t + \frac{1}{n \pi a} \psi_n \sin \frac{n \pi a}{l} t + \int_0^t f_n(\tau) \sin \frac{n \pi a}{l} (t - \tau) \, d\tau \right\} \sin \frac{n \pi a}{l} x, \]

где величины \(\phi_n, \psi_n \) и \(f_n(\tau) \) вычисляются посредством (18) и (20).

И в заключение мы покажем, как обобщенную краевую задачу для уравнения колебаний:

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad 0 < x < l, \quad t > 0, \]

(22)

\[u(x,0) = \phi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x), \quad 0 \leq x \leq l, \]

(23)

\[u(0,t) = \mu_1(t), \quad u(l,t) = \mu_2(t) \]

(24)

привести к краевой задаче с однородными граничными условиями (14)-(16).

Для этого построим функцию \(V(x,t) \) для которой выполняются граничные условия (24). Например, возьмем функцию, линейный относительно переменной \(x \)

\[V(x,t) = A(t)x + B(t). \]

Условия (24) дают

\[V(0,t) = \mu_1(t) = B(t), \]

\[V(l,t) = \mu_2(t) = A(t)l + B(t). \]

Следовательно

\[V(x,t) = \mu_1(t) + \frac{x}{l} \left[\mu_2(t) - \mu_1(t) \right]. \]

Теперь введем новую неизвестную функцию \(u(x,t) \), полагая

\[u(x,t) = V(x,t) + u(x,t). \]

(25)

Далее подставляя функцию (25) в (22) – (24), получаем краевую задачу для определения \(u(x,t) \):

\[\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2} + F(x,t), \quad 0 < x < l, \quad t > 0, \]

\[u(x,0) = \Phi(x), \quad \frac{\partial u(x,0)}{\partial t} = \psi(x), \quad 0 \leq x \leq l, \]

\[u(0,t) = 0, \quad u(l,t) = 0. \]

Здесь

\[\Phi(x) = \phi(x) - \mu_1(0) = \frac{x}{l} \left[\mu_2(0) - \mu_1(0) \right], \quad \Psi(x) = \psi(x) - \mu_1'(0) = \frac{x}{l} \left[\mu_2'(0) - \mu_1'(0) \right], \]

\[F(x,t) = f(x,t) - \mu_1'(t) = \frac{x}{l} \left[\mu_2'(t) - \mu_1'(t) \right]. \]

Задачи

1. Решить следующие смешанные задачи:
 а) \(u_{tt} = u_{xx}, \quad 0 < x < l; \quad u(0,t) = 0, \quad u(l,t) = 0; \quad u|_{x=0} = u|_{x=l} = 0; \)
 б) \(u_{tt} = u_{xx}, \quad 0 < x < l; \quad u(0,t) = t, \quad u(l,t) = t + 1; \quad u|_{x=0} = u|_{x=l} = 2; \quad u|_{x=0} = x + 1, \quad u|_{x=l} = 0. \)

2. Решить следующие смешанные задачи:
 а) \(u_t = u_{xx} - 4u, \quad 0 < x < l; \quad u(0,t) = u(l,t) = 0; \quad u|_{x=0} = u|_{x=l} = x^2 - x; \)
 \[u_t|_{x=0} = 0; \]
 б) \(u_t + 2u = u_{xx}, \quad 0 < x < \pi; \quad u(0,t) = u(\pi,t) = 0; \quad u|_{x=0} = \pi x - x_1, \quad u|_{x=0} = 0. \)
Лекция 7. Метод Римана

§ 1. Задача Коши и ее решение по методу Римана

Рассмотрим уравнение

\[L(u) = \frac{\partial^2 u}{\partial x \partial y} + a(x, y) \frac{\partial u}{\partial x} + b(x, y) \frac{\partial u}{\partial y} + c(x, y) u = f(x, y) \] (1)

К такому виду, как мы видели, приводится любое линейное гиперболическое уравнение с двумя независимыми переменными.

Пусть на плоскости \(x, y \) задана кривая \(AB \), которая пересекается не более чем в одной точке с прямыми, параллельными осям координат и на ней заданы две функции \(\Phi \) и \(\Psi \).
Интегрируя обе части тождества (4) по области Ω и пользуясь известной формулой Грина, получим

$$
\int_{\Omega} \left[(\partial u + u u_{x} + 2 b u v) \right] dx dy = \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial y} + 2 b u v \right) dx + \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial y} - u \frac{\partial u}{\partial x} + 2 a u v \right) dy,
$$

где контур γ — граница области Ω — состоит из трех частей: характеристики QM и MP и дуги PQ.

Вычислим интеграл взятый вдоль характеристик QM к MP.

Имеем

$$
\frac{1}{2} \int_{QM} \left[\left(u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial y} + 2 b u v \right) \right] dx + \frac{1}{2} \int_{MP} \left[\left(u \frac{\partial u}{\partial y} - u \frac{\partial u}{\partial x} + 2 a u v \right) \right] dy = J,
$$

так как вдоль QM меняется только x, а вдоль MP y.

Далее так как

$$
u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial x} = 2 u\left(b u - \frac{\partial u}{\partial x} \right),
$$

и

$$
u \frac{\partial u}{\partial y} - u \frac{\partial u}{\partial y} = 2 a u \left(a u - \frac{\partial u}{\partial y} \right),
$$

то выражение J представимо следующим образом:

$$
J = \frac{1}{2} (u v)_{q} - \frac{1}{2} (u v)_{m} - \int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx + \frac{1}{2} (u v)_{p} - \frac{1}{2} (u v)_{m} + \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy.
$$

Теперь, учитывая формулы (6), (7), из (5) получаем следующее соотношение

$$
(u v)_{M} = \frac{(u v)_{p} + (u v)_{Q}}{2} - \int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx + \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy + \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial y} + 2 b u v \right) dx + \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial y} - u \frac{\partial u}{\partial x} + 2 a u v \right) dy - \int_{\Omega} \left(v L(u) - u L'(v) \right) dx dy.
$$

Пусть теперь u — решение задачи Коши (1), (2), а v — какое-нибудь решение однородного сопряженного уравнения (3). Тогда формула (8) может быть переписана следующим образом:

$$
(u v)_{M} = \frac{(u v)_{p} + (u v)_{Q}}{2} - \int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx + \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy + \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial x} - u \frac{\partial u}{\partial y} + 2 b u v \right) dx + \frac{1}{2} \int_{\gamma} \left(u \frac{\partial u}{\partial y} - u \frac{\partial u}{\partial x} + 2 a u v \right) dy - \int_{\Omega} f dx dy.
$$

Рассматривая правую часть равенства (9), мы видим, что в интегралы

$$
\int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx, \quad \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy
$$

входят неизвестные значения u, так как мы не знаем решения u на характеристиках QM и MP.

Следуя идеи Римана, исключив из формулы (9) эти неизвестные члены путем выбора специального решения u сопряженного уравнения, а именно, возвыся такое решение уравнения (3), которое удовлетворяло бы следующим трем условиям:

1) $\frac{\partial u}{\partial x} - b u = 0$ на характеристике QM,

2) $\frac{\partial u}{\partial y} - a u = 0$ на характеристике MP,

3) $u = 1$ в точке M.

Тогда формула (9) принимает следующий вид:

$$
(u v)_{M} = \int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx - \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy
$$

или

$$
(u v)_{M} = \frac{1}{2} (u v)_{p} - \frac{1}{2} (u v)_{Q} - \int_{QM} \left(b u - \frac{\partial u}{\partial x} \right) dx + \frac{1}{2} (u v)_{p} - \frac{1}{2} (u v)_{M} + \int_{MP} \left(a u - \frac{\partial u}{\partial y} \right) dy.
$$
Тогда интегралы (10) будут равняться нулю, и равенство (9) переходит в формулу Римана

\[U(M) = \frac{(\alpha \chi)_p + (\alpha \chi)_q}{2} + \frac{1}{2} \int \left[\frac{\partial u}{\partial x} - u \frac{\partial u}{\partial x} + 2u \nu \right] dx = \int \left[\frac{\partial u}{\partial y} - u \frac{\partial u}{\partial y} + 2u \nu \right] \phi - \int_\Omega \phi \left(\frac{\partial u}{\partial x} \right) dxdy, \]

которая и дает решение задачи Коши, так как выражения, стоящие под знаками интеграла вдоль \(OP \), содержат функции, известные на кривой \(AB \). В самом деле, функция \(u \) была определена выше, а функции \(u_x \) и \(u_y \) также определяются на кривой \(AB \) в силу условий (2), а именно:

\[\frac{\partial u}{\partial x} \bigg|_{AB} = \frac{\partial u}{\partial x} \cos(s,x) + \frac{\partial u}{\partial n} \cos(n,x) \bigg|_{AB} = \frac{\partial u}{\partial s} \cos(s,x) + \psi \cos(n,x), \]

\[\frac{\partial u}{\partial y} \bigg|_{AB} = \frac{\partial u}{\partial s} \cos(s,y) + \frac{\partial u}{\partial n} \cos(n,y) \bigg|_{AB} = \frac{\partial u}{\partial s} \cos(s,y) + \psi \cos(n,y), \]

где \(\frac{\partial u}{\partial s} \) — производная по направлению касательной к кривой \(AB \).

Рассмотрим природу решения \(u \) сопряженного уравнения (3), удовлетворяющего условиям (11). Это решение является функцией двух пар переменных: текущих координат \(x, y \) и фиксированных координат \(x_0, y_0 \) точки \(M \). Поэтому, если ввести обозначение

\[U = U(x, y; x_0, y_0), \]

то условия (11) могут быть переписаны таким образом:

1) \(\frac{\partial U}{\partial x}(x_0, y_0; x_0, y_0) = b(x_0, y_0)U(x_0, y_0; x_0, y_0) \) на характеристике \(QM \);
2) \(\frac{\partial U}{\partial y}(x_0, y_0; x_0, y_0) = a(x_0, y_0)U(x_0, y_0; x_0, y_0) \) на характеристике \(MP \);
3) \(U(x_0, y_0; x_0, y_0) = 1. \)

II. Гиперболические уравнения

Отсюда путем интегрирования получаем

\[U(x, y; x_0, y_0) = e^{\int_0^x b(x, y) dx} e^{\int_0^y a(x, y) dy}, \]

\[U(x, y; x_0, y_0) = e^{\int_0^x b(x, y) dx} e^{\int_0^y a(x, y) dy}. \] \(\text{(13)} \)

Решение \(u(x, y; x_0, y_0) \) сопряженного уравнения (3), удовлетворяющее условиям (13), называется функцией Римана. Эта функция не зависит ни от данных Коши \((2) \) на кривой \(AB \), ни от вида этой кривой.

Изложеный здесь метод Римана применим решение задачи Коши к построению функции Римана \(u(x, y; x_0, y_0) \). Можно доказать существование и единственность функции Римана.

Следующее выше предложение о том, что прямые, параллельные оси, \(x \), \(y \), характеризуют пересекающие линию \(AB \) более чем в одной точке, является существенным. При невыполнении этого условия задача Коши \((1), (2), (3) \), вообще говоря, нерешима.

§ 2. Пример

Решим, с использованием метода Римана, следующую задачу: найти функцию \(u(x, y) \) такую, что

\[x^2 \frac{\partial^2 u}{\partial x^2} - y^2 \frac{\partial^2 u}{\partial y^2} = 0, \]

\[u|_{y=0} = f(x), \quad \frac{\partial u}{\partial y}|_{y=0} = F(x). \]

Уравнение (14) является гиперболическим при \(x \neq 0 \), так как \(\Delta = x^2 y^2 > 0 \).

Согласно общей теории (см. Лекцию № 2) составляем уравнение характеристики

\[x^2 \frac{dy^2}{dx} - y^2 \frac{dx^2}{dy} = 0 \]

или

\[x \frac{dy}{dx} + y \frac{dx}{dy} = 0, \quad x \frac{dy}{dx} - y \frac{dx}{dy} = 0. \]
Интегрируя эти уравнения, получим
\[x' y = C_1, \quad \frac{y}{x} = C_2. \]
Следовательно, нужно ввести новые переменные \(\xi \) и \(\eta \) по формулам
\[\xi = x y, \quad \eta = \frac{y}{x}. \] (16)
Тогда
\[\frac{\partial^2 u}{\partial x^2} = \frac{y^2}{x^2} \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial u}{\partial x}, \quad \frac{\partial^2 u}{\partial y^2} = \frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial^2 u}{\partial \eta^2} + \frac{\partial u}{\partial y}. \]
Подставляя значения вторых производных в уравнение (14), мы приведем его к каноническому виду
\[\frac{\partial^2 u}{\partial \xi \partial \eta} - \frac{1}{2} \frac{\partial u}{\partial \eta} = 0. \] (17)
Примем \(y = 1 \) в новых переменных будет иметь вид равнобочной гиперболы (рис. 2)
\[\xi \eta = 1. \] (18)
Далее из соотношений
\[x = \frac{\xi}{\sqrt{2}}, \quad y = \frac{\sqrt{2}}{\xi}, \] ясно, что
\[\frac{\partial u}{\partial \xi} \bigg|_{\xi \eta = 1} = \frac{1}{2} \frac{\partial u}{\partial x}, \quad \frac{\partial u}{\partial \eta} \bigg|_{\xi \eta = 1} = \frac{1}{2} \frac{\partial u}{\partial y}. \]
Следовательно, в силу условия (15) имеем
\[\frac{\partial u}{\partial \xi} \bigg|_{\xi \eta = 1} = \frac{1}{2} f(\xi) + \frac{1}{2} F(\xi), \quad \frac{\partial u}{\partial \eta} \bigg|_{\xi \eta = 1} = -\frac{1}{2} \frac{\partial f}{\partial \xi} + \frac{\partial f}{\partial \xi}, \] (19)
а также
\[u = \frac{1}{\xi \eta = 1} = f(\xi). \] (20)
Полагая в формуле Римана (12) \(a = 0, b = 0, f = 0, \) получим
\[u(\xi_0, \eta_0) = \frac{(\nu u)_p + (\nu u)_q}{2} + \frac{1}{2} \left(\frac{\partial u}{\partial \xi} - u \frac{\partial u}{\partial \xi} - u \frac{\partial u}{\partial \eta} \right) d\xi - \left(u \frac{\partial u}{\partial \eta} - u \frac{\partial u}{\partial \eta} \right) d\eta. \] (21)
Даже функция Римана \(u(\xi, \eta; \xi_0, \eta_0) \) удовлетворяет сопряженному уравнению
\[\frac{\partial^2 u}{\partial \xi \partial \eta} + \frac{\partial u}{\partial \xi} = 0 \] (22)
и следующим условиям на характеристиках:
\[u(\xi \eta_0; \xi_0, \eta_0) = \frac{\xi_0}{\xi}, \quad u(\xi_0, \eta; \xi_0, \eta_0) = 1 \text{ на } MP. \] (23)
Легко убедиться, что функция
\[u(\xi, \eta; \xi_0, \eta_0) = \frac{\xi_0}{\xi} \] (24)
удовлетворяет уравнению (22) и условиям (23).
Подставляя (19), (20) и (24) в формулу (21), получим
\[u(\xi_0, \eta_0) = \frac{1}{2} \left[f(\xi_0) + \sqrt{2} \int_0^{\xi_0} f \left(\frac{1}{\xi_0} \right) \sqrt{\frac{\xi_0}{2}} \frac{\xi}{\xi_0} f(\xi) - \sqrt{\frac{\xi_0}{2}} \int_0^{\xi_0} \frac{\xi}{\xi_0} f(\xi) d\xi \right]. \]
Возвращаясь к старым переменным \(x \) и \(y \), получим решение задачи (14), (15):
\[u(x, y) = \frac{1}{2} \left[f(xy) + \sqrt{\frac{xy}{2}} \int_{xy}^{\infty} \frac{x}{\sqrt{xy}} f(\frac{x}{\sqrt{xy}}) \sqrt{\frac{xy}{2}} f(\frac{x}{\sqrt{xy}}) d\xi \right]. \]
Задачи

Решить методом Римана следующие задачи:

1. \(u_{xx} + 2u_x + u_y + 2u = 1 \), \(0 < x, y < 1 \); \(u \big|_{y=0} = x \), \(u \big|_{x+y=1} = x \).

2. \(yu_{xx} + xu_x - yu_y - u = 2y, 0 < x, y < \infty \); \(u \big|_{x+y} = 1 - y, u \big|_{y=0} = x - 1 \).

3. \(u_{xx} + \frac{1}{x+y}(u_x + u_y) = 2, 0 < x, y < \infty \); \(u \big|_{y=x} = x^2 \), \(u \big|_{y=x+1} = 1 + x \).

4. \(u_{xx} - u_{yy} + \frac{2}{x} u_x - \frac{2}{y} u_y = 0, |x-y| < 1 \); \(|x+y| < 1 \);
 \(u \big|_{y=0} = u_0(x), u_x \big|_{y=0} = u_1(x) \), \(u_0 \in C^2(0,2) \), \(u_1 \in C^2(0,2) \).

5. \(2u_{xx} - 2u_{yy} = 4x, -\infty < x, y < +\infty \); \(u \big|_{y=x} = x^2 \cos x \),
 \(u_x \big|_{y=x} = x^2 + 1 \).

Лекция 8. Метод каскадного интегрирования Лапласа

Цель настоящей лекции — изложить результаты Лапласа, касающиеся интегрирования линейных гиперболических уравнений второго порядка с переменными коэффициентами

\[
\frac{\partial^2 u}{\partial x \partial y} + a(x,y) \frac{\partial u}{\partial x} + b(x,y) \frac{\partial u}{\partial y} + c(x,y) u = f(x,y). \tag{1}
\]

Для уравнения канонического вида (1) характеристиками, очевидно, служат прямые параллельные координатным осям. Легко видеть, что из всех преобразований

\[
\xi = \xi(x,y), \quad \eta = \eta(x,y)
\]

такие прямые в себя переводят только преобразования вида

\[
\phi = \phi(x), \quad \psi = \psi(y). \tag{2}
\]

§1. Преобразования неизвестной функции

Рассмотрим сдвиг

\[u(x,y) = u(x,y) - \sigma(x,y) \]

неизвестной функции \(u(x,y) \) в уравнении (1) на некоторую заданную функцию \(\sigma(x,y) \). Легко видеть, что новая неизвестная \(\tilde{u}(x,y) \) удовлетворяет уравнению

\[
\frac{\partial^2 \tilde{u}}{\partial x \partial y} + a(x,y) \frac{\partial \tilde{u}}{\partial x} + b(x,y) \frac{\partial \tilde{u}}{\partial y} + c \tilde{u} = f(x,y) - f(x,y) \sigma(x,y). \tag{3}
\]

Из последней формулы видно, что если в качестве \(\sigma \) выбрать какое-нибудь решение \(u_0(x,y) \) уравнения (1), то в результате сдвига получится уравнение с нулевой правой частью. Поскольку действительную трудность в теории уравнений с частными производными представляют не описания какого-нибудь частного решения, а нахождение общего решения или решение ундулентвуемого заданными начальными или граничными условиями, можно считать, что всякое уравнение (1) сдвигом приводится к канонической форме

\[
\frac{\partial^2 u}{\partial x \partial y} + a(x,y) \frac{\partial u}{\partial x} + b(x,y) \frac{\partial u}{\partial y} + c(x,y) u = 0, \tag{4}
\]

Также преобразования сохраняют класс уравнений (1) и могут быть использованы для дальнейшего упрощения уравнения, приведенного к канонической форме. Уравнение (1) в результате преобразования (2) переходит в уравнение

\[
\frac{\partial^2 \tilde{u}}{\partial \phi \partial \psi} + a_1(\phi,\psi) \frac{\partial \tilde{u}}{\partial \phi} + b_1(\phi,\psi) \frac{\partial \tilde{u}}{\partial \psi} + c_1(\phi,\psi) \tilde{u} = f_1(\phi,\psi),
\]

коэффициенты которого имеют вид

\[
a_1 = \frac{a}{\psi'}, \quad b_1 = \frac{b}{\phi'}, \quad c_1 = \frac{c}{\phi' \psi'}, \quad f_1 = \frac{f}{\psi'}. \tag{3}
\]
Другое часто применяемое преобразование для уравнений типа (1), сохраняя пренебрежение незаметными переменными \(x \) и \(y \), заменяет неизвестную функцию \(u(x, y) \) новой неизвестной \(\lambda(x, y) \), связанной с \(u(x, y) \) соотношением вида

\[
u(x, y) = \lambda(x, y) u(x, y),\]

где \(\lambda(x, y) \) — некоторый известный множитель.

Простое вычисление показывает, что преобразование (5) переводит каноническое уравнение (4) в новое каноническое уравнение

\[
\frac{\partial^2 u}{\partial x \partial y} + a_1(x, y) \frac{\partial u}{\partial x} + b_1(x, y) \frac{\partial u}{\partial y} + c_1(x, y) u = 0,
\]

где

\[
a_1 = a + \frac{\partial}{\partial y} \ln \lambda, \\
b_1 = b + \frac{\partial}{\partial y} \ln \lambda, \\
c_1 = c + a_1 b - ac b + \frac{\partial^2}{\partial x \partial y} \ln \lambda.
\]

Эти формулы (7) показывают, что для того, чтобы уравнения (4) и (6) были связаны преобразованием (5), необходимо и достаточно, чтобы существовала функция \(\lambda \), такая, что

\[
a_1 - a = \frac{\partial}{\partial y} \ln \lambda, \quad b_1 - b = \frac{\partial}{\partial y} \ln \lambda, \quad c_1 - c = a_1 b - ac b + \frac{\partial^2}{\partial x \partial y} \ln \lambda.
\]

Из этих соотношений находим, что

\[
\frac{\partial (a_1 - a)}{\partial x} = \frac{\partial (b_1 - b)}{\partial y} = c_1 - c = a_1 b - ac b + \frac{\partial^2}{\partial x \partial y} \ln \lambda.
\]

или же, из равенства первой и второй частей третьей

\[
\frac{\partial a_1}{\partial x} + a_1 b = c = \frac{\partial a}{\partial x} + ab - c,
\]

\[
\frac{\partial b_1}{\partial y} + a_1 b_1 - c_1 = \frac{\partial b}{\partial y} + ab - c.
\]

Если условия (8) выполнены, определение множителя \(\lambda \) не представляет уже никакой трудности. А именно, замечаем, что тогда

\[
\frac{\partial (a_1 - a)}{\partial y} = \frac{\partial (b_1 - b)}{\partial x}
\]

и выражение

\[
(b_1 - b) dx + (a_1 - a) dy
\]

является полным дифференцием, мы получаем для определения \(\lambda \) формулу

\[
\lambda = \exp \left[\int (a_1 - a) \, dy + (b_1 - b) \, dx \right].
\]

Таким образом, доказано утверждение.

Лемма. Для того чтобы два уравнения канонического вида (4) и (6) были приводимы одно к другому посредством некоторого многопараметрического преобразования типа (5), необходимо и достаточно, чтобы величины

\[
h = \frac{\partial a}{\partial x} + ab - c, \quad k = \frac{\partial b}{\partial y} + ab - c
\]

имели для обоих уравнений одно и то же значение.

Следствие. Уравнение (4) заменой (5) сводится к уравнению \(\frac{\partial^2 u}{\partial x \partial y} = 0 \), если и только если \(h = k = 0 \).

Согласно лемме, функции \(h \) и \(k \) являются (абсолютными) инвариантами группы преобразований вида (5). В литературе их обычно называют инвариантами Лапласа уравнения (4).

Легко видеть, что инварианты \(h \) и \(k \) переходят один в другой при перестановке \(x \) и \(y \). Выясним, как \(h \) и \(k \) меняются при заменах переменных вида (2). Дифференцируем две первые формулы (3), заметим, что

\[
\frac{\partial a_1}{\partial \phi} = \frac{1}{\phi \psi'} \frac{\partial a}{\partial \chi}, \quad \frac{\partial b_1}{\partial \psi} = \frac{1}{\phi \psi'} \frac{\partial b}{\partial \chi},
\]

где

\[
\frac{\partial}{\partial \phi} = \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \frac{\partial}{\partial \psi}, \quad \frac{\partial}{\partial \psi} = \frac{\partial}{\partial y} + \frac{\partial}{\partial x} \frac{\partial}{\partial \phi}.
\]
Используя эти равенства и формулы (3), получаем
\[h_1 = \frac{h}{\phi'(x)\phi'(y)}, \quad k_1 = \frac{k}{\phi'(x)\phi'(y)}. \]
Выражаясь научно, (10) означает, что \(h \) и \(k \) являются относительными инвариантами веса 1 группы преобразований вида (2). Лемма и формулы (10) показывают, что отношение инвариантов Лапласа \(k/h \) представляет собой (абсциссный) инвариант как для преобразований (5), так и для преобразований (2).

§2. Преобразование Лапласа

Уравнение (4), в зависимости от того, какой из двух инвариантов Лапласа \(k \) или \(h \) желательно выделить, можно записать в двух равносильных формах:
\[\frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + \left(ab - k \right) u = \left(\frac{\partial}{\partial x} + b \right) \left(\frac{\partial}{\partial y} + a \right) u - hu = 0, \]
\[\frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + \left(ab - k \right) u = \left(\frac{\partial}{\partial y} + a \right) \left(\frac{\partial}{\partial x} + b \right) u - ku = 0. \]
Приемно уравнение (4) эквивалентно каждой из систем
\[\left(\frac{\partial}{\partial y} + a \right) u = u_1, \quad \left(\frac{\partial}{\partial x} + b \right) u_1 = hu = 0, \quad \left(\frac{\partial}{\partial x} + a \right) u = u_2, \quad \left(\frac{\partial}{\partial y} + b \right) u_2 = ku = 0. \]
(11) (12)
Формулы (11), (12) показывают, что если хотя бы один из инвариантов \(h \), \(k \) тождественно равен нулю, то уравнение (4) интегрируется в квадратурах.
Действительно, если \(h \equiv 0 \), то второе из уравнений (11) можно переписать в виде
\[u = \frac{1}{h} \left(\frac{\partial}{\partial y} + b \right) u_1. \]
(13)
Полагая это выражение вместо \(u \) в первое уравнение (11), получим
\[0 = \left(\frac{\partial}{\partial y} + a \right) \left(\frac{\partial}{\partial x} + b \right) u_1 = u_1 = \]
\[= \frac{1}{h} \left(\frac{\partial u_1}{\partial y} + \frac{1}{h} \frac{\partial h}{\partial y} \frac{\partial u_1}{\partial x} + \frac{b}{h} \frac{\partial u_1}{\partial x} + \frac{1}{h} \frac{\partial b}{\partial x} \frac{\partial u_1}{\partial y} + \frac{a}{h} \frac{\partial u_1}{\partial y} + \frac{ab}{h^2} \frac{\partial u_1}{\partial y} \right) - ku_1 = \]
\[= \frac{1}{h} \left[\frac{\partial u_1}{\partial y} + \left(a - \frac{1}{h} \frac{\partial h}{\partial y} \right) \frac{\partial u_1}{\partial x} + \frac{b}{h} \frac{\partial u_1}{\partial x} + \left(a - \frac{1}{h} \frac{\partial h}{\partial y} \right) \frac{b}{h} \right]. \]
Аналогично, если $k \neq 0$, то, пользуясь (12), получаем

$$0 = \left(\frac{\partial}{\partial x} + b \right) \left(\frac{\partial}{\partial y} + a \right) u_{-1} - u_{-1} =$$

$$= \frac{1}{k} \left(\frac{\partial^2 u_{-1}}{\partial x \partial y} + b \frac{1}{k} \frac{\partial}{\partial x} \left(\frac{\partial u_{-1}}{\partial x} \right) + a \frac{\partial u_{-1}}{\partial x} + \frac{\partial a}{\partial x} + \left(b \frac{\partial}{\partial x} + a \frac{1}{k} \frac{\partial}{\partial x} - k \right) u_{-1} \right).$$

Будем обозначать результат x- и y-преобразования Лапласа соответственно через E_1 и E_{-1}, и записывать в более компактном виде:

$$\frac{\partial^2 u_{1}}{\partial x \partial y} + a_1(x,y) \frac{\partial u_{1}}{\partial x} + b_1(x,y) \frac{\partial u_{1}}{\partial y} + c_1(x,y) u_{1} = 0, \quad (E_1)$$

$$\frac{\partial^2 u_{-1}}{\partial x \partial y} + a_{-1}(x,y) \frac{\partial u_{-1}}{\partial x} + b_{-1}(x,y) \frac{\partial u_{-1}}{\partial y} + c_{-1}(x,y) u_{-1} = 0, \quad (E_{-1})$$

где

$$a_1 = a - \frac{\partial}{\partial y} \ln h, \quad b_1 = b, \quad c_1 = a_1 b_1 + \frac{\partial b}{\partial y} - h,$$

$$a_{-1} = a, \quad b_{-1} = b - \frac{\partial}{\partial x} \ln k, \quad c_{-1} = a_{-1} b_{-1} + \frac{\partial a}{\partial x} - k. \quad (14)$$

Используя (14), нетрудно найти инварианты Лапласа для уравнений E_1 и E_{-1}:

$$h_1 = 2 \left(k - \frac{\partial^2}{\partial x \partial y} \ln h \right), \quad h_{-1} = k \quad (15)$$

Из формул (15) следует, что если к уравнению E_1 применить y- преобразование Лапласа, то результат будет иметь исходные инварианты Лапласа h и k. Но выше было доказано, что если два уравнения вида (4) имеют одинаковые инварианты, то они связаны заменой вида (5). Следующая выкладка

$$(u_{1})_{-1} = \left(\frac{\partial}{\partial x} + b \right) u_{1} = \frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + a u + a u =$$

$$= \left(\frac{\partial a}{\partial x} + ab - c \right) u = h u$$

показывает, что коэффициент пропорциональности в (5) совпадает с h^{-1}.

II. Гиперболические уравнения

Аналогично проверяется, что в результате применения к E_{-1} x-преобразования получается уравнение, связанное с исходным уравнением E_0 заменой (5) с $\lambda = k^{-1}$.

Ввиду (13), если нам удалось тем или иным способом проинтегрировать уравнение E_1, то мы сможем и исходное уравнение E_0. Аналогично, с помощью y-преобразования мы, исходя из E_{-1} строим уравнение E_{-2} и т.д. Таким образом, мы имеем целую двустороннюю последовательность уравнений

$$\ldots, E_{-3}, E_{-2}, E_{-1}, E_0, E_1, E_2, E_3, \ldots,$$

не обращающуюся с той или другой стороны, до тех пор пока, возможно, не встретится уравнение, один из инвариантов которого тождественно равен нулю. Эти уравнения находятся в такой взаимной связи, что, проинтегрировав любое из них, мы проинтегрируем и все другие. В частности, если u_{n} (17) обращается хотя бы в одну сторону, то для крайнего из уравнений непосредственно один из инвариантов Лапласа равен нулю. Согласно результатам, полученным выше, это уравнение интегрируется в квадратурах, а затем с помощью формул типа (13), (16) находится решение всех остальных уравнений непосредственно (17) и в частности, исходного уравнения E_0. Этот способ интегрирования уравнений вида (4) называется касадным методом Лапласа.
и после соответствующей замены независимых переменных $x \leftrightarrow f(x)$, $y \leftrightarrow g(y)$ величины h и k являются решениями уравнения

$$\frac{\partial^2 \omega}{\partial x \partial y} = \sin \omega.$$

4. Покажите, что если для некоторого уравнения $h_2 = k$, то существует замена переменных вида $x \leftrightarrow f(x)$, $y \leftrightarrow g(y)$, в результате которой получается уравнение с $k_2 = h$.

5. Уравнение

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + 2f(x,y)\frac{\partial u}{\partial x} + 2g(x,y)\frac{\partial u}{\partial y} + n(x,y)u = 0$$

подвергается замене $u = \lambda(x,y)u$. Докажите, что величины

$$J = \frac{\partial I}{\partial y} - \frac{\partial m}{\partial x}, \quad K = \frac{\partial I}{\partial x} + \frac{\partial m}{\partial y} + I^2 + m^2 - n$$

являются инвариантами этого преобразования.

Лекция 9. Уравнения, интегрируемые каскадным методом Лагранжа

§1. Каскад Лагранжа

Как было показано на предыдущей лекции, x-преобразование Лагранжа генерирует из исходного уравнения E_0

$$\frac{\partial^2 u}{\partial x \partial y} + a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y} + c \cdot u = 0$$

уравнения E_i вида

$$\frac{\partial^2 u_i}{\partial x \partial y} + a_i \frac{\partial u_i}{\partial x} + b_i \frac{\partial u_i}{\partial y} + c_i \cdot u_i = 0, \quad i=1,2,\ldots.$$
§2. Явные формулы для решений

Как уже отмечалось выше, зная решение u_0 уравнения E_0, можно найти решение исходного уравнения E_0, не прибегая к операциям интегрирования. Чтобы найти формулу, связанную с этими решениями, перепишем второе из соотношений (6) в виде

$$u_i = \frac{1}{h_i} \left(\frac{\partial}{\partial x} + b \right) u_{i+1}.$$

Выразим с помощью этой формулы u_{i+1} через u_0, u_{i+2} через u_{i+1} и т.д., приходя к формуле

$$u = \frac{1}{h_1} \left(\frac{\partial}{\partial x} + b \right) \frac{1}{h_2} \left(\frac{\partial}{\partial x} + b \right) \cdots \frac{1}{h_{i+1}} \left(\frac{\partial}{\partial x} + b \right) u_n.$$

Поскольку

$$\frac{\partial}{\partial x} + b = e^{-\gamma dx} \frac{\partial}{\partial x} e^{\gamma dx},$$

последнюю формулу можно переписать в виде

$$ue^{\gamma dx} = \frac{1}{h} \frac{\partial}{\partial x} \left(\frac{1}{h_1} \frac{\partial}{\partial x} \left(\cdots \frac{1}{h_{i+1}} \frac{\partial}{\partial x} \left(u_{i+1}, e^{\gamma dx} \right) \right) \right).$$

Аналогично получаем из соотношения (7)

$$ue^{\gamma dy} = \frac{1}{k} \frac{\partial}{\partial y} \left(\frac{1}{k_1} \frac{\partial}{\partial y} \left(\cdots \frac{1}{k_{i+1}} \frac{\partial}{\partial y} \left(u_{i+1}, e^{\gamma dy} \right) \right) \right).$$

Формулы (9) и (10) важны при интегрировании исходного уравнения E_0 каскадным методом Лапласа. Пусть $h_0 = 0$. Тогда из (6) получаем

$$\left(\frac{\partial}{\partial x} + c_n \right) u_0 = Y(x)e^{-\gamma dx}$$

или

$$u_n = e^{-\gamma dx} [X(x) + \int Y(y)e^{\gamma dy - \gamma dx} dy],$$

где X и Y — произвольные функции переменных x и y соответственно. Введем обозначения

$$\alpha = e^{-\gamma dx}, \quad \beta = e^{\gamma dy - \gamma dx}.$$
Тогда
\[u_n = \alpha(X + \{Y \beta \, d \, y\}). \]

Подставляя это выражение для \(u_n \) из (9), получаем, что \(u \) имеет вид
\[u = A(X + \{Y \beta \, d \, y\}) + A_1 \left(X^{(1)} + \{Y \beta \, \frac{\partial}{\partial x} \, d \, y\}\right) + \cdots + A_n \left(X^{(n)} + \{Y \partial^n \beta \, \frac{\partial}{\partial x} \, d \, y\}\right), \]
где \(A, A_1, \ldots, A_n \) — заданные функции от \(x \) и \(y \), а \(X^{(m)} \) — произвольная порядка \(m \) произвольной функции \(X(x) \). Так как \(Y \) — произвольная функция, то, полагая \(Y = 0 \), мы имеем следующее специальное решение:
\[u = AX + A_1 X^{(1)} + \cdots + A_n X^{(n)}. \] (12)

Итак, если инвариант \(n \)-го порядка \(h_n \) тождественно равен нулю, то исходное уравнение \(E_0 \) (1) имеет специальное решение (12), где \(X(x) \) — произвольная функция.

Можно доказать, что если для уравнения \(E_0 \) ряда Лапласа образуется в обе стороны, то общее решение является суммой двух специальных. А именно, справедливо следующее утверждение:

Теорема. Пусть для уравнения (1) \(h_n = k \omega_n = 0 \). Тогда общее решение данного уравнения представляется в виде:
\[u = AX + A_1 X^{(1)} + \cdots + A_n X^{(n)} + BY + B_1 Y^{(1)} + \cdots + B_m Y^{(m)}. \]

Здесь \(A, A_1, \ldots, A_n, B, B_1, \ldots, B_m \) — некоторые конкретные функции, а \(X \) и \(Y \) — произвольные функции переменных \(x \) и \(y \) соответственно.

§3. Уравнение Эйлера — Пуассона

В качестве примера применения касательного метка Лапласа рассмотрим важное для приложений уравнение Эйлера — Пуассона
\[\frac{\partial^2 u}{\partial x \partial y} - \frac{\beta'}{(x - y)} \frac{\partial u}{\partial x} + \frac{\beta}{(x - y)} \frac{\partial u}{\partial y} = 0, \] (13)

где \(\beta \) и \(\beta' \) — некоторые постоянные. Следуя Дарбу, будем обозначать уравнение (13) символом \(E(\beta, \beta') \). Сравнение (13) с (1), находим
\[a = \frac{\beta'}{x - y}, \quad b = \frac{\beta}{x - y}, \quad c = 0. \]

Далее так как инварианты Лапласа уравнения (1) определяются по формулам
\[h = \frac{\partial a}{\partial x} + ab - c \quad \text{и} \quad k = \frac{\partial b}{\partial y} + ab - c, \]
то для рассматриваемого уравнения (13) имеем
\[h = \frac{\beta'(1 - \beta)}{(x - y)^2}, \quad k = \frac{\beta(1 - \beta')}{(x - y)^2}. \] (14)

Теперь из формулы (8) с помощью индукции нетрудно извлекь, что для целого \(n \)
\[h_n = -\frac{A_n}{(x - y)^2}, \]
где постоянные \(A_n \) связаны рекуррентными соотношениями
\[A_{n+1} = 2 A_n - A_{n-1} + 2, \] (15)

Из (15) находим
\[A_n = (n + 1) A_0 - n A_1 + n (n + 1), \]

Так как в соответствии с (14)
\[A_0 = \beta'(1 - \beta), \quad A_1 = \beta(1 - \beta'), \]
то окончательно имеем:
\[A_n = n^2 + (\beta' + (1 - \beta)) n + \beta(1 - \beta) = n(\beta' + (1 - \beta)) \]
(16)

Итак, для любых целых \(n \)
\[h_n = \frac{(n + 1) \beta + (1 - \beta)}{(x - y)^2}, \quad k_n = \frac{(n - 1 + \beta) \beta - \beta}{(x - y)^2}. \] (17)

Поскольку инварианты уравнения \(E(\beta - h \beta' + n) \) совпадают с (17), то результат \(n \)-кратного применения \(x \)-преобразования Лапласа к уравнению
В, А. Байков, А. В. Жыбер Уравнения математической физики

\(E(\beta, \beta') \), согласно лемме (см. лекцию 8), дает уравнение, связанное преобразованием вида

\[u(x, y) = \lambda(x, y) \phi(x, y) \]

с \(E(\beta - n, \beta' + n) \).

Второй факт, напрямую вытекающий из формулы (17), состоит в том, что уравнение Эйлера — Пуассона интегрируемо в квадратурах касательным методом Лагранжа тогда и только тогда, когда хотя бы одно из чисел \(\beta \) и \(\beta' \) является целым. В самом деле, в этом и только в этом случае \(h_n = 0 \) или \(k_n = 0 \) для некоторого целого \(n \).

Рассмотрим, например, уравнение

\[\frac{\partial^2 u}{\partial x \partial y} + \frac{1}{(x - y)} \left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y} \right) = 0. \tag{18} \]

В этом случае \(\beta = \beta' = -1 \) и из (17) имеем \(h_k = k = 0 \). Поскольку для уравнения (18) \(h = \frac{2}{(x - y)^2} \), формулы (3), (5) дают

\[a_1 = \frac{1}{x - y}, \quad b_1 = \frac{1}{x - y}. \]

Теперь из формулы (11) получаем, что

\[u_1 = \frac{1}{(x - y)} \left(X(x) + [Y(y)(x - y)^2] \right. \]

и, следовательно, решение исходного уравнения (18) имеет вид (см. (9)):

\[u = e^{-y_0 x} \frac{1}{h} \frac{\partial}{\partial x} \left(h_1 e^{y_0 x} \right) =
\]

\[= -X(x) + \frac{(x - y)}{2} X'(x) - [Y(y)(x - y)^2] d \left[(x - y)y' \right] + (x - y)Y(y)(x - y)dy. \tag{19} \]

Полагая в формуле (19) \(Y(y) = 0 \), мы получаем специальное решение

\[u = \frac{(x - y)}{2} X'(x) - X(x). \tag{20} \]

II. Гиперболические уравнения

Совершенно аналогично, используя формулу (10), получаем специальное решение вида

\[u = \frac{(x - y)}{2} \frac{Y'(y)}{y} - \frac{1}{2} Y(y). \tag{21} \]

Далее получаем в формуле (19) \(Y(y) = \frac{1}{2} Y(x) \). Тогда интегрированием по частям приводим обобщенное решение (19) к следующей форме

\[u = \frac{(x - y)}{2} \left[X'(x) - \frac{Y'(y)}{y} \right] - [X(x) + \frac{Y(y)}{2}]. \tag{22} \]

Таким образом, обобщенное решение (22) уравнения (18) есть сума специальных решений (20) и (21).

Задачи

1. Докажите, что уравнение

\[u_{xy} + \frac{\alpha}{(x + y)} u_x + \frac{\beta}{(x + y)} u_y + \frac{\gamma}{(x + y)^2} u = 0 \]

имеет решение вида

\[u = AX + A_1 X' + \ldots + A_n X^{(n)}, \]

где \(X(x) \) — произвольная функция, если \(\gamma = (x + n)(\beta - n - 1) \), \(n \) — любое натуральное число. Найдите обобшенное решение для произвольного \(\gamma \) при \(n = 1 \).

2. Проинтегрируйте уравнения:

а) \(u_{xy} + xu_x + yu_y + (1 + xy)u = 0 \);

б) \(u_{xy} + mxy + nxy + (m + n + mnx)u = 0 \);

в) \(u_{xy} + myx + e^{x} u_y + (m + c + my)e^{x} u = 0 \),

где \(m, n, c \) — некоторые постоянные.

3. Покажите, что уравнение

\[u_{xy} + x u_x + n x z = 0, \quad n \text{ целое}, \]

имеет решение вида

\[u = AX + A_1 X' + \ldots + A_n X^{(n)}, \]
где $X(x)$ — произвольная функция переменного x. Построить эти решения для случая $n=2$ и $n=-1$.

4. Пронигрывают уравнения:

 а) $u_{xy} - \frac{1}{y} u_x + \frac{k}{x} u_y - \frac{k}{xy} u = 0, \quad k=\text{const}$;

 б) $u_{xy} + \left(1 - \frac{1}{x-y}\right) u_x - \frac{2}{x} u_y - \frac{2}{x} \left(1 - \frac{1}{x-y}\right) u = 0$;

 в) $u_{xy} + \frac{2}{(x-y)} u_x - \frac{2}{(x-y)} u_y - \frac{4}{(x-y)^2} u = 0$.

Лекция 10. Волновое уравнение. Формула Пуассона

В этой лекции рассматривается задача с начальными данными (задача Коши) для уравнения колебаний при отсутствии внешних возмущений.

$$\frac{\partial^2 u}{\partial t^2} = a^2 \Delta u, \quad u = u(M,t) \quad (1)$$

в неограниченном пространстве ($M = M(x,y,z)$). Здесь $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ — оператор Лапласа.

§1. Частные решения

Рассмотрим частные решения уравнения (1), обладающие центральной симметрией относительно некоторой точки M_0, т.е. решения вида

$$u(M,t) = u(r,t), \quad (2)$$

где $r = |MM_0|$ — расстояние между точками M и M_0. Для функции вида (2) результат применения оператора Лапласа в частном случае записывается в виде

$$\Delta u = \frac{1}{r} \frac{\partial^2}{\partial r^2} (ru).$$

II. Гиперболические уравнения

в чем можно убедиться дифференцированием. Поэтому уравнение (1) принимает вид

$$\frac{\partial^2 u}{\partial t^2} = \frac{a^2}{r} \frac{\partial^2}{\partial r^2} (ru).$$

Вводя теперь функцию

$$u = ru,$$

получим для ее уравнение колебаний и струны

$$\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial r^2}. \quad (4)$$

Если функция $u(r,t)$ ограничена при $r = 0$, то функция (3) обращается в нуль при $r = 0$, $u(0,t) = 0$. Поэтому задача Коши для исходного уравнения (1) с начальными данными

$$u(r,0) = \varphi(r), \quad \frac{\partial u(r,0)}{\partial t} = \psi(r) \quad (5)$$

сводится к задаче о колебаниях полуограниченной струны ($0 \leq r \leq a$) с закрепленным концом $r = 0$,

$$\frac{\partial^2 v}{\partial t^2} = a^2 \frac{\partial^2 v}{\partial r^2}, \quad v(r,0) = \varphi(r), \quad \frac{\partial v(r,0)}{\partial t} = \psi(r), \quad v(0,t) = 0, \quad (6)$$

рассмотренной в лекции 5.

Общее решение уравнения (4) дается формулой

$$u(r,t) = f_1 \left(t - \frac{r}{a}\right) + f_2 \left(t + \frac{r}{a}\right)$$

и, следовательно,

$$v(r,t) = \frac{1}{r} f_1 \left(t - \frac{r}{a}\right) + \frac{1}{r} f_2 \left(t + \frac{r}{a}\right),$$

где $f_1(\xi)$ и $f_2(\xi)$ — произвольные интегралы дифференцируемые функции. Частные решения уравнения (1)

$$u_1 = \frac{1}{r} f_1 \left(t - \frac{r}{a}\right), \quad u_2 = \frac{1}{r} f_2 \left(t + \frac{r}{a}\right).$$
Уравнения математической физики называются сферическими волнами: \(u_1(r,t) \) есть рассеивающая сферическая волна, \(u_2(r,t) \) — сходящаяся к точку \(r = 0 \) сферическая волна, \(a \) — скорость распространения волны.

Таким образом, общее решение уравнения (1) в случае центральной симметрии представляется в виде суммы двух сферических волн.

Учитывая условия \(u(0,t) = 0 \), находим \(f(t) + f_2(t) = 0 \) или \(f_2(t) = -f_1(t) \) для всех значений \(t > 0 \), т.е.

\[
u(r,t) = \frac{1}{r} f(t + \frac{r}{a}) - \frac{1}{r} f(t - \frac{r}{a}) \quad \text{при} \ r > \frac{r}{a}
\]

и, в частности,

\[
u(0,t) = \frac{2}{a} f(t).
\]

§ 2. Метод упреждения

Существует интегральное преобразование, существенно использующее сферическую симметрию оператора Лапласа \(\Delta \), которое сводит уравнение (1) к (4). Этот классический метод решения принадлежит Пуассону. Мы применяем его для решения следующей задачи Коши:

\[
\frac{\partial^2 \nu}{\partial t^2} = a^2 \Delta u = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right), \quad M(x,y,z) \in \mathbb{R}^3, \quad t > 0,
\]

\[
u(M,0) = \phi(M), \quad \frac{\partial \nu(M,0)}{\partial t} = \psi(M).
\]

Предположим, что решение задачи (9) существует и пусть \(M_0(x_0,y_0,z_0) \) — фиксированная точка.

Рассмотрим функцию

\[
u(r,t) = M_r[u] = \frac{1}{4\pi r^2} \int u ds_r,
\]

являющуюся средним значением \(u \) на сфере \(s_r \), радиуса \(r \) с центром в точке \(M_0 \).

II. Гиперболические уравнения

Из (10) видно, что

\[
u(M_0,t) = \bar{u}(0,t).
\]

Показем, что функция \(r \bar{u}(r,t) = \bar{v}(r,t) \), обладающая сферической симметрией относительно точки \(M_0 \), удовлетворяет уравнению (4). Для этого проектируем уравнение (9) по объему шара \(k_r \), ограниченного сферой \(s_r \):

\[
\int_k \frac{\partial^2 u}{\partial t^2} dv = a^2 \int_k \partial u dv.
\]

Теперь, используя формулу Остроградского

\[
\int_k \text{div} \bar{u} dv = \int_k \bar{u} dS_r
\]

для векторного поля \(\bar{u} \), соотношение (12) перепишем следующим образом:

\[
\frac{\partial^2 r}{\partial t^2} \int_k \partial u dv = a^2 \int_k \frac{\partial u}{s_r} dS_r.
\]

Здесь мы увидели, что нормаль \(s_r \) направлена по радиусу и \(\frac{\partial u}{\partial r} = \frac{\partial u}{\partial r} \). Далее, представим вектор как совокупность концентрических сфер, последнее соотношение можно представить так:

\[
\frac{\partial^2 r}{\partial t^2} \int_k dS_r \bar{u} = a^2 \int_k \frac{\partial u}{s_r} dS_r.
\]

Теперь, учитывая формулу (10), равенство (13) приводим к виду

\[
\frac{\partial^2 r}{\partial t^2} \int_k \bar{u} dv = a^2 \frac{\partial \bar{u}}{\partial r} \int_k \bar{u} dv.
\]

Дифференцируя (14) по \(r \) и полагая \(v = r \bar{u} \), получим (4). Следовательно, согласно формулам (11) и (8), имеем

\[
u(M_0,t) = \bar{u}(0,t) = \frac{2}{a} f(t).
\]
Выражим \(f \) через начальные данные \(\phi \) и \(\psi \). Для этого пропищем

\[
\frac{\partial}{\partial r}(\rho) = f \left(\frac{t + \frac{r}{a}}{a} \right) + f \left(\frac{t - \frac{r}{a}}{a} \right) \quad \text{(см. (7)) по } r \text{ и } t,
\]

\[
\frac{\partial}{\partial t}(\rho) = f \left(\frac{t + \frac{r}{a}}{a} \right) - f \left(\frac{t - \frac{r}{a}}{a} \right).
\]

Из последних соотношений получаем что

\[
\frac{\partial}{\partial r}(\rho) + \frac{\partial}{\partial t}(\rho) = \frac{2}{a} f \left(\frac{t + \frac{r}{a}}{a} \right).
\]

Далее полагая в (16) \(t = 0 \) и \(r = at \), будем иметь

\[
\frac{\partial}{\partial t}(\phi) + \frac{\partial}{\partial r}(\phi) = \frac{2}{a} f(\phi).
\]

Здесь \(\phi \) и \(\psi \) - средние значения функции \(\phi \) и \(\psi \) на сфере \(s_{at} \) радиуса \(r = at \) с центром в точке \(M_{0} \), и, наконец, из (15) и (17) получаем формулу Пуассона

\[
u(M_{0}, t) = \frac{\partial}{\partial t} \left[M_{at}(\phi) \right] + tM_{at}(\psi),
\]

которую, учитывая (10), можно записать в виде

\[
\nu(M_{0}, t) = \frac{\partial}{\partial t} \left[M_{at}(\phi) \right] + tM_{at}(\psi),
\]

где

\[
M_{at}(\phi) = \frac{1}{4\pi a^{2} r^{2}} \int_{s_{at}} \phi ds, \quad M_{at}(\psi) = \frac{1}{4\pi a^{2} r^{2}} \int_{s_{at}} \psi ds.
\]

Из формул Пуассона (18), полученной в предположении существования решения задачи Коши (9), следует единственность указанного решения. В самом деле, предполагая, что задача Коши имеет два решения \(u_{1} \) и \(u_{2} \), получим для разности начальных условий \(\phi = 0, \psi = 0 \). Применив к функции \(u_{1} - u_{2} \) предыдущие рассуждения, приходим к формуле (18), в которой \(\phi = 0, \psi = 0 \), следовательно, \(u \equiv 0 \) или \(u_{1} \equiv u_{2} \).

Непосредственно доказать, что функция \(\nu(M_{0}, t) \), определяемая формулой Пуассона (18), в самом деле дает решение задачи Коши (9), если \(\phi(x, y, z) \) пепррана вместе со своими производными до третьего порядка, а \(\psi(x, y, z) \) до второго порядка включительно.

Из формул (18), (19) непосредственно вида непрерывная зависимость решения задачи Коши от начальных данных. Действительно, отпуская идею \(0 \) при \(M_{0} \) формулы (18), (19), можно представить так

\[
u(x, y, z, t) = \frac{1}{4\pi t} \int_{s_{1}} f(\phi(x + aty, y + atz, z) + at\psi) ds,
\]

\[
+ \frac{1}{4\pi} \psi(x + aty, y + atz, z + at\psi) ds.
\]

Здесь \(s_{1} \)- сфера, заданная уравнением \(x^{2} + y^{2} + z^{2} = 1 \). Теперь вместо функций \(\phi \) и \(\psi \) мы подставим в формулу (20) другие \(\phi_{0} \) и \(\psi_{0} \), такие, что

\[
|\phi - \phi_{0}| < \varepsilon, \quad \left| \frac{\partial \phi}{\partial x} - \frac{\partial \phi_{0}}{\partial x} \right| < \varepsilon, \quad \left| \frac{\partial \phi}{\partial y} - \frac{\partial \phi_{0}}{\partial y} \right| < \varepsilon,
\]

\[
\left| \frac{\partial \phi}{\partial z} - \frac{\partial \phi_{0}}{\partial z} \right| < \varepsilon, \quad |\psi - \psi_{0}| < \varepsilon,
\]

tо решение \(u_{0} \) задачи Коши, как это вытекает из формулы (20), для новых начальных данных будет мало отличаться от решения для старых, ибо

\[
u_{0} - u = \frac{1}{4\pi t} \int_{s_{1}} \left[(\phi_{0} - \phi) + f(\phi_{0} - \phi) + f(\psi_{0} - \psi) + f(\psi_{0} - \psi) \right] ds + \int_{0}^{t} \left(\frac{\partial \phi_{0}}{\partial x} - \frac{\partial \phi}{\partial x} \right) \partial x \partial t \psi_{0} ds \leq (1 + t + 3\varepsilon) \varepsilon.
\]

Из последней формулы следует, что решение и задачи Коши (9) непрерывным образом зависит от начальных данных на любом конечном временном интервале.

И наконец, используя представление (20), непосредственно проверить, что эта функция \(u(x, y, z, t) \) - решение задачи (9).
Задачи

1. Пусть функция \(u(x, y, z, t) \) является решением задачи Коши
 \[
 u_t = a^2 \Delta u, \quad u|_{t=0} = \varphi(x, y, z), \quad u|_{t=0} = 0.
 \]
 Докажите, что функция
 \[
 v(x, y, z, t) = \frac{t}{\int_0^t} u(x, y, z, \xi) d\xi
 \]
 является решением задачи Коши
 \[
 v_t = a^2 \Delta v, \quad v|_{t=0} = \varphi(x, y, z).
 \]

2. Докажите, что для существования решения задачи Коши
 \[
 u_t = a^2 \Delta u, \quad M(x, y, z) \in R^3,
 \]
 \[
 u|_{t=0} = f(x, g(y, z)), \quad u|_{t=0} = 0
 \]
 достаточно, чтобы функция \(g(y, z) \) была гармонической и \(f(x) \in C^2(R) \).

Найдите это решение.

3. Решите задачу:
 а) \(u_t = a^2 \left(u_{xx} + u_{yy} + u_{zz} \right), \quad u|_{t=0} = u|_{t=0} = x^2 + y^2 + z^2 ;

 б) \(u_t = a^2 \left(u_{xx} + u_{yy} + u_{zz} \right), \quad u|_{t=0} = u|_{t=0} = \cos \sqrt{x^2 + y^2 + z^2} .

Лекция 11. Волновое уравнение (Метод спуска, метод отражения, формула Кирхгоффа)

Явный вид решения волнового уравнения в трехмерном пространстве был получен в предыдущей лекции методом усреднения. А именно показано, что решение следующей задачи Коши
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right), \quad M(x, y, z) \in R^3, \quad t > 0
\]
\[
u(M,t) = \varphi(M), \quad \frac{\partial u(M,0)}{\partial t} = \psi(M)
\]

для формулы Пуассона
\[
u_t(x, y, z, t) = \frac{1}{4\pi} \int S \left[\frac{\partial \varphi(x + at \xi, y + at \eta, z + at \zeta) ds}{\partial s} \right] + \frac{t}{4\pi} \int S \left[\frac{\partial \psi(x + at \xi, y + at \eta, z + at \zeta) ds}{\partial s} \right],
\]
где \(S \) — сфера заданная уравнением \(\xi^2 + \eta^2 + \zeta^2 = 1 \).

§ 1. Метод спуска

Чтобы получить решение двумерного волнового уравнения
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)
\]
(уравнения колебаний мембраны), мы используем «метод спуска» Адамар. Пусть \(u = u(x, y, t) \) — решение уравнения (4) с начальными условиями
\[
\begin{align*}
 &u(x, y, 0) = \varphi(x, y), \quad \frac{\partial u(x, y, 0)}{\partial t} = \psi(x, y)
\end{align*}
\]
(5)

Тогда и можно рассматривать как решение задачи Коши (1), (2) в специальном случае, когда \(\varphi, \psi \) не зависят от \(z \). Следовательно, решение задачи (4), (5) согласно формуле (3) вычисляется так
\[
\begin{align*}
 &u(x, y, t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\psi(x + at \xi, y + at \eta) d\xi d\eta}{\sqrt{1 - \xi^2 - \eta^2}} + \frac{t}{2\pi} \int_{-\infty}^{\infty} \frac{\psi(x + at \xi, y + at \eta) d\xi d\eta}{\sqrt{1 - \xi^2 - \eta^2}}
\end{align*}
\]
Полагая \(M(x, y), \quad M'(x', y'), \quad x' = x + at \xi, \quad y' = y + at \eta \), последнюю формулу можно записать следующим образом
\[
\begin{align*}
 &u(M, t) = \frac{1}{2\pi a} \int_{MM} \frac{\varphi(M') dxdy}{\sqrt{a^2 x'^2 - |MM|^2}} + \frac{1}{2\pi a} \int_{MM} \frac{\psi(M') dxdy}{\sqrt{a^2 y'^2 - |MM|^2}}
\end{align*}
\]
§ 2. Метод отражения

Задача с начальными условиями для волнового уравнения в случае областей, ограниченных гладкостями, может быть решена методом отражений.

Рассмотрим, например, задачу для полупространства \(z > 0 \): найти решение волнового уравнения

\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\]

удовлетворяющее начальным условиям

\[
\begin{align*}
 u(x, y, z, 0) &= \varphi(x, y, z) \\
 \frac{\partial u(x, y, z, 0)}{\partial t} &= \psi(x, y, z)
\end{align*}
\]

и граничному условию

\[
u(x, y, 0, t) = 0 \quad \text{или} \quad \frac{\partial u(x, y, 0, t)}{\partial z} = 0.
\]

Решение этой задачи дается формулой (3), если начальные условия продолжить на все пространство нечетно по \(z \) (при \(u(x, y, 0, t) = 0 \))

\[
\varphi(x, y, z) = -\varphi(x, y, -z), \quad \psi(x, y, z) = -\psi(x, y, -z)
\]

или четно (при \(\frac{\partial u(x, y, 0, t)}{\partial z} = 0 \))

\[
\varphi(x, y, z) = \varphi(x, y, -z), \quad \psi(x, y, z) = \psi(x, y, -z).
\]

Проверим, что при нечетном по переменной \(z \) проделывании функций \(\varphi \) и \(\psi \) граничное условие \(u(x, y, 0, t) \) выполняется автоматически.

В самом деле из (3) следует, что

\[
u(x, y, 0, t) = \frac{1}{4\pi} \frac{\partial}{\partial t} \left[t \int_0^\infty \varphi(x + at\xi, y + atm, at\xi) d\tau \right] +
\]

\[
+ \frac{t}{4\pi} \int_0^\infty \psi(x + at\xi, y + atm, at\xi) d\tau = 0,
\]

так как поверхностные интегралы равны нулю при нечетных функциях \(\varphi \) и \(\psi \).

§ 3. Формула Кирхгоффа

Задача, которую мы рассмотрим в этом параграфе, — это задача с начальными условиями для неоднородного волнового уравнения

\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(M, t), \quad M(x, y, z) \in R^3,
\]

где «внешняя сила» \(f \) — известная функция. Поскольку разность двух решений уравнения (6) удовлетворяет однородному уравнению, для которого единственность установлена, то очевидно, что решение и уравнения (6) также определяется однозначно по начальным данным (2). Достаточно найти решение уравнения (6) с начальными данными вида

\[
u = 0, \quad \frac{\partial u}{\partial t} = 0 \quad \text{при} \quad t = 0,
\]

Тогда решение с более общими начальными данными вида (2) получится прибавлением кривой части выражения (3).

Решение неоднородного дифференциального уравнения с однородными начальными данными можно свести к решению задачи с начальными условиями для однородного волнового уравнения с помощью «интеграла Дюамеля» (метод импульсов). Пусть \(u(M, t, s) \) для любого \(s > 0 \) обозначаем решение уравнения

\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(M, s)
\]

удовлетворяющее начальным условиям

\[
u = 0, \quad \frac{\partial u}{\partial t} = f(M, s) \quad \text{при} \quad t = 0,
\]

тогда естественно обозначаем решение уравнения

\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(M, t)
\]

удовлетворяющее начальным условиям

\[
u = 0, \quad \frac{\partial u}{\partial t} = f(M, t) \quad \text{при} \quad t = 0.
\]
Такая функция \(u(x,y,z,t,s) \) существует и принадлежит классу \(C^2 \), если \(f \in C^2 \). Покажем, что функции

\[
u(M,t) = \int_0^t u(M,t-s) d s
\]

и есть искомое решение задачи (6), (7). Действительно \(u(M,0) = 0 \). Далее

\[
\frac{\partial u(M,t)}{\partial t} = \int_0^t \frac{\partial u(M,t-s)}{\partial t} ds + u(M,t).
\]

(11)

Полагая в последнем соотношении \(t = 0 \), получаем, что \(\frac{\partial u(M,0)}{\partial t} = 0 \). Итак, условия (7) выполнены. Теперь из (10) и (11) дифференцированием получаем

\[
\frac{\partial^2 u}{\partial \tau^2} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) = \frac{\partial u(M_0,t)}{\partial t} + \int_0^t \left[\frac{\partial^2 u}{\partial \tau^2} - a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \right] ds.
\]

(12)

И, наконец, учитывая (8) и (9), приходим к равенству (6).

Представляя вместо \(u \) его представление в виде (3), которое получается при \(\varphi = 0 \), \(\psi = f(M,s) \), мы получим из (10):

\[
u(M,t) = \frac{1}{4\pi} \int_0^t \left[f(x + a(t - \tau)z, y + a(t - \tau)\eta, z + a(t - \tau)\zeta) \right] d\tau
\]

Здесь мы заменили в формуле (10) параметр \(s \) на \(\tau \).

Полагая \(x' = x + a(t - \tau)z, \ y' = y + a(t - \tau)\eta, \ z' = z + a(t - \tau)\zeta \), последнюю формулу представим следующим образом:

\[
u(M,t) = \frac{1}{4\pi} \int_0^t \left[f(M', \tau) \int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau
\]

(12)

\[
= \frac{1}{4\pi a^2} \int_{0}^{t} \left[\int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau = \left[\int_{0}^{t} \int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau
\]

\[
= \frac{1}{4\pi a^2} \int_{|M'|} \int_{|M'|} \frac{1}{a^2(t-\tau)} dsr d\tau
\]

(13)

Формула (13) называется формулой Кирхгоффа.

При \(n = 2 \) формула (13) примет вид:

\[
u(M,t) = \frac{1}{2\pi a} \int_{|M'|} \frac{1}{|a^2 t^2 - |M'|^2|} \frac{1}{a} d\tau
\]

(13)

И, наконец, учитывая (8) и (9), приходим к равенству (6).

Представляя вместо \(u \) его представление в виде (3), которое получается при \(\varphi = 0 \), \(\psi = f(M,s) \), мы получим из (10):

\[
u(M,t) = \frac{1}{4\pi} \int_0^t \left[f(x + a(t - \tau)z, y + a(t - \tau)\eta, z + a(t - \tau)\zeta) \right] d\tau
\]

Здесь мы заменили в формуле (10) параметр \(s \) на \(\tau \).

Полагая \(x' = x + a(t - \tau)z, \ y' = y + a(t - \tau)\eta, \ z' = z + a(t - \tau)\zeta \), последнюю формулу представим следующим образом:

\[
u(M,t) = \frac{1}{4\pi} \int_0^t \left[f(M', \tau) \int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau
\]

(12)

\[
= \frac{1}{4\pi a^2} \int_{0}^{t} \left[\int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau = \left[\int_{0}^{t} \int_{|M'|} \frac{1}{a^2(t-\tau)} dsr \right] d\tau
\]

(13)

Формула (13) называется формулой Кирхгоффа.

При \(n = 2 \) формула (13) примет вид:

\[
u(M,t) = \frac{1}{2\pi a} \int_{|M'|} \frac{1}{|a^2 t^2 - |M'|^2|} \frac{1}{a} d\tau
\]

(13)

Задачи

1. Доказать, что если функции \(f, u_0, u_1 \) — гармонические в \(\mathbb{R}^n \)

\(x = (x_1, x_2, ..., x_n) \), \(\varphi(t) \in C^l (l \geq 0) \), то решение задачи Коши

\(u_{tt} = \nabla^2 \Delta u + g(t) f(x_1, x_2, ..., x_n) \); \(|u|_{t=0} = u_0 (x) \); \(u|_{t=0} = u_1 (x) \)

выражается формулой

\[
u(x,t) = u_0 (x) + t u_1 (x) + f(x) \int_0^t \varphi(t) g(t) d\tau.
\]

2. Найти решение задачи Коши

\(u_{tt} = a^2 \Delta u + f(x) \); \(|u|_{t=0} = u_0 (x) \); \(u|_{t=0} = u_1 (x) \)

если \(\Delta^m f = 0 \), \(\Delta^m u_0 = 0 \), \(\Delta^m u_1 = 0 \).
§1. Схема метода разделения переменных

В этом параграфе мы ограничиваемся изложением формальной схемы решения задачи (1) – (3). С этой целью рассмотрим следующую задачу:

Найти непрерывное решение однородного уравнения (1), удовлетворяющее граничным условиям (3), представимое в виде произведения

\[u(M,t) = \psi(M) T(t). \]

(4)

Подставим предполагаемую форму решения (4) в (1) и разделим, как обычно, переменные, приходим к следующим уравнениям для функций \(\psi(M) \) и \(T(t) \):

\[\text{div}(\rho \text{ grad } u) - q u + \lambda \rho u = 0, \]

(5)

\[u|_{S} = 0; \]

(6)

\[T^{s} + \lambda T = 0. \]

Для \(\psi(M) \) получаем задачу на собственные значения (задачу Штурма–Лиувилля):

Найти те значения параметра \(\lambda \), при которых существуют непрерывные решения задач (5), а также найти эти решения. Такие значения параметра \(\lambda \) называются собственными значениями, а соответствующие им непрерывные решения — собственными функциями задачи (5).

В нашем случае уравнение для собственных функций представляет собой уравнение с частными производными, вследствие чего его трудно рассчитывать на получение явного представления собственных функций для произвольной области \(\Omega \). Мы рассмотрим общие свойства собственных функций и собственных значений и проведем формальную схему метода разделения переменных. Перечислим эти свойства.

1. Существует счетное множество собственных значений

\[\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n} \leq \ldots, \]

которые соответствуют собственные функции

\[\psi_{1}(M), \psi_{2}(M), \ldots, \psi_{n}(M), \ldots. \]
Умножив первое уравнение на $v_m(M)$ и вычитая из него второе уравнение, умноженное на $v_n(M)$, находим:

$$\left[\int_{\Omega} \rho(M) \left(v_n \frac{\partial u_n}{\partial n} - v_m \frac{\partial u_m}{\partial n} \right) d\sigma + (\lambda_n - \lambda_m) \int_{\Omega} \rho(M) u_n u_m d\sigma \right] = 0.$$

Отсюда с использованием формулы Остроградского нетрудно получить соотношение

$$\left[\int_{\Omega} \rho(M) \frac{\partial u_n}{\partial n} d\sigma + (\lambda_n - \lambda_m) \int_{\Omega} \rho(M) u_n u_m d\sigma \right] = 0.$$

Теперь в силу граничных условий $u_n|_S = 0$ и $u_m|_S = 0$, получим,

$$\left(\lambda_n - \lambda_m\right) \int_{\Omega} \rho(M) u_n u_m d\sigma = 0,$$

откуда следует, что при $\lambda_n \neq \lambda_m$

$$\int_{\Omega} \rho(M) u_n u_m d\sigma = 0,$$

t.е. собственные функции, соответствующие разным собственным значениям, ортогональны между собой с весом $\rho(M)$.

Если собственные функции, соответствующие некоторому λ_n, не ортогональны между собой, то мы можем ортогонализировать их и получить новую систему собственных функций, ортогональных между собой и соответствующих тому же λ_n.

Совокупность такой системы собственных функций для разных λ_n образует ортогональную систему собственных функций рассматриваемой краевой задачи (5).

Для доказательства положительности собственных значений (свойство 2) достаточно воспользоваться первоформулей Грина

$$\left[\int_{\Omega} \rho(M) \frac{\partial u_n}{\partial n} d\sigma + (\lambda_n - \lambda_m) \int_{\Omega} \rho(M) u_n u_m d\sigma \right] = 0.$$

Отсюда видно, что при $q \geq 0$ собственные значения λ_n положительны.
Вернемся теперь к уравнению в частных производных. Решение уравнения (6) при \(\lambda = \lambda_n \) имеет вид
\[T_n(t) = A_n \cos \sqrt{\lambda_n} t + B_n \sin \sqrt{\lambda_n} t, \]
tак что решение нашей основной вспомогательной задачи будет произведение
\[u_n(M,t) = T_n(t) u_n(M) = (A_n \cos \sqrt{\lambda_n} t + B_n \sin \sqrt{\lambda_n} t) u_n(M). \]
Решение исходной задачи (1) – (3) естественно искать в виде суммы
\[u(M,t) = \sum_{n=1}^{\infty} u_n(M,t) = \sum_{n=1}^{\infty} (A_n \cos \sqrt{\lambda_n} t + B_n \sin \sqrt{\lambda_n} t) u_n(M). \]
Удовлетворяя начальным условиям (2)
\[\phi(M) = \sum_{n=1}^{\infty} A_n u_n(M), \quad \psi(M) = \sum_{n=1}^{\infty} B_n \sqrt{\lambda_n} u_n(M) \]
и пользуясь теоремой разложимости 4, находим:
\[A_n = \phi_n, \quad B_n \sqrt{\lambda_n} = \psi_n, \]
где \(\phi_n \) и \(\psi_n \) – коэффициенты Фурье функций \(\phi(M) \) и \(\psi(M) \) в их разложении по ортогональной с весом \(\rho(M) \) системе функций \(u_n(M) \). Тем самым формальное построение решения исходной задачи закончено.

§2. Колебания прямоугольной мембраны

Пусть в плоскости \((x,y) \) расположена прямоугольная мембра на со сторонами \(b_1 \) и \(b_2 \), закрепленная по краям и возбуждаемая с помощью начального отклонения и начальной скорости. Для нахождения функции \(u(x,y,t) \), характеризующей отклонение мембраны от положения равновесия, мы должны решить уравнение колебаний
\[\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \]
при начальных данных
\[u(x,0,0) = \phi(x,y), \quad \frac{\partial u(x,y,0)}{\partial t} = \psi(x,y) \]
(9)
и граничных условиях
\[u(0,y,t) = 0, \quad u(b_1,y,t) = 0, \quad u(x,0,t) = 0, \quad u(x,b_2,t) = 0. \]
(10)
Мы имеем решение методом разложения переменных, полагая
\[u(x,y,t) = u(x,y) T(t). \]
(12)
Подставляя (12) в (8) и разделяя переменные, получаем для функции \(T(t) \) уравнение
\[T''(t) + a^2 \lambda T = 0, \]
(13)
а для функции \(u(x,y) \) – следующую краевую задачу:
\[u_{xx} + u_{yy} + \lambda u = 0; \]
(14)
\[u(0,y) = 0, \quad u(b_1,y) = 0, \quad u(x,0) = 0, \quad u(x,b_2) = 0. \]
Теперь и задачу (14) будем решать методом разложения переменных, полагая
\[u(x,y) = X(x) Y(y). \]
(15)
Приведя разложение переменных, получаем следующие алгебраические уравнения на собственные значения:
\[X'' + \chi X = 0, \quad Y'' + \mu Y = 0; \quad X(0) = 0, \quad X(b_1) = 0; \quad Y(0) = 0, \quad Y(b_2) = 0, \]
(16)
где \(\chi \) и \(\mu \) – постоянные разделения переменных, связанных соотношением
\[\chi + \mu = \lambda. \]
(17)
Решения уравнений (15) и (16) имеют вид
\[X_n(x) = \sin \frac{m \pi}{b_1} x, \quad X_n = \left(\frac{m \pi}{b_1} \right)^2 \]
и
\[Y_m(y) = \sin \frac{m \pi}{b_2} y, \quad \mu_m = \left(\frac{m \pi}{b_2} \right)^2 \]
соответственно. Таким образом, согласно (17) собственные значения
\[\lambda_{nm} = \left(\frac{m \pi}{b_1} \right)^2 + \left(\frac{m \pi}{b_2} \right)^2 \]
(18)
задачи (14) соответствуют собственные функции
\[u_{n,m} = A_{nm} \sin \frac{m \pi}{b_1} x \sin \frac{m \pi}{b_2} y, \]
(19)
где \(A_{nm} \) – некоторый постоянный миражитель. Выберем его так, чтобы норма функций \(\psi_{nm} \) с весом 1 была равна единице:

\[
\int_0^b \int_0^{b_2} \psi_{nm}^2(x,y) dxdy = A_{nm}^2 \int_0^b \int_0^{b_2} \sin^2 \frac{n\pi x}{b} \sin^2 \frac{m\pi y}{b_2} dxdy = 1.
\]

Отсюда

\[
A_{nm} = \frac{2}{\sqrt{b_1 b_2}}.
\]

Ортогональность функций \(\{\psi_{nm}\} \) очевидна. Следовательно, функции

\[
\psi_{nm} = \frac{2}{\sqrt{b_1 b_2}} \sin \frac{n\pi x}{b} \sin \frac{m\pi y}{b_2} \quad (18)
\]

образуют ортогональную систему собственных функций прямоугольной мембраны (14). Далее из (13) получаем,

\[
T_{nm}(t) = A_{nm} \cos \sqrt{\lambda_{nm}} at + B_{nm} \sin \sqrt{\lambda_{nm}} at,
\]

и таким образом получаем семейство частных решений задачи (8), (10), (11):

\[
u_{nm} = \psi_{nm}(x,y)T_{nm}(t).
\]

Теперь, исходя из решения уравнения (8) при лопаточных условиях (9)–(11) имеет вид

\[
u(x,y,t) = \sum_{m,n=1}^\infty (A_{nm} \cos \sqrt{\lambda_{nm}} at + B_{nm} \sin \sqrt{\lambda_{nm}} at) \psi_{nm}(x,y),
\]

где \(\psi_{nm} \) определяются формулой (18), а коэффициенты \(A_{nm} \) и \(B_{nm} \) равны

\[
A_{nm} = \frac{h_2}{(\pi^2 \lambda_{nm}^2)} \int_0^b \int_0^{b_2} \psi_{nm}(x,y) dxdy = \frac{h_2}{\sqrt{b_1 b_2}} \left(\frac{b_2}{b_2} \right) \int_0^b \int_0^{b_2} \psi_{nm}(x,y) \sin \frac{n\pi x}{b} \sin \frac{m\pi y}{b_2} dxdy,
\]

\[
B_{nm} = \frac{1}{\sqrt{\lambda_{nm}}} \left(\frac{h_2}{\sqrt{b_1 b_2}} \right) \int_0^b \int_0^{b_2} \psi_{nm}(x,y) \sin \frac{n\pi x}{b} \sin \frac{m\pi y}{b_2} dxdy.
\]

Сходимость ряда (19) и возможность его точного дифференцирования можно обосновать, используя теорию кратных рядов Фурье.

II. Гиперболические уравнения

Задачи

1. Решить задачу о свободных колебаниях квадратной мембраны

\[(0 < x < p, \quad 0 < y < p), \quad \text{закрепленной вдоль контура, если}
\]

\[
u\big|_{t=0} = A\sin \frac{\pi x}{p} \sin \frac{\pi y}{p}, \quad \frac{\partial u}{\partial t}\big|_{t=0} = 0.
\]

2. Решить следующую смешанную задачу:

\[
u_y = \Delta u, \quad 0 < x < \pi, \quad 0 < y \leq \pi,
\]

\[u|_{x=0} = u|_{x=\pi} = u|_{y=0} = u|_{y=\pi} = 0,
\]

\[u|_{t=0} = 3\sin x \sin 2y, \quad u|_{t=0} = 5\sin 3x \sin 4y.
\]

3. Решить задачу о свободных колебаниях прямоугольной мембраны

\[(0 < x < p, \quad 0 < y < q), \quad \text{закрепленной вдоль контура, если}
\]

\[u|_{t=0} = Ax \psi(x-p)(y-q), \quad \frac{\partial u}{\partial t}\big|_{t=0} = 0.
\]
III. Уравнение теплопроводности

Лекция 13. Одномерное уравнение теплопроводности.
Постановка краевых задач. Принцип максимума. Теоремы единственности

Процесс распространения температуры в стержне, теплопроводном с боков и достаточно тонком, чтобы в любой момент времени температуру во всех точках поперецного сечения можно было считать одинаковой, может быть описан функцией \(u(x,t) \), представляющей температуру в сечении \(x \) в момент времени \(t \). Эта функция \(u(x,t) \) — решение уравнения

\[
\begin{align*}
\rho c \frac{\partial u}{\partial t} &= \frac{\partial}{\partial x} \left(k \frac{\partial u}{\partial x} \right) + F(x,t),
\end{align*}
\]

называемое уравнением теплопроводности. Здесь \(\rho(x) \), \(c(x) \) и \(k(x) \) — соответственно плотность, удельная теплоемкость и коэффициент теплопроводности стержня в точке \(x \), а \(F(x,t) \) — интенсивность источников тепла в точке \(x \) в момент времени \(t \).

§ 1. Постановка краевых задач

Для выделения единственного решения уравнения теплопроводности необходимо к уравнению приписать начальные и граничные условия.

Начальное условие в отличие от уравнения гиперболического типа состоит лишь в задании значений функции \(u(x,t) \) в начальный момент \(t_0 \).

Граничные условия могут быть различны в зависимости от температурного режима на границах. Рассматривают три основных типа граничных условий.

1. На конце стержня \(x = 0 \) задана температура

\[u(0,t) = \mu(t), \]

где \(\mu(t) \) — функция, заданная в некотором промежутке \(t_0 \leq t \leq T \), причем \(T \) есть промежуток времени, в течение которого изучается процесс.

2. На конце \(x = t \) задано значение производной

\[\frac{\partial u(t,t)}{\partial x} = v(y), \]

К этому условию мы приходим, если задана величина теплового потока \(Q(t,t) \), протекающего через торцевое сечение стержня

\[Q(t,t) = -k \frac{\partial u(t,t)}{\partial x}. \]

(\(Q(t,t) \) — плотность теплового потока, растекающегося в единицу времени через площадь в 1 см², откуда \(\frac{\partial u(t,t)}{\partial x} = v(y) \), где \(v(y) \) — известная функция, выражающаяся через заданный поток \(Q(t,t) \) по формуле

\[v(y) = -\frac{Q(t,t)}{k}. \]

3. На конце \(x = t \) задано линейное соотношение между производной и функцией

\[\frac{\partial u(t,x)}{\partial x} = \lambda [u(t,x) - \theta(t)]. \]

Это граничное условие соответствует теплообмену по закону Ньютона на поверхности тела с окружающей средой, температура которой \(\theta \) известна. Пользуясь двумя выражениями для теплового потока, вытекающего через сечение \(x = t \),

\[Q = h(u - \theta) \]
Введение математической физики

и

\[Q = -k \frac{\partial u}{\partial x}, \]

получаем математическую формулировку третьего граничного условия в виде

\[\frac{\partial u(t, t)}{\partial x} = -\lambda [u(t, t) - 0(t)], \]

где \(\lambda = \frac{h}{k} \) — коэффициент теплообмена, \(0(t) \) — некоторая заданная функция.

Для конца \(x = 0 \) стержня \((0, t)\) третье граничное условие имеет вид

\[\frac{\partial u(0, t)}{\partial x} = \lambda [u(0, t) - 0(t)]. \]

Граничные условия при \(x = 0 \) и \(x = l \) могут быть разных типов, так что число различных задач велико.

Первая краевая задача состоит в отыскании решения \(u(t, x) \) уравнения теплопроводности при \(0 < x < l, \quad 0 < t \leq T \), удовлетворяющих условиям

\[u(x, 0) = \phi(x), \quad 0 \leq x \leq l, \]

\[u(0, t) = \mu_1(t), \quad u(l, t) = \mu_2(t), \quad 0 \leq t \leq T, \]

где \(\phi(x) \), \(\mu_1(t) \) и \(\mu_2(t) \) — заданные функции.

Аналогично ставится и другие краевые задачи с различными комбинациями краевых условий при \(x = 0 \) и \(x = l \). Возможны краевые условия более сложного типа, чем те, которые были рассмотрены выше.

Кроме названных здесь, задач часто встречаются их предельные случаи. Рассмотрим процесс теплопроводности в очень длинном стержне. В течение небольшого промежутка времени влияние температурного режима, заданного на границе, в центральной части стержня сказывается весьма слабо, и температура на этом участке определяется в основном лишь начальным распределением температуры. В задачах подобного типа обычно считают, что стержень имеет бесконечную длину. Таким образом, ставится задача с

начальными условиями (задача Коши) о распределении температуры на бесконечной прямой:

Найти решение уравнения теплопроводности в области \(-\infty < x < \infty \) и \(t \geq t_0 \), удовлетворяющее условию

\[u(x, t_0) = \varphi(x), \quad (-\infty < x < +\infty), \]

где \(\varphi(x) \) — заданная функция.

Аналогично, если участок стержня, температура которого нас интересует, находится вблизи одного конца и далеко от другого, то в этом случае температура практически определяется температурным режимом близкого конца и начальными условиями. В задачах подобного типа обычно считают, что стержень полубесконечен, и координата, отсчитываемая от конца, меняется в пределах \(0 \leq x \leq \infty \). Приведем в качестве примера формулировку первой краевой задачи для полубесконечного стержня:

Найти решение уравнения теплопроводности в области \(0 < x < \infty \) и \(t_0 \leq t \), удовлетворяющее условиям

\[u(x, t_0) = \varphi(x), \quad 0 < x < \infty, \]

\[u(0, t) = \mu(t), \quad t \geq t_0, \]

где \(\varphi(x) \) и \(\mu(t) \) — заданные функции.

§ 2. Принцип максимума

В этом параграфе мы рассмотрим однородный стержень, т.е. \(k, c, \rho \) — постоянные. Кроме того, будем считать, что тепловые источники отсутствуют \((F(x, t) = 0) \). Тогда уравнение теплопроводности (1) принимает простой вид:

\[\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}. \]

Здесь \(a^2 = k / \rho c \). Докажем следующее свойство решений этого уравнения, которое мы будем называть принципом максимального значения.
Теорема 1. Если функция \(u(x,t) \), определенная и непрерывная в замкнутой области \(0 \leq t \leq T \) и \(0 \leq x \leq 1 \), удовлетворяет уравнению теплопроводности (2) в точках области \(0 < x < 1 \), \(0 < t \leq T \), то максимальное и минимальное значение функции \(u(x,t) \) достигаются или в начальный момент, или в точках граничных \(x = 0 \) или \(x = 1 \).

Доказательство. Так как теорема о минимуме сводится к теореме о максимуме переменной знака \(u(x,t) \), то мы ограничимся доказательством теоремы о максимуме.

Доказательство теоремы ведется от противного. Обозначим через \(M \) максимальное значение \(u(x,t) \) при \(t = 0 \) \((0 \leq x \leq 1)\), или при \(x = 0 \), или при \(x = 1 \) \(0 \leq t \leq T\) и допустим, что в некоторой точке \((x_0,t_0)\) \((0 < x < 1, 0 < t \leq T)\) функции \(u(x,t) \) достигает своего максимального значения

\[u(x_0,t_0) = M + \varepsilon. \]

Сравним значения левой и правой частей уравнения (2) в точке \((x_0,t_0)\) функция достигает своего максимального значения, то необходимо должно быть

\[\frac{\partial u(x_0,t_0)}{\partial x} = 0 \quad \text{и} \quad \frac{\partial^2 u(x_0,t_0)}{\partial x^2} \leq 0. \]

Далее, так как \(u(x_0,t) \) достигает максимального значения при \(t = t_0 \), то

\[\frac{\partial u(x_0,t_0)}{\partial t} \geq 0. \]

(4)

Так как, если \(t_0 < T \), то \(\frac{\partial u(x_0,t_0)}{\partial t} = 0 \), если же \(t_0 = T \), то \(\frac{\partial u(x_0,t_0)}{\partial t} \geq 0. \)

Далее рассмотрим вспомогательную функцию

\[u(x,t) = u(x,t) + k(t_0 - t), \]

где \(k \) — некоторое постоянное число. Определяя, что

\[u(x_0,t_0) = u(x_0,t_0) = M + \varepsilon \]

и

\[k(t_0 - t) \leq kT. \]

Выберем \(k > 0 \) так, чтобы \(kT \) было меньше \(\frac{1}{2} \), т.е. \(k < \frac{E}{2T} \), тогда максимальное значение \(u(x,t) \) при \(t = 0 \) или при \(x = 0, x = 1 \) не будет превосходить \(M + \frac{E}{2} \), т.е.

\[u(x,t) \leq M + \frac{E}{2} \quad \text{при} \quad t = 0 \quad \text{или} \quad x = 0, \quad \text{или} \quad x = 1, \]

так как для этих аргументов первое слагаемое формулы (5) не превосходит \(M \), а второе \(-\frac{E}{2}\).

В силу непрерывности функции \(u(x,t) \) она должна в некоторой точке \((x_1,t_1)\) достигать своего максимального значения. Очевидно, что

\[u(x_1,t_1) \geq u(x_0,t_0) = M + \varepsilon. \]

Поскольку \(t_1 > 0 \) и \(0 < x_1 < 1 \), так как при \(t = 0 \) или \(x = 0,1 \) имеет место неравенство (6). В точке \((x_1,t_1)\) по аналогии с (3) и (4), должно быть

\[\frac{\partial^2 u(x_1,t_1)}{\partial x^2} \leq 0, \quad \frac{\partial u(x_1,t_1)}{\partial t} \geq 0, \]

Учитывая (5), находим:

\[\frac{\partial^2 u(x_1,t_1)}{\partial x^2} = \frac{\partial^2 u(x_1,t_1)}{\partial x^2} \leq 0, \]

\[\frac{\partial u(x_1,t_1)}{\partial t} = \frac{\partial u(x_1,t_1)}{\partial t} + k \geq k > 0. \]

Отсюда следует, что

\[\frac{\partial u(x_1,t_1)}{\partial t} - \alpha^2 \frac{\partial^2 u(x_1,t_1)}{\partial x^2} \geq k > 0, \]

t.е., уравнение (2) во внутренней точке \((x_1,t_1)\) не удовлетворяется. Тем самым доказано, что решение \(u(x,t) \) уравнения (2) внутри области не может.
§ 3. Теоремы единственности

Обратимся теперь к установлению ряда следствий из принципа максимального значения. Прежде всего докажем теорему единственности для первой краевой задачи.

Теорема 2. Если две функции $u_1(x,t)$ и $u_2(x,t)$, определенные и непрерывные в области $0 < x < l$, $0 < t < T$, удовлетворяют уравнению теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) \quad (0 < x < l, \ t > 0),$$

однородным начальным и граничным условиям

$$u_1 \left(x,0 \right) = u_2 \left(x,0 \right) = \varphi \left(x \right),$$

$$u_1 \left(0,t \right) = u_2 \left(0,t \right) = \mu_1 \left(t \right),$$

$$u_1 \left(l,t \right) = u_2 \left(l,t \right) = \mu_2 \left(t \right),$$

то $u_1(x,t) = u_2(x,t)$.

Доказательство. Рассмотрим функцию

$$\psi(x,t) = u_2(x,t) - u_1(x,t).$$

Функция $\psi(x,t)$ является решением уравнения теплопроводности (2).

Таким образом, в силу теоремы 1 она достигает своего максимального и минимального значений или при $t = 0$, или при $x = 0$, или при $x = l$. Однако по условию мы имеем:

$$\psi(x,0) = 0, \ \psi(0,t) = 0, \ \psi(l,t) = 0.$$

Пользуя

$$\psi(x,t) = 0,$$

т.е.

$$u_1(x,t) = u_2(x,t).$$

Отсюда следует, что решение первой краевой задачи единственно.

Нетрудно доказать справедливость следующих следствий из принципа максимального значения.

Следствие 1. Если два решения уравнения (7) $u_1(x,t)$ и $u_2(x,t)$ удовлетворяют условиям

$$u_1 \left(x,0 \right) \leq u_2 \left(x,0 \right), \ u_1 \left(0,t \right) \leq u_2 \left(0,t \right), \ u_1 \left(l,t \right) \leq u_2 \left(l,t \right),$$

то $u_1(x,t) \leq u_2(x,t)$ для всех значений $0 < x < l$, $0 < t < T$.

Следствие 2. Если для двух решений уравнения теплопроводности (7) $u_1(x,t)$ и $u_2(x,t)$ имеет место неравенство

$$\left| u_1 \left(x,t \right) - u_2 \left(x,t \right) \right| \leq \varepsilon$$

для $t = 0$, $x = 0$, $x = l$, то $\left| u_1 \left(x,t \right) - u_2 \left(x,t \right) \right| \leq \varepsilon$ для всех $x,t, 0 < x < l, 0 < t < T$.

Следствие 2 позволяет установить непрерывную зависимость решения первой краевой задачи от начального и граничных значений.

Теорема 3. Если $u_1(x,t)$ и $u_2(x,t)$ – непрерывные, ограниченные во всей области изменения переменных (x,t) функции, удовлетворяют уравнению (7) при $-\infty < x < \infty$, $t > 0$ и условию $u_1 \left(x,0 \right) = u_2 \left(x,0 \right) \ (-\infty < x < \infty)$, то $u_1 \left(x,t \right) = u_2 \left(x,t \right) \ (-\infty < x < \infty , \ t \geq 0)$.

Из теоремы 3 вытекает единственность решения задачи Коши для уравнения теплопроводности в классе ограниченных функций.

Доказательство этой теоремы также основано на принципе максимума.
Лекция 14. Метод разделения переменных для уравнения теплопроводности. Однородная краевая задача.
Функция мгновенного источника.
Неоднородное уравнение теплопроводности.
Общая первая краевая задача

§1. Однородная краевая задача

Изучение общей первой краевой задачи для уравнения теплопроводности на отрезке:

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad 0 < x < l, \quad t > 0,$$

(1)

$$u(x,0) = \phi(x), \quad 0 \leq x \leq l,$$

(2)

$$u(0,t) = u_1(t), \quad u(l,t) = u_2(t), \quad t \geq 0,$$

(3)

мы начнем с решения следующей простейшей задачи.

Найти непрерывное в замкнутой области \((0 \leq x \leq l, 0 \leq t \leq T)\) решение однородного уравнения

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < x < l, \quad 0 < t \leq T,$$

(4)

удовлетворяющее начальному условию

$$u(x,0) = \phi(x), \quad 0 \leq x \leq l$$

(5)

и однородным граничным условиям

$$u(0,t) = 0, \quad u(l,t) = 0, \quad 0 \leq t \leq T.$$

(6)

Предположим, что решение \(u(x,t)\) задачи (4)–(6) можно представить как сумму ряда Фурье

$$u(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n\pi x}{l},$$

(7)

Имеем

$$\left| \frac{d u_n(t)}{dt} \sin \frac{n\pi x}{l} \right| = \left| u_n(0) \left(\frac{n\pi a^2}{l} \right) \sin \frac{n\pi x}{l} \right| \leq \left| u_n(0) \right| \left(\frac{n\pi a^2}{l} \right)

\leq \left(\frac{n\pi a^2}{l} \right) \left| u_n(0) \right| \left(\frac{n\pi a^2}{l} \right),$$

и так как

$$\left| u_n(0) \right| \leq 2M,$$

то получаем оценку

$$\left| \frac{d u_n(t)}{dt} \sin \frac{n\pi x}{l} \right| \leq 2M \left(\frac{n\pi a^2}{l} \right) \left(\frac{n\pi a^2}{l} \right)^t \quad \text{для} \quad t \geq T.$$
Итак, задача нахождения решения первой краевой задачи для однородного уравнения с нулевыми граничными условиями и непрерывным, кусочно-постоянным начальным условием решена полностью.

§ 2. Функция мгновенного источника

Преобразуем полученное решение (7), заменив $u_0(t)$ на значениями (8):

$$u(x,t) = \sum_{n=1}^{\infty} \left[\frac{2}{n \pi} \int_0^t \sin \frac{n \pi x}{l} \sin \frac{n \pi a}{l} e^{-\frac{n^2 \pi^2 t}{l}} \, dt \right] e^{i n \pi x \sin \frac{n \pi x}{l}} \frac{1}{n \pi} \sin \frac{n \pi x}{l}. $$

Изменение порядков суммирования и интегрирования всегда законно при $t > 0$ в силу того, что ряд в скобках сходится равномерно по ξ при $t > 0$.

Обозначим

$$G(x, \xi, t) = \sum_{n=1}^{\infty} \left[\frac{2}{n \pi} \int_0^t \sin \frac{n \pi x}{l} \sin \frac{n \pi a}{l} e^{-\frac{n^2 \pi^2 t}{l}} \, dt \right] e^{i n \pi x \sin \frac{n \pi x}{l}} \frac{1}{n \pi} \sin \frac{n \pi x}{l}. $$

Пользуясь функцией $G(x, \xi, t)$, можно представить функцию $u(x,t)$ в виде

$$u(x,t) = \int_0^t G(x, \xi, t) \phi(\xi) \, d\xi. $$(9)

Функция $G(x, \xi, t)$ называется функцией мгновенного точечного источника.

Покажем, что функция источника $G(x, \xi, t)$, рассматриваемая как функция x, представляет распределение температуры в стержне $0 \leq x \leq l$ в момент времени t, если температура в начальный момент $t = 0$ равна нулю и в этот момент в точке $x = \xi$ мгновенно выделяется количество тепла $Q = c \rho$, а на краях стержня все время поддерживается нулевая температура.

Пусть функция $\phi_\epsilon(x)$, равная нулю вне интервала $(\xi - \epsilon, \xi + \epsilon)$, а внутри этого интервала положительная и непрерывно-дифференцируемая, задает начальное распределение температуры в стержне. Тогда количество тепла...
Вызванное изменение температуры на величину $\varphi_0(x)$, вычисляется по формуле

$$Q = cp \int_{-\infty}^{\infty} \varphi_0(\xi) d\xi,$$

(10)

а сам процесс распространения температуры в этом случае определяется формулой (9):

$$u_0(x,t) = \int_0^t G(x,\xi,t) \varphi_0(\xi) d\xi.$$

(11)

Совершим теперь предельный переход при $e \to 0$. Принимая во внимание непрерывность G при $t > 0$ и равенство (10) и применяя теорему о среднем значении при фиксированных значениях x, t, формулу (11) представим так

$$u_0(x,t) = \frac{\xi}{c} \int_{-\infty}^{\infty} G(x,\xi,t) d\xi = \frac{\xi}{c} \int_{-\infty}^{\infty} \varphi_0(\xi) d\xi = \frac{Q}{c}$$

где $\xi \in (\xi - e, \xi + e)$. Теперь в силу непрерывности функции $G(x,\xi,t)$ по ξ при $t > 0$ получаем:

$$\lim_{e \to 0} u_0(x,t) = \frac{Q}{c} G(x,\xi^*,t).$$

(12)

Отсюда следует, что $G(x,\xi,t)$ представляет температуру в точке x в момент t, вызванную действием мгновенного точечного источника мощности $Q = cp$, помещенного в момент $t = 0$ в точке ξ промежутка $(0,1)$.

§3. Неоднородное уравнение теплопроводности

Рассмотрим неоднородное уравнение теплопроводности

$$\frac{\partial u}{\partial t} - \frac{e}{a} \frac{\partial^2 u}{\partial x^2} + f(x,t)$$

(12)

с начальным условием

$$u(x,0) = 0$$

(13)

и граничными условиями

$$u(0,t) = 0, \quad u(l,t) = 0.$$

(14)

Будем искать решение этой задачи $u(x,t)$ в виде ряда Фурье по функциям

$$u(x,t) = \sum_{n=1}^{\infty} u_n(t) \sin \frac{n \pi}{l} x,$$

(15)

считая при этом t параметром. Для нахождения $u(x,t)$ нало определить функции $u_n(t)$. Представим функцию $f(x,t)$ в виде ряда

$$f(x,t) = \sum_{n=1}^{\infty} f_n(t) \sin \frac{n \pi}{l} x,$$

(16)

gде

$$f_n(t) = \frac{2}{l} \int_0^l f(\xi,t) \sin \frac{n \pi}{l} \xi d\xi.$$

(17)

Полагая функции (15), (16) в исходное уравнение (12), будем иметь

$$\sum_{n=1}^{\infty} \left(\frac{n \pi}{l} \right)^2 u_n(t) + \frac{d u_n(t)}{dt} = f_n(t).$$

(17)

Это уравнение будет удовлетворено, если все коэффициенты разложения равны нулю, т.е.

$$\frac{du_n(t)}{dt} = -\left(\frac{n \pi}{l} \right)^2 u_n(t) + f_n(t).$$

(17)

Пользуясь начальным условием для $u(x,t)$

$$u(x,0) = \sum_{n=1}^{\infty} u_n(0) \sin \frac{n \pi}{l} x = 0,$$

(17)

получаем начальное условие для $u_n(t)$:

$$u_n(0) = 0.$$

(18)

Решая обыкновенное дифференциальное уравнение (17) с нулевым начальным условием (18), находим:

$$u_n(t) = \int_0^t \left(\frac{n \pi}{l} \right)^2 f_n(\tau) d\tau.$$

(19)
Уравнения математической физики

Подставляя выражение (19) для \(u_n(t) \) в формулу (15), получим решение исходной задачи в виде

\[
 u(x,t) = \frac{L}{\pi} \sum_{n=1}^{\infty} \int_{0}^{L} \left(\frac{t}{L} \right)^{n-1} f_n(t) \sin \frac{n\pi x}{L} \, dt.
\]

(20)

И, наконец, воспользовавшись выражением (16) для \(f_n(t) \), найденное решение (20) можно представить с помощью функции точечного источника \(G(x,\xi,\tau) \) следующим образом

\[
 u(x,t) = \int_{0}^{t} \int_{0}^{L} G(x,\xi,\tau) f(\xi,\tau) \, d\xi \, d\tau.
\]

§4. Общая первая краевая задача

Рассмотрим общую первую краевую задачу для уравнения теплопроводности (1) – (3). Введем новую неизвестную функцию \(u(x,t) \)

\[
 u(x,t) = u(x,t) - U(x,t),
\]

представляющую отклонение от некоторой известной функции \(U(x,t) \).

Эта функция \(u(x,t) \) будет выражаться как решение уравнения

\[
 \frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad f(x,t) = f(x,t) - \left(\frac{\partial U}{\partial t} - \alpha^2 \frac{\partial^2 U}{\partial x^2} \right)
\]

с дополнительными условиями

\[
 u(x,0) = \varphi(x), \quad u(0,t) = \bar{\varphi}(t), \quad u(L,t) = \bar{\varphi}(L),
\]

\[
 u(x,0) = \varphi(x) - U(x,0), \quad u(0,t) = \bar{\varphi}(t) - U(0,t), \quad u(L,t) = \bar{\varphi}(L) - U(L,t).
\]

Выберем вспомогательную функцию \(U(x,t) \) таким образом, чтобы

\[
 \varphi_1(t) = 0 \quad \text{и} \quad \varphi_2(t) = 0,
\]

для чего достаточно положить

\[
 U(x,t) = \mu_1(t) + \frac{L}{\pi} \left(\alpha^2 \frac{\partial^2 U}{\partial x^2} - \mu_1(t) \right)
\]

II, Уравнение теплопроводности

Таким образом, нахождение функции \(u(x,t) \), дающей решение общей краевой задачи, сводится к нахождению функции \(u(x,t) \), дающей решение краевой задачи с нулевыми граничными условиями. Последнюю функцию \(u(x,t) \)
можно представить как сумму решений задач (4) – (6) и задач (12) – (14).

Задачи

1. Дан тонкий однородный стержень \(0 < x < l \), боковая поверхность которого теплоизолирована. Найти распределение температуры \(u(x,t) \) в стержне, если:

a) концы стержня теплоизолированы, а начальное распределение температуры задается формулой

\[
 u(x,0) = \begin{cases}
 u_0 = \text{const}, & \text{если } 0 < x < \frac{l}{2}, \\
 0, & \text{если } \frac{l}{2} < x < l.
\end{cases}
\]

Изучить поведение \(u(x,t) \) при \(t \to \infty \);

b) концы стержня теплоизолированы, а

\[
 u(x,0) = \begin{cases}
 \frac{2u_0}{l} x, & \text{если } 0 < x < \frac{l}{2}, \\
 \frac{2u_0}{l} (l-x), & \text{если } \frac{l}{2} \leq x < l,
\end{cases}
\]

где \(u_0 = \text{const} \). Найти \(\lim_{t \to \infty} u(x,t) \);

в) концы стержня имеют постоянную температуру \(u|_{x=0} = u_1 \), \(u|_{x=l} = u_1 \), а начальная температура задается формулой \(u|_{t=0} = A x (l-x) \), где \(A = \text{const} \). Найти \(\lim_{t \to \infty} u(x,t) \).

2. Решить следующие смешанные задачи:

a) \(u_1 = u_1(x), \quad 0 < x < l, \quad u|_{x=0} = 1, \quad u|_{x=l} = 0, \quad u|_{t=0} = 0 \);

b) \(u_1 = u_1(x) - 2u_x + x + 2l, \quad 0 < x < l, \quad u|_{x=0} = u|_{x=l} = l, \quad u|_{t=0} = e^{\sin \pi x} \).
§ 1. Задача Коши

Рассмотрим на бесконечной прямой задачу с начальными данными (задачу Коши): найти функцию $u(x,t)$ ($t > 0, -\infty < x < \infty$), удовлетворяющую уравнению теплопроводности

$$
\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2},
$$

к начальному условию

$$
u(x,0) = \varphi(x)(-\infty < x < +\infty),
$$

где $\varphi(x)$ — непрерывная и ограниченная функция.

Используя принцип максимума (см. лекцию 13), можно доказать, что решение задачи (1), (2) в классе ограниченных функций единствено.

Доказаем сначала частные решения уравнения (1) вида

$$
u(x,t) = X(x)T(t),
$$

подставляя (3) в уравнение (1) и разделяя переменные, получим

$$
\frac{1}{a^2} \frac{T'(t)}{T(t)} = \frac{X''(x)}{X(x)} = -\lambda^2,
$$

где λ^2 — постоянная. Мы получаем таким образом,

$$
\lambda^2 T(t) + a^2 \lambda^2 X(x) = 0, \quad X(x) + \lambda^2 x = 0,
$$

откуда, полагая постоянный множитель в выражении $T(t)$ равным единице, $T(t) = e^{-\alpha \lambda^2 t}$, а $X(x)$ выбираем таким: $X(x) = A(\lambda) e^{\alpha x}$, имеем частное решение уравнения (1) вида

$$
u(x,t) = A(\lambda)e^{-\alpha \lambda^2 t + \alpha x}.
$$

Здесь λ — любое вещественное число $-\infty < \lambda < +\infty$. Интегрируя (4) по параметру λ, получим также решение уравнения (1)

$$
u(x,t) = \int_{-\infty}^{\infty} A(\lambda)e^{-\alpha \lambda^2 t + \alpha x} d\lambda.
$$

Требуя выполнения начального условия при $t = 0$, будем иметь

$$
\varphi(x) = \int_{-\infty}^{\infty} A(\lambda)e^{\alpha x} d\lambda.
$$

Воспользуемся теперь формулой обратного преобразования интеграла Фурье:

$$
A(\lambda) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(x)e^{-\alpha x} dx.
$$

Положив эту функцию в (5) и меняя порядок интегрирования, получим:

$$
u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \varphi(\xi)e^{-\alpha x} e^{-\alpha \lambda^2 t} d\lambda d\xi =
$$

$$
= \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(\xi) \hat{\varphi}(\xi)e^{-\alpha \lambda^2 t} d\lambda
$$

Внутренний интеграл в (6) равен

$$
\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\alpha \lambda^2 t} d\lambda = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{-x^2}{4a^2 t}}.
$$

Положив (7) в (6), приходим к интегральному представлению исходного решения

$$
u(x,t) = \int_{-\infty}^{\infty} G(x,\xi,t) \varphi(\xi) d\xi,
$$

где $G(x,\xi,t)$ — решение уравнения теплопроводности с граничными условиями $G(x,0,t) = \delta(x)$ и $G(0,\xi,t) = \frac{1}{2\pi} \delta(\xi)$, $G(\xi,0,t) = \frac{1}{2\pi a^2 t} e^{\frac{-x^2}{4a^2 t}}$.

Лекция 15. Задачи на бесконечной прямой (Задача Коши.

Краевые задачи для полуограниченной прямой)
где

\[G(x,\xi,t) = \frac{1}{2\sqrt{\pi a^2 t}} e^{\frac{-(x-\xi)^2}{4at}}. \] (9)

Функцию (9) называют фундаментальным решением уравнения теплопроводности.

Можно убедиться в том, что фундаментальное решение (9) дает распределение температуры в бесконечном стержне, если в начальный момент времени \(t = 0 \) точка \(\xi \) мгновенно выделяет количество тепла \(Q = \alpha \phi \).

Теперь выясним условия применимости формулы (8).

Докажем, что формула

\[u(x,t) = \frac{1}{2\sqrt{\pi a^2 t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^2}{4at}} \phi(\xi) \, d\xi, \] (10)

называемая интегралом Гаусса, для любой непрерывной и ограниченной функции \(\phi(x) \) представляет при \(t > 0 \) ограниченное решение уравнения теплопроводности, непрерывно примыкающее при \(t = 0 \) к \(\phi(x) \).

Покажем, во-первых, что если функция ограничена,

\[|\phi(x)| < M, \text{ то интеграл (10) сходится и представляет ограниченную функцию.} \]

В самом деле

\[|u(x,t)| < \frac{M}{2\sqrt{\pi a^2 t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^2}{4at}} \, d\xi = \frac{2\sqrt{\pi} M}{\sqrt{a t}} e^{\frac{x^2}{4at}} = M \sqrt{\pi} \int_{-\infty}^{\infty} e^{-\alpha^2} \, d\alpha = M, \]

так как

\[\int_{-\infty}^{\infty} e^{-\alpha^2} \, d\alpha = \sqrt{\pi}. \]

Покажем далее, что интеграл (10) удовлетворяет уравнению теплопроводности при \(t > 0 \). Для этого достаточно доказать, что производные этого интеграла при \(t > 0 \) можно вычислить при помощи дифференцирования под знаком интеграла.

В случае конечных пределов интегрирования это законно, так как все производные функции (9) при \(t > 0 \) непрерывны. Для возможности дифференцирования под знаком интеграла при бесконечных пределах достаточно убедиться в равномерной сходимости интеграла, полученного после дифференцирования под знаком интеграла. После дифференцирования под знаком интеграла выделяется множитель \(x-\xi \) в подинтегральной степени, который остается под знаком интеграла, и множитель \(t \) в некоторой степени, который можно вынести из под знака интеграла. Таким образом, дифференцируя (10) несколько раз по \(x \) и \(t \), мы получим сумму интегралов вида

\[I = \int_{-\infty}^{\infty} (x-\xi)^m e^{-\frac{(x-\xi)^2}{4at}} \, d\xi. \] (11)

Производя замену переменных

\[-\alpha = \frac{x-\xi}{2at}, \quad t > 0, \]

преобразуем интеграл (11) к виду

\[I = (2a)^{m+1} \frac{m+1}{2} \int_{-\infty}^{\infty} (-1)^m e^{-\alpha^2} \phi(x + 2at\alpha \sqrt{t}) \, d\alpha. \]

Отсюда легко видеть, что этот интеграл равномерно сходится при \(t \geq t_0 > 0 \), так как полиномиальная функция замораживается функцией

\[M |\alpha|^m e^{-\alpha^2}, \]

которая интегрируема в промежутке \((-\infty, \infty)\).

Таким образом, функция \(u(x,t) \), определяемая формулой (10), непрерывна и имеет производные любого порядка по \(x \) и \(t \) при \(t > 0 \). Так как полиномиальная функция удовлетворяет уравнению (1) при \(t > 0 \), то отсюда следует, что и функция \(u(x,t) \) удовлетворяет этому уравнению при \(t > 0 \).

Докажем теперь, что функция (10) удовлетворяет начальному условию (2), т.е.

\[\lim_{t \to 0} u(x,t) = \phi(x). \]
при любом x из $(-\infty, \infty)$. Запишем интеграл (10) так
\[u(x,t) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-a^2} \varphi(x + 2a\sqrt{t}) \, dx. \]
(12)

Далее так как
\[\varphi(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} e^{-a^2} \varphi(x) \, dx, \]
tо, вычитая это равенство из (12), получим
\[u(x,t) - \varphi(x) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{x} \left[\varphi(x + 2a\sqrt{t}) - \varphi(x) \right] e^{-a^2} \, dx, \]
откуда
\[|u(x,t) - \varphi(x)| \leq \frac{2}{3} e \int_{-\infty}^{x} e^{-a^2} \, dx. \]
(13)

Пусть $\epsilon > 0$ — сколь угодно малое число. Выберем число N столь большим, что
\[\frac{2M}{\sqrt{\pi}} = \frac{2}{3} e \int_{-\infty}^{N} e^{-a^2} \, dx \leq \epsilon, \quad \frac{2M}{\sqrt{\pi}} = \frac{2}{3} e \int_{N}^{\infty} e^{-a^2} \, dx \leq \epsilon, \]
(14)

Разбивая промежуток интегрирования на три:
\[(-\infty, N), (-N, N), (N, \infty) \]
и принимая во внимание неравенство
\[|\varphi(x + 2a\sqrt{t}) - \varphi(x)| \leq 2M \]
и оценки (14), будем иметь
\[|u(x,t) - \varphi(x)| \leq \frac{2}{3} e \int_{-\infty}^{N} e^{-a^2} \, dx. \]
В силу непрерывности $\varphi(x)$ при всех t, достаточно близких к нулю, и при $a \leq N$ имеем
\[|\varphi(x + 2a\sqrt{t}) - \varphi(x)| \leq \frac{e}{3}, \]
и последнее неравенство дает
\[|u(x,t) - \varphi(x)| \leq \frac{2}{3} e + \frac{e}{3} \int_{-N}^{N} e^{-a^2} \, da. \]
т.е., в силу равенства
\[\int_{-\infty}^{\infty} e^{-a^2} \, da = 1, \]
мы имеем $|u(x,t) - \varphi(x)| < \epsilon$ при всех t, достаточно близких к нулю, и при всех x, откуда в силу произвольности $\epsilon > 0$ и следует
\[\lim_{t \to 0} u(x,t) = \varphi(x). \]

Пусть $u(x,t)$ — решение уравнения (1), удовлетворяющее начальному условию (2), а $\varphi(x)$ — решение этого же уравнения удовлетворяющее начальному условию
\[\varphi(x) = \varphi(x). \]
Тогда нетрудно показать, что если $|\varphi(x) - \varphi(x)| < \epsilon$, то $|u(x,t) - \varphi(x)| < \epsilon$ при любых x и $t > 0$. Последнее означает, что решение задачи Коши непрерывным образом зависит от начальной функции.

Решение неоднородного уравнения
\[\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) \quad (-\infty < x < \infty, t > 0) \]
(15)
с нулевыми начальными условиями
\[u(x,0) = 0, \]
очевидно, должно представиться формулой
\[u(x,t) = \frac{t}{2\pi} \int_{0}^{\infty} G(x, \xi,t-\tau) f(\xi,\tau) \, d\xi \, d\tau, \]
как то следует из физического смысла функции $G(x,\xi,t)$.

Ясно, что решение задачи Коши (15), (2) есть сумма решения задач (1), (2) и задач (15), (16).
§ 2. Краевые задачи для полуограниченной прямой

В тех случаях, когда интересуются распределением температуры ближе всего из концов стержня, а влияние другого конца несущественно, принимают, что этот конец находится в бесконечности. Это приводит к задаче об определении решения уравнения теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2}, \quad x > 0, \quad t > 0, \quad (17)$$

удовлетворяющему начальному условию

$$u(x,0) = \varphi(x), \quad x > 0 \quad (18)$$

и граничному условию, которое, в зависимости от заданного характера граничного режима, берется в одном из следующих видов:

$$u(0,t) = \mu(t) \quad \text{первая краевая задача},$$

$$\frac{\partial u(0,t)}{\partial x} = \nu(t) \quad \text{вторая краевая задача},$$

$$\frac{\partial u(0,t)}{\partial x} = \lambda [u(0,t) - \theta(t)] \quad \text{третья краевая задача}.$$

Здесь мы ограничиваем построением решения только первой краевой задачи в случае $u(0) = 0$, т.е.

$$u(0,t) = 0, \quad t > 0. \quad (19)$$

Положим

$$\varphi(x) = \begin{cases} \varphi(x) & \text{для } x > 0, \\ \varphi(-x) & \text{для } x < 0, \end{cases}$$

и функцию $u(x,t)$ определим по формуле

$$u(x,t) = \frac{1}{2\sqrt{\pi a^2 t}} \int_{-\infty}^{\infty} \frac{(x - \xi)^2}{4\pi t} \varphi(\xi) d\xi. \quad (20)$$

Легко проверить, что $u(0,t) = 0$. Таким образом, согласно § 1 функция $u(x,t) = u(x,t)$ при $x > 0$ дает решение краевой задачи (17)-(19). Подставляя определение функции $\phi(x)$, будем иметь:

$$u(x,t) = \frac{1}{2\sqrt{\pi a^2 t}} \int_{-\infty}^{\infty} e^{-\frac{(x - \xi)^2}{4\pi t}} \frac{\varphi(\xi) d\xi}{0} + \int_{0}^{\infty} e^{-\frac{(x - \xi)^2}{4\pi t}} \phi(\xi) d\xi \int_{-\infty}^{\infty} e^{-\frac{(x - \xi)^2}{4\pi t}} \varphi(\xi) d\xi. \quad (21)$$

Соединяя оба интеграла вместе, получим искомую функцию

$$u(x,t) = \frac{1}{2\sqrt{\pi a^2 t}} \left[\int_{0}^{\infty} e^{-\frac{(x + \xi)^2}{4\pi t}} - e^{-\frac{(x - \xi)^2}{4\pi t}} \right] \varphi(\xi) d\xi. \quad (22)$$

Задачи

1. Решить задачи:

 а) $u_t = 4u_{xx} + x, \quad u|_{x=0} = 2$;

 б) $u_t = 2u_{xx} + 3x^2, \quad u|_{x=0} = \sin x$;

 в) $u_t = 2u_{xx} + \sin t, \quad u|_{t=0} = e^{-x^2}$;

 г) $u_t = u_{xx}, \quad u|_{t=0} = x e^{x^2}$.

2. Показать, что уравнение

$$u_t - \alpha^2 u_{xx} - bu_x - cu = f(x,t),$$

где a, b, c — постоянные, заменой

$$u(y,t) = e^{-ct} u(y - bt, t)$$

сводится к уравнению теплопроводности.

3. Найти решение задачи

$$u_t - \alpha^2 u_{xx} - bu_x - cu = f(x,t), \quad u|_{t=0} = u_0(x)$$
Лекция 16. Уравнение распространения тепла в пространстве. Фундаментальное решение.

Решение задачи Коши

В лекции 1 было показано, что процесс распространения тепла в однородном изотропном пространстве определяется уравнением теплопроводности

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(x, y, z, t),$$

(1)

где $u(x, y, z, t)$ — температура точки $M(x, y, z)$ в момент t, $a^2 = \frac{K}{\rho \sigma}$ — плотность, σ — коэффициент удельной теплопроводности, ρ — плотность тепловых источников.

Рассмотрим в неограниченном пространстве следующую задачу.

Найти решение уравнения теплопроводности (1) при начальном условии

$$u = (x, y, z, 0) = \varphi(x, y, z).$$

(2)

Решение этой задачи может быть представлено в виде суммы

$$u = u_1 + u_2,$$

где u_1 — решение однородного уравнения

$$\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right),$$

(3)

и аналогичные выражения для произвольных y и z, откуда

$$\Delta G = \left[-3 + \frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{2a^2 t} \right] \frac{1}{2a^2 t} \left(\frac{1}{2a^2 t} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

Здесь $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ и далее

$$\frac{\partial G}{\partial t} = \left[-3 + \frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{2a^2 t} \right] \frac{1}{2a^2 t} \left(\frac{1}{2a^2 t} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

Следовательно

$$\frac{\partial G}{\partial t} = a^2 \Delta G.$$

Введение в рассмотрение функции

$$G(x, y, z, \xi, \eta, \zeta) = \left(\frac{1}{2\sqrt{\pi a^2 t}} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

Докажем несколько утверждений относительно этой функции.

Лемма 1. Функция G — удовлетворяет однородному уравнению теплопроводности (3).

Доказательство. В самом деле, дифференцирование дает

$$\frac{\partial^2 G}{\partial x^2} \left(\frac{1}{2\sqrt{\pi a^2 t}} \right)^3 \frac{1}{2a^2 t} + \frac{1}{2\sqrt{\pi a^2 t}} \left(\frac{1}{2a^2 t} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

и аналогичные выражения для произвольных y и z, откуда

$$\Delta G = \left[-3 + \frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{2a^2 t} \right] \frac{1}{2a^2 t} \left(\frac{1}{2a^2 t} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

Здесь $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ и далее

$$\frac{\partial G}{\partial t} = \left[-3 + \frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{2a^2 t} \right] \frac{1}{2a^2 t} \left(\frac{1}{2a^2 t} \right)^3 e^{\frac{(x - \xi)^2 + (y - \eta)^2 + (z - \zeta)^2}{4a^2 t}}.$$

Следовательно

$$\frac{\partial G}{\partial t} = a^2 \Delta G.$$
Лемма 2. При $t > 0$ имеет место равенство
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x, y, z, \xi, \eta, \zeta) \, dx \, dy \, dz = 1.
\]
(5)

Доказательство. В самом деле, интеграл (5) можно представить в виде произведения трех интегралов, каждый из которых равен единице:
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(x, y, z, \xi, \eta, \zeta) \, dx \, dy \, dz =
\]
\[
= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(x-x)^2}{4t}} \, dx \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(y-y)^2}{4t}} \, dy \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{(z-z)^2}{4t}} \, dz.
\]
(6)

Функция $G(x, y, z, \xi, \eta, \zeta)$ представляет собой температуру в точке $M(x, y, z)$ в момент времени t, вызываемую точечным источником мощности $Q = \sigma \varphi$, помешенным в момент $t = 0$ в точку $M(x, y, z)$. Функцию G называют функцией температурного влияния мгновенного источника тепла или фундаментальным решением уравнения теплопроводности.

§ 2. Задачи Коши

Используем теперь фундаментальное решение (4) для решения задачи о распространении начальной температуры в неограниченном пространстве.

Пусть требуется найти решение уравнения
\[
\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right),
\]
(6)

удовлетворяющее начальному условию
\[
u(x, y, z, 0) = \varphi(x, y, z).
\]
(7)

Начальное температурное состояние, очевидно, можно представить как результат суперпозиции действия мгновенных источников, создающих на-
1) производная по параметру от подintéгральной функции непрерывна;
2) интеграл, полученный после формального дифференцирования, равномерно сходится.

Производная формальное дифференцирование интеграла (9) по \(x \) получим:

\[
\left(-\frac{1}{2\sqrt{\pi}t^2} \right)^3 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left\{ -\frac{(x-\xi)^2}{2\sigma^2} \right\} e^{-\frac{(y-\eta)^2}{2\sigma^2}} e^{-\frac{(z-\zeta)^2}{2\sigma^2}} \varphi(\xi, \eta, \zeta) d\eta d\zeta.
\]

Подintéгральная функция непрерывна при \(0 < t < T \), а наличие множителя \(\exp\left(\frac{(x-\xi)^2 + (y-\eta)^2 + (z-\zeta)^2}{4\sigma^2} \right) \) обеспечивает равномерную сходимость, если \(\varphi \) ограничено: \(|\varphi| < A \). Аналогичные результаты мы получим при повторном дифференцировании по \(x \) и при дифференцировании по \(t \); то же относится и к дифференцированию по \(y \) и \(z \). Теперь в силу леммы 1 функция \(u \) при \(t > 0 \) удовлетворяет уравнению теплопроводности.

Перейдем к доказательству непрерывности \(u(x, y, z, t) \) при \(t = 0 \). Для этого формулу (9) перепишем в виде

\[
u(M, t) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(M, M', t) \varphi(M') d\nu, \quad M = M(x, y, z), \quad M' = M'(\xi, \eta, \zeta).
\]

Рассмотрим точку \(M_0(0, 0, 0) \) и локализуем, что для любого \(\varepsilon > 0 \) существует такое \(\delta(\varepsilon) > 0 \), что

\[
|u(M, t) - \varphi(M_0)| < \varepsilon \quad \text{при} \quad |MM_0| < \delta(\varepsilon) \quad \text{и} \quad t < \delta(\varepsilon).
\]

Далее пусть \(V_1 \) область, содержащая точку \(M_0 \); ее размеры будут определены ниже; остальную часть пространства обозначим через \(V_2 \). Принимая во внимание равенство

\[
u(M, t) = \int_{V_1} G(M, M', t) \varphi(M') d\nu + \int_{V_2} G(M, M', t) \varphi(M') d\nu
\]

\[
\varphi(M_0) = \int_{V_1} G(M, M', t) \varphi(M_0) d\nu + \int_{V_2} G(M, M', t) \varphi(M_0) d\nu
\]

получаем

\[
\int_{V_1} G d\nu = \frac{1}{2\sqrt{\pi}t^2} \left[\begin{array}{c} e^{-\frac{r^2}{4\sigma^2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{(y-\eta)^2}{2\sigma^2}} e^{-\frac{(z-\zeta)^2}{2\sigma^2}} d\eta d\zeta \\ \frac{\rho}{2\sqrt{\pi}t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{r^2}{4\sigma^2}} d\eta d\zeta \end{array} \right] \to 0 \quad \text{при} \quad t \to 0.
\]

Таким образом, если \(\delta' \) такое, что \(\delta' > 0 \), то

\[
J_1 \leq \frac{E}{3} \int_{V_1} G d\nu \quad \text{и} \quad J_2 = \frac{2A}{3} \int_{V_2} G d\nu.
\]

Таким образом, если диаметр шара \(V_1 \) не превосходит \(\delta' \), т.е. \(\rho \leq \frac{1}{2} \delta' \), то

\[
J_1 \leq \frac{E}{3} \int_{V_1} G d\nu \quad \text{и} \quad J_2 = \frac{2A}{3} \int_{V_2} G d\nu.
\]

Таким образом, если диаметр шара \(V_1 \) не превосходит \(\delta' \), т.е. \(\rho \leq \frac{1}{2} \delta' \), то

\[
J_1 \leq \frac{E}{3} \int_{V_1} G d\nu \quad \text{и} \quad J_2 = \frac{2A}{3} \int_{V_2} G d\nu.
\]
Задачи

1. Пусть функция \(f(x,t) = e^t (t \geq 0) \) является гармонической по \(x \) при каждом фиксированном \(t \geq 0 \). Доказать, что функция \(u(x,t) = \int_0^t f(x,r) \, dr \) является решением задачи Коши \(u_t = \Delta u + f(x,t), \quad u|_{t=0} = 0, \) \(x \in \mathbb{R}^n, \quad n = 2, 3. \)

2. Решить задачу \((n = 2): \)
 a) \(u_t = \Delta u + e^t, \quad u|_{t=0} = \cos x \sin y, \)
 b) \(u_t = \Delta u + \sin t \sin x \sin y, \quad u|_{t=0} = 1. \)
 В) \(2u_t = \Delta u, \quad u|_{t=0} = \cos xy. \)

3. Решить задачу \((n = 3): \)
 a) \(u_t = 3\Delta u + e^t, \quad u|_{t=0} = \sin (x-y-z), \)
 b) \(u_t = \Delta u + \cos (x-y+z), \quad u|_{t=0} = e^{-x+y-z}. \)
 в) \(u_t = \Delta u, \quad u|_{t=0} = \cos (x, y) \sin z. \)

Лекция 17. Распространение тепла в ограниченных телах.

Схема метода разложения переменных.

Остывание однородного шара. Распространение тепла в прямоугольной пластинке

При изучении распространения тепла в ограниченном теле необходимо к уравнению и начальному условию добавить условия на границе тела, которые в простейших случаях являются граничными условиями первого, второго или третьего рода.
Рассмотрим простейшую задачу с однородным граничным условием первого рода:
найти решение уравнения теплопроводности
\[
\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \quad \text{внутри } T \text{ при } t > 0
\] (1)
с начальным условием
\[
u(x,y,z,0) = \phi(x,y,z)
\] (2)
и граничным условием
\[
u|_{\Sigma} = 0
\] (3)
где \(\Sigma\) — граница области \(T\).

Решение этой задачи может быть получено обычным методом разложения переменных, изложенным применительно к уравнению
\[
\frac{\partial^2 u}{\partial t^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right)
\]
в лекции 12; применение этого метода к нашей задаче проходит совершенно аналогично.

§1. Схема метода разложения переменных

Рассмотрим вспомогательную задачу: найти нетривиальное решение уравнения (1), удовлетворяющее однородному граничному условию (3) и представимое в виде произведения
\[
u(M,t) = \psi(M) T(t) \neq 0, \quad M = M(x,y,z).
\] (4)

Подставляя функцию (4) в уравнение (1), приходим к следующим уравнениям, определяющим функции \(\psi(M)\) и \(T(t)\):
\[
\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial z^2} + \lambda \psi = 0, \quad M \in T, \quad \psi(M) \neq 0, \quad \lambda = \lambda_n,
\] (5)

\[
u = 0 \quad \text{на} \quad \Sigma
\]

и
\[
T' + \alpha^2 \lambda T = 0.
\] (6)

Для функции \(\psi\) получаем задачу на отыскание собственных значений, с которой мы встречались при рассмотрении квазилинейных ограниченных объемов (см. лекцию 12).

Пусть \(\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots\) — собственные значения, а \(\psi_1, \psi_2, \ldots, \psi_n, \ldots\) — собственные функции задачи (5). Функции \(\psi_n\) образуют ортогональную систему, т.е.
\[
\left\{ \int_T \psi_m(M) \cdot \psi_n(M) dxdydz = 0 \quad \text{при} \quad m \neq n. \right.
\]

Соответствующие функции \(T_n(t)\) имеют вид
\[
T_n(t) = C_n e^{-\theta_n \omega t},
\]
и вспомогательная задача имеет нетривиальное решение
\[
u_n(M,t) = C_n T_n(M) e^{-\theta_n \omega t}.
\]

Общее решение исходной задачи может быть представлено в виде
\[
\psi(M,t) = \sum_{n=1}^{\infty} C_n e^{-\theta_n \omega t} \psi_n(M),
\] (7)

Удовлетворяя начальному условию
\[
u(M,0) = \psi(M) = \sum_{n=1}^{\infty} C_n \psi_n(M),
\]
находим коэффициенты
\[
C_n = \frac{\left\langle \int_T \psi(M) \cdot \psi_n(M) dxdydz \right\rangle}{\| \psi_n \|^2},
\] (8)

где
\[
\| \psi_n \| = \left[\int_T \psi_n^2(M) dxdydz \right]^{\frac{1}{2}} — \text{норма функции} \psi_n.
\]

Функция \(\psi(M,t)\), определяемая формулами (7), (8), дает решение исходной задачи (1)–(3).
Уравнение
\[
\frac{\partial u}{\partial t} = \alpha^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) + f(M,t)
\] (9)

при однородных граничных и начальных условиях может быть также решено методом разложения переменных.

Полагая, как обычно,
\[
u(M,t) = \sum_{n=1}^{\infty} \epsilon_n(t) u_n(M)
\] (10)

и разлагая функцию \(f(M,t)\) по собственным функциям \(u_n(M)\)
\[
f(M,t) = \sum_{n=1}^{\infty} \epsilon_n(t) u_n(M)
\]

из (9) получаем для определения \(T_n(t)\) уравнение

\[
T_n' + \alpha^2 \lambda_n T_n = f_n(t)
\]

с начальным условием \(T_n(0) = 0\), так как \(u(M,0) = 0\). Следовательно, имеем

\[
T_n(t) = \int_0^t e^{\alpha^2 \lambda_n (t-\tau)} f_n(\tau) d\tau.
\]

Теперь формулу (10) с учетом (11) перепишем так

\[
u(M,t) = \int_0^t \left[\sum_{n=1}^{\infty} e^{\alpha^2 \lambda_n (t-\tau)} u_n(M) \epsilon_n(\tau) \right] f(M',\tau) d\eta d\zeta d\tau d\tau.
\]

Здесь \(M' = M'(\eta,\zeta)\). Выражение в фигурных скобках, очевидно, соответствует функции влияния мгновенного источника мощности \(Q = \rho r\), помещенного в точку \(M'\) в момент времени \(\tau\),

\[G(M,M',t-\tau) = \sum_{n=1}^{\infty} \frac{u_n(M) u_n'(M')}{\|u_n\|^2} e^{\alpha^2 \lambda_n (t-\tau)}.
\]

Решение первой краевой задачи \(\overline{u}\) для уравнения теплопроводности с однородными граничными условиями \(\overline{u} = \psi\) на поверхности \(\Sigma\) легко приво-

III. Уравнение теплопроводности

дится к решению и неоднородного уравнения с однородными граничными условиями \(u = 0\) на \(\Sigma\), если положить

\[\overline{u} = u + \phi,
\]

где \(\phi\) — произвольная (достаточно гладкая) функция, принимающая значения \(\psi\) на \(\Sigma\).

Таким образом, основная трудность при решении задач о распространении тепла в ограниченной области состоит в нахождении собственных функции и собственных значений для данной области.

§ 2. Остыивание однородного шара

Рассмотрим задачу об остывании однородного шара радиуса \(R\), имеющего некую начальную температуру зависимую только от расстояния \(r\) точки от центра шара, если на его поверхности поддерживается температура равная нулю.

В этом случае задача приводится к интегрированию уравнения теплопроводности

\[
\frac{\partial u}{\partial t} = \alpha^2 \left(\frac{\partial^2 u}{\partial r^2} + \frac{2}{r} \frac{\partial u}{\partial r} \right),
\]

при начальном условии

\[
u(r,0) = \phi(r), \quad 0 \leq r < R\] (13)

и при граничном условии

\[
u(R,t) = 0.
\]

Согласно методу разложения переменных (см. § 1) задача на собственные значения (5) имеет вид

\[
\frac{d^2 \psi}{dr^2} + \frac{2}{r} \frac{d \psi}{dr} + \lambda \psi = 0, \quad 0 \leq r < R,
\]

\[
u(R) = 0.
\]
Полагая \(w = r u \) (15), приводим к следующей задаче:

\[
\frac{d^2 w}{d r^2} + \lambda w = 0, \quad w(0) = 0, \quad w(R) = 0.
\] (16)

Собственные значения и собственные функции краевой задачи (16), как известно, даются формулами:

\[
\lambda_n = \left(\frac{n\pi}{R} \right)^2, \quad w_n = \sin \frac{n\pi r}{R}.
\]

Таким образом,

\[
T_n(t) = C_n e^{-\left(\frac{am}{R} \right)^2 t}, \quad \varphi_n(r) = \frac{1}{r} \sin \frac{n\pi r}{R}.
\]

далее, удовлетворяя начальному условию (13), находим (см. (8))

\[
C_n = \frac{2}{R} \int_0^R \sin \frac{n\pi r}{R} r \, dr.
\]

Следовательно, решение задачи (12) – (14) вычисляется по формуле

\[
u(r,t) = \sum_{n=1}^{\infty} \left[\frac{2}{R} \int_0^R \sin \frac{n\pi r}{R} r \, dr \right] e^{-\left(\frac{an}{R} \right)^2 t} \frac{1}{r} \sin \frac{n\pi r}{R} r.
\]

§3. Распространение тепла в прямоугольной пластинке

Рассмотрим тонкую однородную прямоугольную пластинку, контур которой поддерживается при температуре 0°. Начальное распределение температуры задано, и задача сводится к определению температуры пластинки в любой момент времени \(t > 0 \), в предположении, что прилегающей средой, и температура пластинки с окружающей средой не отсутствует.

Эта задача приводится к уравнению

\[
\frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right), \quad 0 < x < p, \quad 0 < y < q, \quad t > 0
\] (17)

при граничных условиях

\[
u(0,y,t) = 0, \quad \nu(p,y,t) = 0, \quad \nu(x,0,t) = 0, \quad \nu(x,q,t) = 0
\] (18)

и при начальном условии

\[
u(x,y,0) = \varphi(x,y).
\] (19)

Согласно методу разделения переменных, будем искать частные решения уравнения (17) в виде произведения

\[
u = T(t)X(x)Y(y);
\]

tогда для определения функции \(X(x) \), \(Y(y) \) и \(T(t) \) получим следующие уравнения:

\[
X''(x) + \lambda^2 X(x) = 0, \quad Y''(y) + \mu^2 Y(y) = 0, \quad T'(t) + \alpha^2 (\lambda^2 + \mu^2) T(t) = 0,
\]

где \(\lambda^2 \) и \(\mu^2 \) – постоянные.

Общие решения этих уравнений имеют вид:

\[
X = C_1 \cos \lambda x + C_2 \sin \lambda x, \quad Y = C_3 \cos \mu y + C_4 \sin \mu y, \quad T(t) = A e^{-\frac{m^2}{p^2} \alpha t}.
\]

Для выполнения граничных условий (18) следует положить

\[
C_1 = 0, \quad C_3 = 0, \quad \lambda = p \frac{m}{p}, \quad \mu = q \frac{n}{q} \quad (m,n = 1,2,3,\ldots).
\]

Таким образом, частными решениями уравнения (17), удовлетворяющими граничным условиям (18), будут:

\[
u_{nm} = A_{nm} e^{-\frac{m^2}{p^2} \alpha t} \frac{m}{p} \sin \frac{m\pi x}{p} \sin \frac{n\pi y}{q}.
\]

Составим ряд

\[
u(x,y,t) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{nm} e^{-\frac{m^2}{p^2} \alpha t} \frac{m}{p} \sin \frac{m\pi x}{p} \sin \frac{n\pi y}{q}.
\] (20)

Требуя выполнения начального условия (19), получим

\[
u(x,y) = \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{nm} \sin \frac{m\pi x}{p} \sin \frac{n\pi y}{q}.
\]

Написанный ряд представляет собой разложение функции \(\varphi(x,y) \) в двойной ряд Фурье, и коэффициенты \(A_{nm} \) определяются, как не трудно видеть, по формуле

\[
A_{nm} = \frac{p q}{p q} \int_0^p \int_0^q \varphi(x,y) \sin \frac{m\pi x}{p} \sin \frac{n\pi y}{q} \, dx \, dy.
\]
Задачи

1. Дан однородный шар радиуса \(R \) с центром в начале координат. Определить температуру внутри шара, если:

а) внешняя поверхность шара поддерживается при нулевой температуре, а начальная температура зависит только от расстояния от центра шара, т.е. \(u|_{t=0} = u_0(r) \);

б) на поверхности шара происходит конвективный теплообмен по закону Ньютона со средой, имеющей нулевую температуру, а \(u|_{t=0} = u_0(r) \);

в) на поверхности шара происходит конвективный теплообмен со средой, имеющей температуру \(u_1 = \text{const} \), а \(u|_{t=0} = u_0 = \text{const} \);

г) внутри шара, начиная с момента \(t = 0 \), через его поверхность поступает постоянный тепловой поток плотности \(q = \text{const} \), а начальная температура \(u|_{t=0} = u_0 = \text{const} \).

2. Сфера радиуса \(R \) содержит растворенное вещество с начальной концентрацией \(C_0 = \text{const} \). Концентрация на поверхности сферы поддерживается постоянной, равной \(C_1 > C_0 \). Найти количество асборбированного вещества в момент времени \(t > 0 \).

3. Однородное твердое тело ограничено двумя концентрическими сферами с радиусами \(R \) и \(2R \). Внутренняя поверхность тела непроницаема для тепла. Шаровой слой нагрев до температуры \(u_0 \) и затем охлаждается в среде с нулевой температурой. Найти температуру в точках внутри шарового слоя в момент времени \(t > 0 \).

IV. Теория потенциала

Лекция 18. Уравнения Лапласа и Пуассона в пространстве.

Теорема максимума. Фундаментальное решение. Формула Грина. Потенциалы объема, простого слоя и двойного слоя.

Целый ряд вопросов математической физики сводится к решению тех или иных уравнений эллиптического типа. Мы займемся простейшими такими уравнениями: уравнением Лапласа

\[\Delta u(x, y, z) = 0 \] (1)

и уравнением Пуассона

\[\Delta u(x, y, z) = -4\pi \rho(x, y, z). \] (2)

Напомним, что \(\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \).

Всякая функция, имеющая непрерывные вторые производные и удовлетворяющая в некоторой области уравнению Лапласа, называется гармонической функцией в этой области.

Прежде чем переходить к решению задач, связанных с этими уравнениями, мы изучим некоторые обще свойства, которыми обладают решения этих уравнений.
§1. Теорема максимума

Справедлива следующая лемма.

Лемма 1. Если функция \(p(x, y, z) \) положительна в точке \(M_0(x_0, y_0, z_0) \), лежащей внутри области, где определено уравнение (2), то решение этого уравнения не может достигать минимума в этой точке.

Доказательство: В самом деле, если бы в этой точке функция \(u(M) \), \(M = M(x, y, z) \), удовлетворяющая уравнению (2), достигала бы минимума, то \(u(M) \) достигала бы минимума в этой точке по каждому переменному в отдельности. Но тогда все производные от \(u \) должны были бы быть равными нулю в этой точке, а вторые производные по каждому переменному — неотрицательными. Следовательно, сумма вторых производных должна была быть также неотрицательной, что противоречит условию

\[
p(M_0) > 0.
\]

Лемма доказана.

Следствие. Если \(p(M) \) отрицательна в точке \(M_0 \), то \(u(M) \) в этой точке не может достигать максимума.

Доказывается переменной знака \(p \) и \(u \).

Теорема 1. Гармоническая функция, заданная в некоторой области \(\Omega \) и неотрицательная вдоль граници \(S \), нигде внутри \(\Omega \) не может принимать значений больших, чем наименьшее ее значение на граници, или меньших, чем ее значение на граници, т.e.

\[
\min_{S} u(M) \leq u(M) \leq \max_{S} u(M).
\]

Доказательство. В самом деле, пусть

\[
u(M_0) > \max_{S} u(M) + \varepsilon.
\]

Тогда функция

\[
u(M) = u(M) + \eta|MM_0|^2,
\]

где \(\eta \) — некоторая положительная постоянная, будет при достаточно малом \(\eta \) принимать в точке \(M_0 \) значения все еще большие, чем \(\max_{S} u(M) \).

В самом деле, \(u(M_0) = u(M_0) \) и по предположению

\[
u(M_0) > \max_{S} u(M) + \varepsilon \geq (u(M) - \eta |MM_0|^2)|_{S} + \varepsilon.
\]

Выбрав \(\eta \) настолько малым, чтобы имеется во всей области \(\Omega \)

\[
\varepsilon - \eta |MM_0|^2 \geq \frac{\varepsilon}{2},
\]

мы получим

\[
u(M_0) > \max_{S} u(M) + \frac{\varepsilon}{2}.
\]

Следовательно, \(u \) будет достигать максимума где-то внутри области, но \(\Delta u = 6\eta \).

Это противоречит лемме 1.

Следствие 1. Гармоническая функции, равна нулю на границе некоторой конечной области, тождественно равна нулю во всей области.

Отсюда вытекает, что две гармонические функции, принявшие одни и те же значения в точках границы области, совпадают и всюду внутри области.

Следствие 2. Если последовательность функций \(u_n \), гармонических в области \(\Omega \) и непрерывных вдоль граници, сходится равномерно на границе \(S \) этой области, то она сходится равномерно во всей замкнутой области.

Это вытекает из того, что разность

\[
|u_n - u_m|,
\]

где \(n_1 > N \) и \(n_2 > N \).
будучи сколь угодно малой на границе при достаточно большем \(N \), будет малой и внутри. Призма Коши даст нам равномерную сходимость \(u_n \), во всей замкнутой области, что и требовалось доказать.

§2. Фундаментальное решение. Формула Грина

Примем вычислением получим, что функция

\[
\frac{1}{r} = \frac{1}{\sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}}
\]

удовлетворяет уравнению Лапласа

\[
\Delta \frac{1}{r} = 0
\]

везде, кроме точки \(M_0(x_0, y_0, z_0) \), где \(\frac{1}{r} \) обращается в бесконечность.

При изучении уравнений эллиптического типа мы часто будем пользоваться формулами Грина, являющимися прямым следствием формулы Оствергарадского.

Формула Оствергарадского имеет вид

\[
\int_\Omega \text{div} A \cdot d\Omega = \oint_\partial \hat{n} \cdot A dS,
\]

где \(\Omega \) — область, ограниченная достаточно гладкой поверхностью \(S \), векторное поле \(A = P\hat{i} + Q\hat{j} + R\hat{k} \),

\[
\text{div} A = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z},
\]

а \(\alpha = \angle n, x, \beta = \angle n, y, \gamma = \angle n, z \) — углы внешней нормали \(n \) к поверхности \(S \).

Пусть \(u(x, y, z) \) и \(v(x, y, z) \) — функции, непрерывные вместе со своими первыми производными внутри \(\Omega \) и имеющие непрерывные вторые производные внутри \(\Omega \).

Полагаем

\[
P = u \frac{\partial v}{\partial x}, \quad Q = u \frac{\partial v}{\partial y}, \quad R = u \frac{\partial v}{\partial z}
\]

И пользоваться формулой (4), приходим к так называемой первой формуле Грина

\[
\int_\Omega \text{div} A \cdot d\Omega = \int_\partial \hat{n} \cdot A dS + \int_\Omega \frac{\partial u}{\partial n} d\Omega.
\]

Меняя местами функции \(u \) и \(v \) в (5), получим

\[
\int_\Omega \text{div} A \cdot d\Omega = \int_\partial \hat{n} \cdot A dS + \int_\Omega \frac{\partial v}{\partial n} d\Omega.
\]

Вычитая из равенства (5) равенство (6), получаем вторую формулу Грина

\[
\int_\Omega (u \Delta v - v \Delta u) d\Omega = \int_\partial (\hat{n} \cdot \frac{\partial u}{\partial n} - \hat{n} \cdot \frac{\partial v}{\partial n}) dS.
\]

Лемма 2. Если \(u \in H^2(\Omega) \cap C^1(\bar{\Omega}) \), то имеет место формула:

\[
\int_\Omega u_{xx} d\Omega = \frac{1}{r} \int_\partial (u \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \frac{1}{r}) dS - 4\pi u(M_0).
\]

Доказательство. Выразим из области \(\Omega \) центр \(K_0 \) радиуса \(\epsilon \) с центром в точке \(M_0 \) и применим к оставшейся области формулу Грина (7), получим \((\nu = \frac{1}{r}) \):

\[
\int_\Omega u_{xx} d\Omega = \frac{1}{r} \int_\partial (u \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \frac{1}{r}) dS + \int_\partial \frac{\partial u}{\partial n} dS.
\]

Здесь \(S_\epsilon \) — сфера радиуса \(\epsilon \) с центром в точке \(M_0 \).

Далее непредвидим видеть, что на сфере \(S_\epsilon \)

\[
\frac{\partial}{\partial n} \frac{1}{r} = -\frac{d}{dr} \frac{1}{r} = \frac{1}{r^2} = \frac{1}{\epsilon^2},
\]

и, следовательно

\[
\int_\partial \frac{\partial u}{\partial n} dS = \frac{1}{\epsilon} \int_\partial u dS = 4\pi u(M_0).
\]

Где \(\bar{\Omega} \) — среднее значение функции \(u(M) \) на \(S_\epsilon \). Интеграл

\[
\int_\partial \frac{\partial u}{\partial n} dS = \frac{1}{\epsilon} \int_\partial u dS = \frac{1}{\epsilon} \int_\Omega \frac{\partial u}{\partial n} d\Omega = 4\pi \epsilon^2 \frac{\partial u}{\partial n}.
\]
где \(\frac{\partial \overline{u}}{\partial n} \) - среднее значение нормальной производной \(\frac{\partial u}{\partial n} \) на сфере \(S_\varepsilon \).

Подставляя выражения (10) и (11) в формулу (9) и учитывая, что \(\Delta \left\{ \frac{1}{r} \right\} = 0 \) в \(\Omega \setminus K_\varepsilon \), будем иметь:

\[
- \frac{4 \pi \varepsilon}{\varepsilon^2} \Delta \overline{u} \, d\Omega = \iint \left(u \frac{\partial \overline{u}}{\partial n} \left(\frac{1}{r} \right) - \frac{1}{r} \frac{\partial u}{\partial n} \right) \, ds + 4 \pi \overline{u} - 4 \pi \varepsilon \frac{\partial \overline{u}}{\partial n},
\]

(12)

Устраним теперь радиус \(\varepsilon \) к нулю. Тогда получим:

1) \(\lim_{\varepsilon \to 0} \overline{u} = u(M_0) \), так как \(u(M) \) — непрерывная функция, а \(\overline{u} \) — её среднее значение по сфере радиуса \(\varepsilon \) с центром в точке \(M_0 \);

2) \(\lim_{\varepsilon \to 0} 4 \pi \varepsilon \frac{\partial \overline{u}}{\partial n} = 0 \), так как из непрерывности первых производных функции \(u(M) \) в \(\Omega \) сразу же вытекает ограниченность нормальной производной в окрестности точки \(M_0 \);

3) по определению несобственного интеграла

\[
\lim_{\varepsilon \to 0} \int_{\Omega \setminus K_\varepsilon} \frac{1}{r} \Delta u \, d\Omega = \int_{\Omega} \frac{1}{r} \Delta u \, d\Omega.
\]

В результате указанного предельного перехода \(\varepsilon \to 0 \) в формуле (12) мы приходим к интегральной форме Грина (8).

Если точка \(M_0 \) находится вне области \(\Omega \), то \(u = \frac{1}{r} \) не имеет особенностей во всех точках \(\overline{\Omega} \) и тогда формула (7) имеет вид

\[
- \int_{\overline{\Omega}} \frac{1}{r} \Delta u \, d\Omega = \iint \left(u \frac{\partial \overline{u}}{\partial n} \left(\frac{1}{r} \right) - \frac{1}{r} \frac{\partial u}{\partial n} \right) \, ds.
\]

(13)

Если точка \(M_0 \) принадлежит поверхности \(S \), то, повторяя выше приведённые рассуждения, мы в результате приходим к формуле, получающейся из (8) при замене \(4 \pi \) на \(2 \pi \).

IV. Теория потенциала

Объединя все случаи, запишем основную формулу Грина в виде

\[
du(M_0) = -\int_{\Omega} \frac{1}{r} \Delta u \, d\Omega + \int_{\overline{\Omega}} \left(u \frac{\partial \overline{u}}{\partial n} \left(\frac{1}{r} \right) - \frac{1}{r} \frac{\partial u}{\partial n} \right) \, ds,
\]

(14)

где

\[
\alpha = \begin{cases} 4 \pi, & \text{если } M_0 \in \Omega, \\ 2 \pi, & \text{если } M_0 \in \overline{\Omega}, \\ 0, & \text{если } M_0 \in \partial \Omega.
\]

Часто функцию \(\frac{1}{r} = \frac{1}{|MM_0|} \) называют фундаментальным решением уравнения Лапласа.

§3. Потенциалы объема, простого слоя и двойного слоя

Если бы нам были известны, из каких-либо соображений, значения \(u, \Delta u, \frac{\partial u}{\partial n} \), вказанных в формулу Грина (8):

\[
\Delta u = -4 \pi \rho, \quad u|_{\partial \Omega}, \quad \frac{\partial u}{\partial n}|_{S} = f_2,
\]

то формула Грина дала бы нам яное представление для неизвестной функции \(u \):

\[
u(x_0, y_0, z_0) = \int_{\overline{\Omega}} \frac{2}{r} \, d\Omega + \frac{1}{4 \pi} \int_{\overline{\Omega}} \frac{1}{r} f_2 \, ds - \frac{1}{4 \pi} \int_{\partial \Omega} f_1 \frac{\partial u}{\partial n} \left(\frac{1}{r} \right) \, ds.
\]

(15)

Однако мы не можем задать произвольно \(f_1 \) и \(f_2 \), и поэтому формула (15) не дает возможности строить решение уравнения (2) по произвольным предельным значениям на граничныхего самого и его нормальной производной. Мы даем особые названия интегралам, стоящим в правой части этой формулы.

Интеграл \(\frac{1}{r} \int_{\overline{\Omega}} \frac{2}{r} \, d\Omega \) мы будем называть вынуженным потенциалом, а функцию \(\rho \) — плотностью этого потенциала. Аналогично, \(\frac{1}{4 \pi} \int_{\partial \Omega} f_2 \, ds \) мы назо-
в) \(\mu = e^\varphi, \quad 0 \leq \varphi \leq \pi \) и \(\mu = e^{2\pi - \varphi}, \quad \pi \leq \varphi \leq 2\pi \).

4. Найти потенциал двойного слоя с постоянной плотностью \(\mu_0 \) для сферы \(|x| = R \).

Лекция 19. Основные свойства гармонических функций.

Теорема о среднем арифметическом. Поведение гармонической функции вблизи особой точки. Поведение гармонических функций на бесконечности

Основная интегральная формула Грина имеет вид

\[
\iint\limits_{\Omega} \frac{1}{r} \Delta u \, d\Omega + \iint\limits_{\mathcal{S}} \left(\frac{1}{r} \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \frac{1}{r} \right) \, ds = \begin{cases} 4\pi \mu(M_0), & \text{если } M_0 \in \Omega, \\ 2\pi \mu(M_0), & \text{если } M_0 \in S, \\ 0, & \text{если } M_0 \in \mathcal{S}. \end{cases}
\]

(1)

Вывод соотношения (1) был основан на использовании второй формулы Грина

\[
\iint\limits_{\Omega} (u \Delta v - v \Delta u) \, d\Omega = \iint\limits_{\mathcal{S}} \left(u \frac{\partial \nu}{\partial n} - v \frac{\partial u}{\partial n} \right) \, ds.
\]

(2)

Сейчас мы получим несколько важнейших свойств гармонических функций.

§4. Теорема о среднем арифметическом

Лемма 1. Если \(u \) — функция, гармоническая в области \(\Omega \), ограниченной поверхностью \(S \), то

\[
\iint\limits_{\mathcal{S}'} \frac{\partial u}{\partial n} \, ds = 0,
\]

где \(\mathcal{S}' \) — любая замкнутая поверхность, целиком лежащая в области \(\Omega \).
Доказательство. Подставляя в (2) гармоническую функцию \(u \), \(\Delta u = 0 \) и функцию \(v = 1 \), сразу же получим формулу (3).

Из формулы (3) следует, что вторая краевая задача:

\[
\Delta u = 0, \quad M(x, y, z) \in \Omega,
\]

\[
\frac{\partial u}{\partial s} |_{S} = f
\]

может иметь решение только при условии

\[
\int_{S} |f| dS = 0.
\]

Теорема 1 (Теорема о среднем арифметическом). Значение гармонической функции в центре некоторого шара равно среднему арифметическому ее значений на поверхности этого шара.

Доказательство: Применяя формулу (1) к шару \(K_a \) с центром в точке \(M_0 \) и радиусом \(a \):

\[
4\pi u(M_0) = \int_{S_a} \left[\frac{1}{r} \frac{\partial u}{\partial n} - u \frac{\partial}{\partial n} \left(\frac{1}{r} \right) \right] dS.
\] \hspace{1cm} (4)

Здесь \(S_a \) — сфера. Принимая во внимание, что

\[
\frac{1}{r} = \frac{1}{a} \text{ на } S_a,
\]

\[
\frac{\partial}{\partial n} \left(\frac{1}{r} \right) |_{S_a} = \frac{\partial}{\partial n} \left(\frac{1}{r} \right) |_{r=a} = -\frac{1}{a^2}
\]

и формулу (3), из (4) получаем соотношение

\[
u(M_0) = \frac{1}{4\pi a^2} \int_{S_a} |u| dS.
\] \hspace{1cm} (5)

Теорема доказана.

Запись (5) в виде

\[
4\pi r^2 u(M_0) = \int_{S_a} |u| dS
\]

и интегрируя по \(r \) от 0 до \(a \), получаем

\[
u(M_0) = \frac{1}{V_a} \int_{K_a} |u| d\Omega,
\]

\[
V_a = \frac{2}{3} \pi a^3,
\]

т.е. \(u(M_0) \) есть среднее по объему шара \(K_a \) с границей \(S_a \).

Теперь используя теорему 1, устанавливаем справедливость утверждения:

Лемма 2. Функция, гармоническая внутри ограниченной области \(\Omega \), непрерывная в замкнутой области \(\overline{\Omega} \), достигает своего наибольшего и наименьшего значения только на границе области, кроме того случая, когда эта функция есть постоянная.

Доказательство. Пусть \(u(M) \) достигает наибольшего значения в некоторой внутренней точке \(M_0(x_0, y_0, z_0) \) области \(\Omega \). Проведем сферу \(S_\rho \) с центром в точке \(M_0 \) и радиусом \(\rho \), принадлежащую целиком области \(\Omega \), применив теорему о среднем арифметическом и заменив подынтегральную функцию \(u(M) \) ее наибольшим значением \(u(M^*) = \max_{M \in S_\rho} u(M) \) на сфере. Таким образом, получим

\[
u(M_0) = \frac{1}{4\pi \rho^2} \int_{S_\rho} |u| dS \leq \frac{1}{4\pi \rho^2} \int_{u(M^*)} dS = u(M^*),
\]

причем знак равенства имеет место только в том случае, когда \(u \) на сфере \(S_\rho \) есть постоянная, равная \(u(M_0) \). Поскольку по предположению \(u(M_0) \) есть наибольшее значение \(u(M) \) в области \(\Omega \), мы можем утверждать, что имеет место знак равенства и, следовательно, \(u(M) \) равна постоянной внутри \(\Omega \) на поверхности замкнутой сферы с центром \(M_0 \), целиком принадлежащей области \(\Omega \). Покажем, что отсюда следует, что \(u(M) \) есть постоянная и во всей области \(\Omega \). Действительно, соединив точку \(M_0 \) с произвольной внутренней точкой \(M \) при помощи какой-либо гладкой кривой \(L \), лежащей целиком внутри области \(\Omega \), при том минимальное расстояние от точки линии \(L \) до точек
геометрии области, будет положительным. Следовательно, существует такое положительное число \(\varepsilon \), что шар радиуса \(\varepsilon \), описанный вокруг любой точки линии \(L \), будет лежать целиком внутри \(\Omega \). На линии \(L \) можно указать конечное число точек \(M_0, M_1, \ldots, M_n = M \), обладающих тем свойством, что каждая последующая лежит внутри шара радиуса \(\varepsilon \), описанной вокруг предыдущей. Пользуясь доказанным свойством постоянства \(u \) на любой внутренней сфере, окружающей всякую точку, где \(u \) принимает максимальное значение, и переходя последовательно от одной вершины ломаной к другой, получим:

\[
u(M) = u(M_0)\]

Аналогично доказывается, что гармоническая функция не может достигать наименьшего значения внутри \(\Omega \). Согласно теореме Вейерштрасса функция \(u(M) \) в замкнутой ограниченной области достигает своего наибольшего и наименьшего значений, и она достигает их на границе области \(\Omega \), ибо, по доказанному, внутренности \(\Omega \) гармоническая функция \(u(M) \) не может достигать наибольшего и наименьшего значений. Теорема доказана.

Непрерывно показать, что гармоническая функция \(u(M) \) не может иметь внутри области \(\Omega \) ни максимумов, ни минимумов.

§2. Изолированные особые точки

Рассмотрим особые точки гармонической функции. Пусть \(M_0 \) — изолированная особая точка, лежащая внутри области гармоничности функции \(u \). Представимся возможным два случая:

1) гармоническая функция ограничена в окрестности точки \(M_0 \);

2) гармоническая функция не ограничена в окрестности точки \(M_0 \).

С особыми точками второго рода мы уже встречались \(u = \frac{1}{r}, \quad r = |MM_0| \).

Следующая теорема показывает, что первый тип особых точек не может быть осуществлен.

IV. Теория потенциала

Теорема 2. Если ограниченная функция \(u(M) \) является гармонической внутри области \(\Omega \), за исключением точки \(M_0 \), то можно так определить значение \(u(M_0) \), чтобы функция \(u(M) \) была гармонической всюду внутри \(\Omega \).

Доказательство. Возьмем шар \(K_a \) радиуса \(a \) с центром в точке \(M_0 \), целиком лежащей внутри \(\Omega \), и рассмотрим внутри него гармоническую функцию \(u \), совпадающую с функцией \(u \) на сфере \(S_a \) шара \(K_a \).

Составим разность

\[w = u - U,
\]

которая

1) гармонична вдоль внутри \(K_a \), кроме точки \(M_0 \), в которой и не определена;

2) непрерывна примыкает к нулевым граничным условиям \(S_a \);

3) ограничена в замкнутой области \(K_a \cup S_a \) \(|w| < A \).

Далее рассмотрим неотрицательную гармоническую функцию

\[U(M) = \varepsilon \left(\frac{1}{r} - \frac{1}{a} \right),
\]

Здесь \(\varepsilon \) — произвольное положительное число, \(a \) — радиус шара \(K_a \), \(r = |MM_0| \).

Построим шар \(K_b \) с центром в точке \(M_0 \), выбрав его радиус \(b \) так, чтобы на его сфере значение \(u \) превосходило \(A \), и рассмотрим область \(K_a \setminus K_b \). Функция \(w \) непрерывна в замкнутой области \(b \leq r \leq a \), и на границе этой области имеет место неравенство \(|w| \leq U \). В силу принципа максимального значения неотрицательная функция \(U \) является максимальной функции \(w \)

\[|w| \leq U(M) \quad \text{для } b \leq r \leq a.
\]

Фиксируя произвольную точку \(M \) области \(K_a \), не совпадающую с \(M_0 \), и совмещая предельный переход при \(\varepsilon \to 0 \), получим

\[\lim_{\varepsilon \to 0} U(M) = 0.
\]
Теорема 3. Если функция \(u(M) \) гармонична вне некоторой замкнутой поверхности \(S \) и равномерно стремится к нулю на бесконечности, т.е. существует такая функция \(v(r) \), что

\[
|u(M)| \leq v(r), \quad v(r) \to 0 \quad \text{при} \quad r \to \infty,
\]

где \(r = \rho u \), радиус-вектор точки \(M \), то она регулярна на бесконечности.

Доказательство. Согласно преобразованию Потери, являет собой

\[
u(r', \theta, \varphi) = u(r, \theta, \varphi), \quad \text{где} \quad r' = \frac{1}{r},
\]

получим, что функция \(u \) гармонична всюду внутри поверхности \(S \), в которую переходит поверхность \(S \) при преобразовании обратных радиус-векторов за исключением начала координат, где она имеет изолированную особую точку.

Из условия (7) следует, что в окрестности начала координат (см. (8)) для функции \(u \) имеет место неравенство

\[
u(r', \theta, \varphi) \leq v\left(1 \frac{1}{r'}\right) = \varepsilon(r') \frac{1}{r'},
\]

где

\[
\varepsilon(r') = v\left(1 \frac{1}{r'}\right) \to 0 \quad \text{при} \quad r' \to 0.
\]

На основании выводов §2 функция \(u(r', \theta, \varphi) \) ограничена и гармонична при \(r' \leq r'_0 \):

\[
u(r', \theta, \varphi) \leq A \quad \text{при} \quad r' \leq r'_0,
\]

\[
u(r, \theta, \varphi) \leq A \quad \text{при} \quad r \geq r_0 = \frac{1}{r'_0}.
\]

В силу гармоничности функции \(u \) при \(r' = 0 \) можно написать:

\[
\frac{\partial u}{\partial x} = \varepsilon r' \left(\frac{1}{r} \frac{\partial u(x', y', z')}{\partial x}\right) \leq x + \frac{1}{r} \left[r \frac{\partial u}{\partial x} \cdot \frac{\partial x'}{\partial x} + r \frac{\partial u}{\partial y} \cdot \frac{\partial y'}{\partial x} + r \frac{\partial u}{\partial z} \cdot \frac{\partial z'}{\partial x}\right],
\]
Лекция 20. Уравнение Пуассона в пространстве.
Ньютона потенциал

Здесь мы исследуем уравнение Пуассона

\[
\Delta u = -4\pi \rho(x, y, z)
\]

в области, которая совпадает со всем пространством.

§1. Теорема единственности

Справедливо следующее утверждение:

Теорема 1. Решение уравнения Пуассона (1) в неограниченном пространстве, стремящемся к нулю на бесконечности, единствено.

Доказательство. В самом деле, если \(u_1 \) и \(u_2 \) — два таких решения, то их разность

\[
u = u_1 - u_2
\]

есть гармоническая функция, стремящаяся к нулю на бесконечности, а именно

\[
|u(x, y, z)| < \varepsilon(R),
\]

где \(\varepsilon(R) \to 0 \) при \(R \to \infty \)

(2)

\[
R = \sqrt{x^2 + y^2 + z^2}.
\]

Теперь, применяем теорему 1 лекции 18 к скох угодно большому шару, видим, что в любой точке пространства значение гармонической функции сколь мало в силу (2). Отсюда и вытекает справедливость теоремы.

§2. Построение решения уравнения Пуассона

Переходим теперь к решению уравнения (1) в неограниченном пространстве.

Пусть функция \(\rho(x, y, z) \) интегрируема и удовлетворяет неравенствам

\[
|\rho(x, y, z)| < \frac{A}{R^{2+\alpha}}, \quad \text{если} \quad r \geq 1,
\]

(3)

где

\[
R = \sqrt{x^2 + y^2 + z^2} \quad \text{и} \quad \alpha > 0.
\]

При выполнении условий (3) решение уравнения (1) легко построить с помощью интегральной формулы Грина. Пусть \(u(x_0, y_0, z_0) \) — решение (1), стремящееся к нулю на бесконечности. Вывод производной объем \(\Omega \), ограниченный поверхностью \(S \), мы имеем на основании этой формулы:

\[
u(x_0, y_0, z_0) = \frac{1}{4\pi} \int_{\Omega} \frac{\rho(x, y, z)}{r} d\Omega + \frac{1}{4\pi} \int_{S} \frac{1}{r} \frac{\partial u}{\partial n} ds - \frac{1}{4\pi} \int_{S} \frac{1}{r} \frac{\partial u}{\partial n} \left(\frac{1}{r} \right) ds,
\]

(4)

где \(r \) — расстояние между точкой \(M(x, y, z) \) и точкой \(M_0(x_0, y_0, z_0) \).

Возьмем за объем \(\Omega \) шар радиуса \(R \) с центром в начале координат и устремим \(R \) к бесконечности. При этом первое слагаемое правой части (4) будет стремиться к определенному пределу, так как в силу условий (3) объёмный интеграл сходится. Сумма двух других слагаемых представляет собой
некоторую гармоническую функцию. Мы покажем далее, что предел первого слагаемого дает решение поставленной задачи. В силу доказанной единственности решения отсюда следует, что сумма второго и третьего слагаемых стремится к нулю.

Докажем, что функция

$$ u(x_0,y_0,z_0) = \int \int \int \frac{\rho(x,y,z)}{r} dx \, dy \, dz $$

(5)

dействительно удовлетворяет уравнению (1) и поставленным условиям.

Функция (5) называется ньютоновским потенциалом, а $\rho(x,y,z)$ — его плотностью.

Покажем прежде всего стремление к нулю функции и на бесконечности. Используя (3), из формул (5) получим

$$ |u(x_0,y_0,z_0)| \leq A \int \int \int \frac{1}{r^{2+\alpha}} dx \, dy \, dz. $$

Переходя к очень последнему интегралу, заметим, что величина его зависит от $R_0 = \sqrt{x_0^2 + y_0^2 + z_0^2}$, и если положить $R_0 = R_0, y_0 = 0, z_0 = 0$, то она не изменится. В самом деле, очевидно, этот интеграл не меняется при повороте координатных осей, и можно выбрать эти координатные оси так, чтобы ось $O\xi$ прошла через точку $M_0(x_0,y_0,z_0)$. Делаю теперь замену переменных

$$ x = R_0 \xi, \quad y = R_0 \eta, \quad z = R_0 \zeta, $$

приведем его к виду

$$ A \int \int \int \frac{R_0^3 \xi \eta \zeta d\xi d\eta d\zeta}{R_0^{2+\alpha} P^{2+\alpha} p_1} = A \int \int \int \frac{\xi \eta \zeta d\xi d\eta d\zeta}{R_0^{2+\alpha} p_1} \frac{1}{R_0^{2+\alpha}}, $$

где $p = \sqrt{\xi^2 + \eta^2 + \zeta^2}$, $p_1 = \sqrt{(\xi - 1)^2 + \eta^2 + \zeta^2}$.

Последний интеграл сходитсся, так как

1) при $p \to \infty$ полный интеграл функции убывает как $\frac{1}{p^{2+\alpha}}$;

2) вблизи $p = 0$ особенность порядка $\frac{1}{p^{2+\alpha}}$ интегрируема (виду того, что

без ограничения общности можно считать $\alpha < 1$, ибо в противном случае
замена α на $\alpha_1 < \alpha$ только ослабит неравенство (3));

3) вблизи $p = 0$ особенность порядка $\frac{1}{p_1}$ интегрируема.

Обозначим

$$ \int \int \int \frac{1}{p_1 p^{2+\alpha}} d\xi d\eta d\zeta = B, $$

будем иметь

$$ |u(x_0,y_0,z_0)| \leq \frac{AB}{R_0^{2+\alpha}}, $$

что и доказывает стремление к нулю функции u на бесконечности.

Докажем теперь, что u имеет непрерывные производные, которые получаются дифференцированием под знаком интеграла.

Например,

$$ 4\pi \frac{\partial u}{\partial x_0} = \int \int \int \rho \frac{\partial}{\partial x_0} \left(\frac{1}{r} \right) dx \, dy \, dz. $$

Дифференцирование под знаком интеграла выполняется, так как полученный интеграл равномерно по x_0 сходитться. В самом деле,

$$ \frac{\partial}{\partial x_0} \left(\frac{1}{r} \right) = \frac{x = 0}{r^3} \quad \text{и} \quad \left| \frac{\partial}{\partial x_0} \left(\frac{1}{r} \right) \right| \leq \frac{1}{r^2}, $$

откуда и следует сходимость. Одновременно доказано существование непрерывных первых производных у ньютоновского потенциала. Чтобы доказать существование и непрерывность вторых производных, необходимо наколькото некоторые новые ограничения на функцию $\rho(x,y,z)$. Именно мы положим, что эта функция имеет непрерывные производные первого порядка.
Ранее не являлся существенным, но замени его другим, более слабым, потребовал бы больших усилий.

Функция \(\rho \) всегда можно разбить на два слагаемых \(\rho_1 \) и \(\rho_2 \) так, чтобы в окрестности данной точки \(M_0(x_0, y_0, z_0) \) функция \(\rho_2 \) была бы тождественно нулю, а функция \(\rho_1 \) была бы тождественно нулю в некоторой окрестности бесконечности, т.е. вне некоторой области \(\Omega \). При этом можно добиться того, что \(\rho_1 \) и \(\rho_2 \), в свою очередь, будут иметь непрерывные произвольные первого порядка. Тогда

\[
4\pi \psi(x_0, y_0, z_0) = \int \int \int \frac{\rho_1}{r} \, dx \, dy \, dz + \int \int \int \frac{\rho_2}{r^3} \, dx \, dy \, dz.
\]

Ввиду того, что \(\rho_2 = 0 \) в окрестности точки \(M_0(x_0, y_0, z_0) \), можем из второго интеграла исключить эту окрестность и тогда дифференцируя по параметру два раза, получив равномерную сходимость интеграла. Заменим первый интеграл. Будем иметь например:

\[
\frac{\partial}{\partial x_0} \int \int \int \frac{\rho_1}{r^3} \, dx \, dy \, dz = \int \int \frac{\partial}{\partial x_0} \left(\frac{x - x_0}{r^3} \right) \, dx \, dy \, dz.
\]

Введя новые переменные \(x = x_0 + \xi, \ y = y_0 + \eta, \ z = z_0 + \zeta, \) получим

\[
\frac{\partial}{\partial x_0} \int \int \int \frac{\rho_1}{r^3} \, dx \, dy \, dz = \int \int \frac{\partial}{\partial x_0} \left(\frac{x_0 + \xi - x_0}{r^3} \right) \, d\xi \, d\eta \, d\zeta,
\]

и, очевидно, что по параметрам \(x_0, y_0, z_0 \) этот последний интеграл дифференцируем можно. Это следует из того, что интеграл от производных будут сходиться равномерно.

Нам осталось доказать, что ньютонов потенциал удовлетворяет уравнению Пуассона.

Возьмем функцию \(\psi(x_0, y_0, z_0) \), равную нулю везде, кроме некоторого шара \(K \) с центром \(M_0(x_0, y_0, z_0) \), и имеющую непрерывные произвольные нескольких порядков, и рассмотрим интегральную формулу Грина для функции \(\psi \):

\[
4\pi \psi(x_0, y_0, z_0) = -\int \int \int \frac{1}{r} \Delta \psi \, dk + \int \int \int \left(\frac{1}{r^3} \frac{\partial \psi}{\partial n}(r) \right) \, ds.
\]

Так как вне шара \(K \) \(\psi \) и \(\frac{\partial \psi}{\partial n} \) равны нулю, получим

\[
\psi(x_0, y_0, z_0) = -\frac{1}{4\pi} \int \int \Delta \psi \, dx \, dy \, dz.
\]

Умножив последнее соотношение на \(\rho(x_0, y_0, z_0) \) и интегрируя по \(x_0, y_0, z_0, \) будем иметь

\[
\int \int \int \rho(x_0, y_0, z_0) \psi(x_0, y_0, z_0) \, dx \, dy \, dz = -\frac{1}{4\pi} \int \int \int \left(\Delta \psi(x, y, z) \int \int \rho(x_0, y_0, z_0) \, dx_0 \, dy_0 \, dz_0 \right) \, dx \, dy \, dz = 0.
\]

Далее для достаточно большой области \(\Omega \)

\[
\int \int \int \Delta \psi = \int \int \int \Delta u = 0.
\]

Теперь из формул (6) и (7) получаем, что

\[
\int \int \int \psi(x, y, z) [\Delta u + \rho] \, dx \, dy \, dz = 0.
\]

Из произвольности \(\psi(x, y, z) \) вытекает

\[
\Delta u = -\rho.
\]

Итак, доказано утверждение:

Теорема 2. Пусть функция \(\rho = \rho(x, y, z) \) имеет непрерывные первые произвольные и, кроме этого, выполнены условия (3). Тогда формула (5) задает решение уравнения Пуассона (1), стремящееся к нулю на бесконечности.
Лекция 21. Решение задачи Дирихле для шара

Пусть Ω — конечная область, ограниченная поверхностью S. Внутренняя задача Дирихле для уравнения Пуассона ставится так: найти решение \(u(M) \) уравнения

\[
\Delta u = p(M), \quad M(x,y,z) \in \Omega,
\]

непрерывное в замкнутой области \(\Omega \) и принимающее на поверхности S заданные значения

\[
u = f(M), \quad M(x,y,z) \in S.
\]

В настоящей лекции мы будем заниматься решением задачи Дирихле для шара.

§1. Функция Грина задачи Дирихле

Применяя интегральную формулу Грина (см. лекцию 19) к решению и уравнению Пуассона (1), получим

\[
u(x_0,y_0,z_0) = \frac{1}{4\pi} \left[\int_{\partial \Omega} p ds + \int_{\Omega} \frac{1}{r} \frac{\partial u}{\partial r} \frac{1}{r} \left(\int_{\partial \Omega} u \frac{\partial g}{\partial n} \right) ds \right].
\]

Пусть известна функция \(g(M,M_0) \), обладающая следующими двумя свойствами: 1) как функция переменной точки \(M \) она является гармонической внутри области \(\Omega \) и имеет непрерывные первые производные вплоть до поверхности \(S \); 2) на поверхности \(S \) функция \(g(M,M_0) \) принимает граничные значения \(-\frac{1}{r} \).

Применяя вторую формулу Грина (см. лекцию 18) к функциям \(u(M) \) и \(g(M,M_0) \), получим

\[
\frac{1}{4\pi} \int_{\Omega} \left[(u \Delta g - g \Delta u) \right] ds = \frac{1}{4\pi} \int_{\Omega} \left[\left(u \frac{\partial g}{\partial n} - g \frac{\partial u}{\partial n} \right) \right] ds.
\]

Определение. Функцией Грина задачи Дирихле для уравнения Пуассона называется функция \(g(M,M_0) \), удовлетворяющая следующим условиям: 1) \(g(M,M_0) \) как функция точки \(M \) есть гармоническая внутри области \(\Omega \), исключая точку \(M_0 \), где она обращается в бесконечность; 2) она удовлетворяет граничному условию

\[
\frac{1}{4\pi} \int_{\partial \Omega} g(M,M_0) ds = \frac{1}{4\pi} \int_{\Omega} \frac{1}{r} \left[u \frac{\partial g}{\partial n} - g \frac{\partial u}{\partial n} \right] ds.
\]

Построение функции Грина сводится к нахождению ее регулярной части \(g(M,M_0) \), которая определяется из решения задачи Дирихле для уравнения Лапласа

\[
\Delta g(M,M_0) = 0, \quad g(M_0,M) = \frac{1}{r}, \quad M_0 \in \Omega.
\]

С помощью функции Грина решение внутренней задачи Дирихле (если оно существует) выражается формулой, согласно (2), (4), (6):}
При выводе формулы (7) мы предполагали существование функции $u(M)$ — решения внутренней задачи Дирихле с граничными значениями $f(M)$, непрерывного вместе с первыми производными вплоть до границы S. Таким образом, не давая доказательства существования решения, формула (7) дает интегральное представление существующих достаточно гладких решений задачи Дирихле. Подробное исследование формулы (7), проведенное А.М. Ляпуновым, показало, что для поверхностей, называемых поверхностями Ляпунова, она представляет решение задачи Дирихле при любом выборе непрерывной функции $f(M)$, входящей в граничное условие, и при условии непрерывной дифференцируемости правой части $\rho(M)$.

Используя принцип максимума, нетрудно показать, что функция Грнца

$$G(M,M_0)$$

удовлетворяет неравенствам

$$0 < G(M,M_0) < \frac{1}{4\pi \rho}, \quad M \in \Omega.$$

(8)

Кроме того, функция Грнца симметрична, т.е. $G(M,M_0) = G(M_0,M)$.

§2. Решение внутренней задачи Дирихле для шара

Перейдем теперь к решению задачи Дирихле для шара. В этом случае можно построить функцию Грнца в явном виде. Пусть R — радиус шара с центром в точке O; возьмем внутри него произвольную точку $M_0(x_0, y_0, z_0)$ и обозначим через ρ расстояние этой точки от центра шара (рис. 1). Подвергнем точку M_0 преобразованию вверской относительно сферы S. Преобразованная точка $M_1(x_1, y_1, z_1)$ будет лежать на прямой OM_0 вне шара на расстоянии ρ_1 от центра шара, причем

$$\rho \rho_1 = R^2.$$

(9)

162 В.А. Байков, А.В. Жибер Уравнения математической физики

Далее обозначим через r и η расстояние от точки M соответственно до точек M_0 и M_1. Найдем соотношение между r и η когда точка M находится на поверхности шара. Треугольники OM_0M и OM_1M подобны, так как они имеют общий угол при вершине O и стороны, образующие эти углы, пропорциональны в силу (9). Из подобия треугольников следует, что

$$\frac{r}{\eta} = \frac{\rho}{R},$$

или

$$\frac{1}{r} - \frac{R}{\rho} \frac{1}{\eta} = 0 \quad \text{при} \ M \in S.$$

(10)

Покажем теперь, что функция Грнца для шара будет иметь следующий вид:

$$G(M,M_0) = \frac{1}{4\pi} \left(\frac{1}{\rho} - \frac{R}{\rho} \frac{1}{\eta} \right).$$

(11)

Действительно, функция $G(M,M_0)$ как функция точки M является гармонической внутри шара, за исключением точки M_0, где она обращается в бесконечность. На поверхности S шара она обращается в нуль, что следует из (10). Таким образом, построенная функция удовлетворяет всем условиям, ны-
Пусть точка M_0 лежит внутри шара; запишем интеграл (13) в виде

$$u_1(M_0) = -\frac{1}{4\pi} \int \left[\frac{1}{r} - \frac{R}{\rho \eta} \right] \rho \, d\Omega.$$

Первое слагаемое есть ньютонов потенциал и, следовательно, прямое действие к нему оператора Лапласа даёт ρ. Второе слагаемое есть гармоническая функция, так как

$$\Delta_0 \left[\frac{1}{4\pi} \int \rho \, d\Omega \right] = \frac{1}{4\pi} \int \rho \, d\Omega = 0.$$

(Мы обозначим здесь оператор Лапласа Δ_0, чтобы подчеркнуть, что производные берутся по аргументам x_0, y_0, z_0.) Следовательно, формула (13) дает нужное нам решение уравнения Пуассона.

Второе слагаемое, стоящее в правой части (12), обозначим так:

$$u_2(M_0) = -\frac{1}{4\pi} \int f(M) \frac{\partial}{\partial \eta} \left[\frac{1}{y} - \frac{R}{\rho \eta} \right] d\eta.$$

Таким образом, если решение внутренней задачи Дирихле для уравнения Лапласа в шаре существует и если оно непрерывно в замкнутом шаре вместе с первыми производными, то это решение представимо по формуле (14). Эта формула носит название формулы Пуассона.

Преобразуем формулу (14), Имеем

$$\frac{\partial}{\partial \eta} \left[\frac{1}{r} \right] = \frac{\partial}{\partial x} \left[\frac{1}{r} \right] \cos (\vec{n}, x) + \frac{\partial}{\partial y} \left[\frac{1}{r} \right] \cos (\vec{n}, y) + \frac{1}{r} \cos (\vec{n}, z) =$$

$$= -\frac{1}{r^2} \left[\cos (\vec{n}, x) + \cos (\vec{n}, y) + \cos (\vec{n}, z) \right] =$$

$$= -\frac{1}{r^2} \cos (\vec{n}, \vec{n}) =$$

Аналогично,

$$\frac{\partial}{\partial \eta} \left[\frac{1}{r} \right] = -\frac{1}{r^2} \cos (\vec{r}, \vec{n}).$$

Таким образом

$$\frac{\partial}{\partial \eta} \left[\frac{1}{r} \right] = -\frac{1}{r^2} \cos (\vec{r}, \vec{n}).$$

Здесь α — угол между векторами $\vec{r} - \vec{n}$ и \vec{n}, β — между \vec{r} и \vec{n} (рис. 2).
Из треугольников OMM_0, OMM_1 имеем
\[
\rho^2 = R^2 + r^2 - 2R r \cos \alpha,
\]
\[
\rho_1^2 = R^2 + \eta^2 - 2R \eta \cos \beta.
\]
Определяя отходы $\cos \alpha$ и $\cos \beta$ и подставляя их в (14), получим
\[
\frac{\partial}{\partial n} \left(\frac{1}{r} \frac{R}{\rho} \right) = \frac{\rho^2 - R^2 - r^2 + R^2 + r^2 - \rho_1^2}{2R^3} \frac{1}{r} \quad \text{на} \ S,
\]
или, в силу (9), (10),
\[
\frac{\partial}{\partial n} \left(\frac{1}{r} \frac{R}{\rho} \right) = \frac{\rho^2 - R^2}{R^3} \quad \text{на} \ S.
\]
Подставляя в формулу (14), окончательно получим
\[
u_2(M_0) = \frac{1}{4\pi r} \int f(M) \left(\frac{1}{r} - \frac{\rho_2}{r^3} \right) ds.
\]
(15)
Можно доказать, что если функция $f(M)$ непрерывна, то формула (15) дает решение внутренней задачи Дирихле для уравнения Лапласа в цирте.
Например гармоничность функции $\nu_2(M_0)$ следует из того, что при $\rho < R$ имеем
\[
\Delta_0 \frac{R^2}{r^2} = \Delta_0 \frac{R^2 + r^2 - \rho^2}{r^3} = -\Delta \frac{1}{r} = -2R \Delta \frac{1}{r} = -2R \frac{\partial}{\partial n} \Delta \frac{1}{r} = 0 \quad (M \in S),
\]
(1)
Задачи
1. Построить функцию Грeña для следующих областей в \mathbb{R}^3:
 а) полупространство $z > 0$;
 б) двугранного угла $y > 0, z > 0$;
 в) октант $x > 0, y > 0, z > 0$.
2. Построить функцию Грeña для следующих областей в \mathbb{R}^3:
 а) полусферу $x^2 + y^2 + z^2 < R^2, \ z > 0$;
 б) четверти цирта $x^2 + y^2 + z^2 < R^2, \ y > 0, \ z > 0$.
3. Найти решение задачи Дирихле
\[
u = \begin{cases}
 f(x, y, z), \ z > 0;
 \nu|_{z=0} = u_0(x, y),
\end{cases}
\]
для следующих f и u_0:
 а) $f = 0$, $u_0 = \cos x \cos y$;
 б) $f = e^{-y} \sin x \cos y$, $u_0 = 0$.
4. Решить задачу Дирихле для уравнения Лапласа для полусферы
\[
 x^2 + y^2 + z^2 < R^2, \ z > 0.
\]
Лекция 22. Задачи Дирихле и Неймана для полупространства
Мы встречались уже с постановкой двух основных задач теории уравнений Лапласа, а именно, с задачами Дирихле и Неймана.
Например, что задача Дирихле для уравнения Лапласа состоит в определении функции ν в области Ω с границей S, удовлетворяющей уравнению
\[
u = 0, \quad M(x, y, z) \in \Omega, \quad (1)
\]
и граничным условием
\[
u|_{S} = f_1(M). \quad (2)
\]
Задача Неймана состоит в определении решения уравнения (1), удовлетворяющего условию
\[
u|_{S} = f_2(M). \quad (3)
\]
§1. Теорема единственности решений задач Дирихле и Неймана
Пусть Ω — полупространство $z > 0$; поверхность S является тогда гладкостями $\partial \Omega$.
Теорема 1. Решение u(M) задачи Дирихле (1), (2) единственно в классе отрицательных функций.

Докажем, что эта функция будет теперь гармонической во всем пространстве, включая и плоскость \(z = 0 \).

Построим сферу \(\sigma \) произвольного радиуса с центром на плоскости \(z = 0 \) и определим функцию \(\psi_1 \), гармоническую внутри шара, ограниченного этой сферой, и принятую на поверхности значения

\[
\psi_1(M) = u(M), \quad M \in \sigma.
\]

Легко видеть, что \(\psi_1 \) будет равна нулю при \(z = 0 \). В самом деле, функция

\[
\psi_1(x, y, z) = \frac{1}{2} [u_1(x, y, z) + u_1(x, y, -z)]
\]

будет гармонической и примет на сфере \(\sigma \) значения нуль, следовательно,

\[
\psi_1(x, y, 0) = 0.
\]

Плоскость \(z = 0 \) рассечет наш шар на два полушара. Функция \(\psi_1 \) на границе каждого из них совпадает с \(u \); на поверхности \(\sigma \) это следует из (4), а на части плоскости \(z = 0 \) обе эти функции равны нулю. Следовательно,

\[
\psi_1(x, y, 0) = \psi_1(x, y, 0).
\]

Плоскость \(z = 0 \) рассечет наш шар на два полушара. Функция \(\psi_1 \) на границе каждого из них совпадает с \(u \); на поверхности \(\sigma \) это следует из (4), а на части плоскости \(z = 0 \) обе эти функции равны нулю. Следовательно,

\[
\psi_1(x, y, 0) = \psi_1(x, y, 0).
\]

Так как положение центра шара произвольно, то \(u \) будет гармонической во всем пространстве. Теперь согласно теоремы Лиувилля она тождественно равна некоторой постоянной. Эта постоянная может быть только нулем, так как \(u = 0 \) при \(z = 0 \).

Теорема 2. Решение u(M) задачи Неймана (1), (3) стремится к нулю, когда точка M(x, y, z) стремится к бесконечности единственно.

Докажем, что эта функция будет теперь гармонической во всем пространстве, включая и плоскость \(z = 0 \).

Построим сферу \(\sigma \) произвольного радиуса с центром на плоскости \(z = 0 \) и определим функцию \(\psi_1 \), гармоническую внутри шара, ограниченного этой сферой, и принятую на поверхности значения

\[
\psi_1(M) = u(M), \quad M \in \sigma.
\]

Для любого \(\varepsilon > 0 \) имеем оценку

\[
|u(x, y, z)| < \varepsilon, \quad \text{если} \quad \sqrt{x^2 + y^2 + z^2} > R(\varepsilon)
\]

(\(R(\varepsilon) \to \infty \), при \(\varepsilon \to 0 \)), Далее пусть \(u_1 \) и \(u_2 \) — два решения задачи Неймана.

Тогда функция \(u = u_1 - u_2 \) удовлетворяет условию:

\[
\Delta u = 0 \quad \text{при} \quad z > 0, \quad \frac{\partial u}{\partial z} = 0 \quad \text{при} \quad z = 0.
\]

Определям для отрицательных \(z \) функцию \(u \) с помощью формулы

\[
u(x, y, z) = u(x, y, -z).
\]

Тогда функция \(u \) будет гармонической во всем пространстве, включая плоскость \(z = 0 \).

Рассмотрим произвольную

\[
\frac{\partial u}{\partial z} = u(x, y, z).
\]

Это будет функция, гармоническая в верхнем и в нижнем полушиаре, удовлетворяющая условию

\[
\psi_1(x, y, z) = -u(x, y, -z), \quad \psi_1(x, y, 0) = 0,
\]

и, следовательно, как мы только что доказали, гармоническая во всем пространстве.

При этом функция

\[
u(x, y, z) = \int_{z}^{z+1} u(x, y, \xi) \, d\xi = u(x, y, z+1) - u(x, y, z)
\]
Вывод ограниченноности u во всем пространстве по теореме Линдуэлья: $u = \text{const}$.

Последовательно, решение задачи Неймана единственное с точностью до постоянного слагаемого в классе ограниченных решений.

При выполнении условия (5), очевидно, что $u = 0$.

Теорема доказана.

§2. Построение решений задач Дирихле и Неймана

Предположим, что рассматриваемая нами гармоническая функция удовлетворяет условиям

$$|u(x, y, z)| \leq \frac{A}{R^\alpha}, \quad |\frac{\partial u(x, y, z)}{\partial x}| \leq \frac{A}{R^{1+\alpha}}, \quad |\frac{\partial u(x, y, z)}{\partial y}| \leq \frac{A}{R^{1+\alpha}} \quad \text{и} \quad |\frac{\partial u(x, y, z)}{\partial z}| \leq \frac{A}{R^{1+\alpha}},$$

где $R = \sqrt{x^2 + y^2 + z^2}, \alpha > 0$, и A — постоянная.

После того как явное решение задач будет найдено, необходимость в этом предположении отпадет.
Формулы (12) и (13) перепишем учитывая, что $\frac{\partial}{\partial n} = \frac{\partial}{\partial z}$, следующим образом

$$u(x_0, y_0, z_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{f_2(x, y)}{(x-x_0)^2 + (y-y_0)^2 + z_0^2} dx dy.$$ \hspace{1cm} (12')

и

$$u(x_0, y_0, z_0) = -\frac{1}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{z_0 f_1(x, y)}{(x-x_0)^2 + (y-y_0)^2 + z_0^2} dx dy.$$ \hspace{1cm} (13')

Можно показать, что если $f_1(x, y)$ и $f_2(x, y)$ — непрерывные функции, удовлетворяющие неравенствам

$$|f_1(x, y)| \leq A, \quad |f_2(x, y)| \leq \frac{A}{\rho^{1+\alpha}},$$

где $\rho = \sqrt{x^2 + y^2}$, $\alpha > 0$, а A — постоянная, то формулы (12') и (13') дают решения задач Неймана и Дирихле, при этом интеграл (13') представляет собой ограниченную функцию, а интеграл (12') функцию $u(x_0, y_0, z_0)$, обращается в нуль на бесконечности.

Лекция 23. Свойства потенциалов объема, простого и двойного слоя

Чтобы рассмотреть задачи Дирихле и Неймана кроме шара и полупространства еще и для областей, мы должны рассмотреть в отдельности интегралы

$$I_1 = \int_{\Omega} \int_{M} \frac{\partial f_2(M)}{\partial n} dM, \quad I_2 = -\int_{S} \int_{M} \frac{f_1(M)}{\partial n} dM, \quad I_3 = \int_{S} \int_{M} \frac{f_2(M)}{r} dM,$$

которые встречались нам уже неоднократно. Как мы упоминали раньше, интеграл I_1 называется потенциалом объема, а функция $\rho(M)$ — его гипо-
§1. Потенциал объема

Рассмотрим потенциал объема

\[u(x_0, y_0, z_0) = \iiint_{\Omega} \frac{\rho(M)}{r} \, d\Omega \quad (r = |M_0M|), \tag{1} \]

где \(\Omega \) — конечная область. Предположим, что плотность \(\rho(M) \) ограничена и интегрируема в \(\Omega \). Интеграл (1) является собственным, если точка \(M_0 \) лежит вне \(\Omega (r \neq 0) \). В этом случае функция \(u(M) \) непрерывна и имеет частные производные всех порядков. Эти производные могут быть получены дифференцированием под знаком интеграла, и \(u(M_0) \) удовлетворяет уравнению Лапласа \(\Delta u = 0 \) вне области \(\Omega \). Покажем, что при стремлении точки \(M_0 \) в бесконечность по любому направлению функция \(u(M_0) \) стремится к нулю, так что

\[|u(M_0)| < \frac{A}{R}, \quad A = \text{const} \]

где \(R = \sqrt{x_0^2 + y_0^2 + z_0^2} \).

Пусть начало координат принадлежит области \(\Omega \). Тогда

\[|M_0M| \geq |OM_0| - |OM| \]

или

\[r \geq R - |OM|. \]

Обозначим через \(d \) — диаметр области \(\Omega \). Тогда

\[r \geq R - d. \]

Будем считать, что точка \(M_0 \) настолько удалена от начала координат, что \(R > 2d \), т. е. \(d < \frac{R}{2} \), тогда \(r > \frac{R}{2} \) или \(\frac{1}{r} < \frac{2}{R} \). Теперь

\[|u(M_0)| \leq \iiint_{\Omega} \frac{|\rho(M)|}{r} \, d\Omega \leq \frac{2}{R} \iiint_{\Omega} |\rho(M)| \, d\Omega = \frac{A}{R}, \]

где

\[A = 2\iiint_{\Omega} |\rho(M)| \, d\Omega. \]

Таким образом, потенциал объема \(u(M_0) \) есть гармоническая функция вне области \(\Omega \).

Пусть теперь точка \(M_0 \) лежит внутри области \(\Omega \). Тогда интеграл (1) будет несобственным. В силу ограниченности плотности \(\rho(M) \), интеграл (1) сходится, так как

\[\frac{|\rho(M)|}{r} \leq \frac{C}{r}, \]

где \(C = \text{const} \).

Кроме того, можно показать, что потенциал \(u(M_0) \) и его производные любого порядка непрерывны во всем пространстве и эти производные могут быть получены дифференцированием под знаком интеграла.

Для существования производных второго порядка требуется наложить на плотность потенциала \(\rho(M) \) дополнительные ограничения. А именно, справедливо утверждение:

Теорема 1. Если плотность \(\rho(M) \) непрерывна в замкнутой области \(\Omega \) и имеет непрерывные производные второго порядка внутри \(\Omega \), то потенциал объема (1) имеет непрерывные производные второго порядка внутри \(\Omega \) и удовлетворяет уравнению Пуассона

\[\Delta u(M_0) = -4\pi \rho(M_0). \]

Итак, если \(f(M) \in C(\Omega) \cap C^1(\Omega) \), то уравнение Пуассона

\[\Delta u(M_0) + f(M_0) = 0 \]

имеет частное решение

\[u(M_0) = \frac{1}{4\pi} \iiint_{\Omega} \frac{f(M)}{|M_0M|} \, d\Omega. \]
§ 2. Поверхности Ляпунова

Для возможного строго установления свойств потенциалов простого и двойного слоя необходимо подчинить ряду требований те поверхности, на которых располагаются эти слои.

Будем называть замкнутую поверхность S поверхностью Ляпунова, если выполнены следующие три условия:

1. Поверхность S имеет везде касательную плоскость.
2. Во круг каждой точки M_0 поверхности можно описать такой шар радиуса r, не запищающего от M_0, внутри которого попадает лишь участь Σ поверхности S, встречаемый прямые, параллельные нормям n_0 в точке M_0, не более чем один раз.
3. Если 0 — острый угол образованный нормалями к S в двух ее точках M_1 и M_2, и r — расстояние между этими двумя точками, то имеет место неравенство

$$0 \leq ar^\alpha,$$

где a и α — постоянные числа, причем $0 < \alpha \leq 1$.

Условие 1 дает возможность в точке M поверхности Ляпунова построить местную прямоугольную систему координат XYZ, беря точку M за начало координат, касательную плоскость в точке M за плоскость XY и нормаль поверхности в точке M за ось OZ. Условие 2 показывает, что в этой местной системе координат уравнение части поверхности S, заключенной внутри сферы с центром в точке M и радиусом r, может быть представлено в виде, разрешенном относительно Z:

$$Z = f(x, y).$$

Из условия 3 следует, что частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ являются непрерывными функциями x и y.

§ 3. Потенциал двойного слоя

Рассмотрим потенциал двойного слоя непрерывной плотности $f_1(M)$, заданной на поверхности Ляпунова

$$\omega(x_0, y_0, z_0) = \int_S \frac{f_1(M)}{\partial n} \left(\frac{1}{r} \right) dS.$$ \hspace{1cm} (2)

Потенциал двойного слоя имеет все ве в S производные всех порядков и удовлетворяет уравнению Гамильтона. Показем, что потенциал двойного слоя стремится к нулю на бесконечности. Возьмем начало координат внутри области Ω, ограниченной поверхностью S. Тогда

$$|M_0M| \geq |OM_0| - |OM|$$

или

$$r \geq R - |OM|.$$ \hspace{1cm} (3)

Обозначим через L наибольшее расстояние точек поверхности от начала координат. Тогда

$$r \geq R - L.$$ \hspace{1cm} (4)

Будем считать, что точка M_0 настолько удалена от начала координат, что $R > 2L$, т.е. $L < \frac{R}{2}$, тогда $r > \frac{R}{2}$ или $\frac{r}{R} < \frac{2}{R}$. Далее обозначим через φ угол, обрезанный векторами n и $M_0 \rightarrow M$, где n — внешняя нормаль к поверхности S в точке M. Тогда формулу (2) можно представить так

$$\omega(x_0, y_0, z_0) = \int_S f_1(M) \cos \varphi \frac{dS}{r^2}.$$ \hspace{1cm} (5)

Теперь

$$|\omega(M_0)| \leq \int_S \left| f_1(M) \right| \cos \varphi \frac{dS}{r^2} < \frac{4}{R} \int_S \left| f_1(M) \right| dS = \frac{4}{R},$$

где

$$A = 4 \int_S \left| f_1(M) \right| dS.$$
Следовательно, потенциал двойного слоя стремится к нулю на бесконечности как $\frac{1}{R^2}$.

Далее мы приводим свойства двойного слоя, не останавливаясь на их доказательстве.

Пусть теперь точка M_0 лежит на поверхности S. Тогда $r = |M_0M|$ обривается в нуль при совпадении точек M_0 и M и интеграл (2) является несобственным. Можно показать, что он сходится. Таким образом, потенциал двойного слоя (2) определен во всем пространстве.

Если точка M_0 лежит на поверхности S, то значение интеграла (2) в этой точке называют прямым значением потенциала двойного слоя. Пусть теперь точка $M_0(x_0, y_0, z_0)$ находится вне поверхности S и пусть точка M_0 приближается к точке $N_0 \in S$. Если при этом приближении оказывается, что потенциал двойного слоя $\omega(M_0)$ стремится к некоторому конечному пределу, то мы будем говорить, что потенциал двойного слоя принимает в точке N_0 предельное значение. Предельные и прямые значения потенциала двойного слоя, вообще говоря, не совпадают. Оказывается, что предельные значения потенциала двойного слоя $\omega(M_0)$ различны в зависимости от того, въе в изнутри стремится точка M_0 к поверхности S, и эти предельные значения не совпадают с прямым значением, а именно, справедливо утверждение:

Теорема 2. Потенциал двойного слоя $\omega(M_0)$ имеет пределы при стремлении точки M_0 к точке N_0 поверхности S извне или изнутри.

Если пределы значений $\omega(M_0)$ извне обозначить через $\omega_e(N_0)$, а предел изнутри — через $\omega_i(N_0)$, то имеют место формулы

$$\omega_e(N_0) = \omega(N_0) - 2\pi f_1(N_0),$$

$$\omega_i(N_0) = \omega(N_0) + 2\pi f_1(N_0).$$

IV. Теория потенциала

Итак, потенциал двойного слоя $\omega(M_0)$ есть разрывная функция, которая прерывается разрыв непрерывности при переходе через поверхность.

§4. Потенциал простого слоя

Рассмотрим потенциал простого слоя непрерывной плотности $f_2(M)$, заданной на поверхности Лагранжа S:

$$\sigma(M_0) = \frac{1}{S} \int\frac{f_2(M)}{r} \, ds.$$

Во всех точках $M_0(x_0, y_0, z_0)$ пространства, не принадлежащих поверхности S, потенциал простого слоя имеет производные любого порядка и удовлетворяет уравнению Лапласа. Совершенно так же, как в §3, можно показать, что потенциал простого слоя стремится к нулю на бесконечности как $\frac{1}{R}$, где $R = \sqrt{x_0^2 + y_0^2 + z_0^2}$.

Можно доказать, что потенциал простого слоя с непрерывной плотностью есть функция, непрерывная во всем пространстве.

Рассмотрим производную функции потенциала простого слоя, Выберем произвольную точку N_0 на поверхности S и обозначим через η_0 направление внешней нормали в этой точке. Производная по направлению η_0 в точке M_0, не лежащей на поверхности, будет

$$\frac{\partial \sigma(M_0)}{\partial \eta_0} = \frac{1}{S} \int f_2(M) \frac{\partial f_1}{\partial n_0} \, ds.$$

Оказывается, что интеграл (4) сохраняет смысл также в том случае, если точка M_0 совпадает с точкой N_0 на поверхности, и является непрерывной функцией точки N_0 на этой поверхности.

Обозначим через

$$\left[\frac{\partial \sigma(N_0)}{\partial n_0} \right]_{\eta_0}$$

и

$$\left[\frac{\partial \sigma(N_0)}{\partial n_0} \right]_{\eta_0}.$$
Лекция 24. Сведение задач Дирихле и Неймана к интегральным уравнениям

§ 1. Постановка задач и единственность их решений

Пусть \(S \) — замкнутая достаточно гладкая поверхность. Обозначим через \(\Omega_1 \) ограниченную этой поверхностью, а через \(\Omega_2 \) — бесконечную область, внешнюю по отношению к \(S \), также ограниченную поверхностью \(S \).

Рассмотрим четыре задачи:
1. Внешняя задача Дирихле. Найти функцию \(u \), гармоническую в \(\Omega_2 \), при условии

\[
u = f_1(M), \quad M \in S.\]

2. Внешняя задача Дирихле. Найти функцию \(u \), гармоническую в \(\Omega_2 \), при условиях:

\[
a) \quad u = f_1(M), \quad M \in S, \\
b) \quad \lim_{r \to \infty} u = 0, \quad M \in \Omega_2.\]

3. Внутренняя задача Неймана. Найти функцию \(u \), гармоническую в \(\Omega_1 \), при условии

\[
\frac{\partial u}{\partial n} = f_2(M), \quad M \in S.\]

4. Внешняя задача Неймана. Найти функцию, гармоничную в \(\Omega_2 \), при условиях:

\[
a) \quad \frac{\partial u}{\partial n} = f_2(M), \quad M \in S, \\
b) \quad \lim_{r \to \infty} u = 0.\]

Прежде чем намечать пути решения этих задач, займемся их исследованием.

Теорема 1. Решение задачи Дирихле, внутренней или внешней, единственное.

Доказательство. Рассмотрим сначала внутреннюю задачу Дирихле. Предположим, что существуют два решения \(u_1(M) \) и \(u_2(M) \) одной и той же задачи Дирихле. Тогда их разность

\[
u(M) = u_1(M) - u_2(M)\]

бывает гармонической функцией, равной нулю на \(S \). Отсюда из принципа максимума следует, что \(u(M) = 0 \), т.е. \(u_1(M) = u_2(M) \) во всей области \(\Omega_1 \), так как в противном случае она должна была бы достигать внутри области \(\Omega_1 \) положительного наибольшего значения или отрицательного наименьшего значения, что невозможно.
Рассмотрим теперь внешнюю задачу Дирихле. Как и выше, предположим, что существуют два решения $u_1(M)$ и $u_2(M)$. Тогда их разность $u(M) = u_1(M) - u_2(M)$ будет гармонической функцией, равной нулю на S и $u(M) \to 0$ при $M \to \infty$, т.е. для любого $\varepsilon > 0$ можно указать такое A, что $|u(M)| < \varepsilon$ при $R \geq A$. Пусть $M(x, y, z)$ — произвольная точка бесконечной области Ω_2. Проведем сферу S_{R_0} с центром в начале координат и радиусом $R_0 \geq A$ столь большим, чтобы точка M и поверхность S лежали внутри этой сферы. Тогда $|u(M)| < \varepsilon$, что следует из теоремы о максимальном и минимальном, примененной к конечной области, заключенной между S и S_{R_0}. В силу произвольности $\varepsilon > 0$ заключаем, что $u(M) = 0$, а так как M любая точка области Ω_2, то $u = 0$ в Ω_2, т.е. $u_1 = u_2$.

Теорема 2. Решение внешней задачи Неймана, имеющее непрерывные вплоть до границы производные первого порядка, единствено, решение внутренней задачи Неймана определено с точностью до производной постоянной.

Доказательство. Рассмотрим сначала внутреннюю задачу Неймана. Пусть $u_1(M)$ и $u_2(M)$ — два решения задачи Неймана в области Ω_1 с границей S, удовлетворяющие одному и тому же граничному условию

$$\frac{\partial u_1}{\partial n} = f_2(M), \quad \frac{\partial u_2}{\partial n} = f_2(M), \quad M \in S.$$

Тогда их разность $u = u_1 - u_2$ будет гармонической функцией внутри области Ω_1, для которой $\frac{\partial u(M)}{\partial n} = 0$ при $M \in S$.

Воспользуемся первой формулой Грина для гармонических функций

$$\int \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] d\Omega = \int_S \frac{\partial u}{\partial n} dS,$$

Практическая часть равна нулю, значит, и левая часть равна нулю. Тогда в силу непрерывности функции $u(M)$ и ее первых производных следует, что

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = 0,$$

т.е. $u(M) = u_1(M) - u_2(M) = \text{const}$, что и требовалось доказать.

Отметим, что внутренняя задача Неймана не всегда разрешима. Для ее разрешимости необходимо, чтобы

$$\int_S \frac{\partial u}{\partial n} dS = \int_S f_2(M) dS = 0.$$

Необходимость вытекает из свойств гармонических функций. Для рассмотрения внешней задачи возьмем сферу S_{R_0} радиуса R_0, где R_0 достаточно большое число, и пусть Ω_3 — объем, заключенный между S и S_{R_0}. Далее пусть $u_1(M)$ и $u_2(M)$ — два решения внешней задачи Неймана, удовлетворяющие одному и тому же граничному условию. Тогда их разность есть гармоническая функция в бесконечной области, для которой

$$\frac{\partial u}{\partial n} = 0, \quad M \in S, \quad |u(M)| \leq \frac{A}{R}, \quad \left| \frac{\partial u}{\partial n} \right| \leq \frac{A}{R^2}.$$

Теперь, применяя формулу Грина для гармонических функций к области Ω_3, получим

$$\int_S \frac{\partial u}{\partial n} dS + \int_S \frac{\partial u}{\partial n} dS = \int_{\Omega_3} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] d\Omega$$

или, в силу (1),

$$\int_S \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 \right] d\Omega = \int_S \frac{\partial u}{\partial n} dS.$$

В силу оценок (1) имеем

$$\int_S \frac{\partial u}{\partial n} dS \leq \frac{4\pi A^2}{R_0}.$$
Тогда из (2) получаем, что при достаточно большом \(R_0 \) имеем

\[
\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial u}{\partial z} \right)^2 < c
\]

при любом \(c > 0 \), что возможно лишь при условии

\[
\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = 0.
\]

Значит, \(u = \text{const} \); так как \(u(M) \to 0 \) при \(M \to \infty \), то \(u(M) = 0 \), т.е. \(u_1(M) = u_2(M) \).

§2. Интегральные уравнения для краевых задач

Полученные нами в предыдущей лекции свойства потенциалов позволяют решать задачи Дирихле и Неймана для любых областей, ограниченных достаточно гладкими поверхности, приведением их к интегральным уравнениям.

Рассмотрим решение внутренней задачи Дирихле. Будем предполагать, что искомая функция и есть потенциал двойного слоя \(w \) с неизвестной плотностью \(\mu(M) \):

\[
u(x_0,y_0,z_0) = w(x_0,y_0,z_0) = -\int_S \mu(M) \frac{1}{r} ds.
\]

Как известно, потенциал двойного слоя есть гармоническая функция. Мы должны подчинить \(w \) тому условию, чтобы ее предельное значение изнутри равнялось \(f_1(N_0) \):

\[
w_1(N_0) = f_1(N_0), \quad N_0 \in S.
\]

Из теоремы 2 лекции 23 имеем

\[
w = 2\pi \mu(N_0) + w(N_0).
\]

Таким образом, для неизвестной плотности \(\mu(M) \) получим уравнение

\[
f_1(N_0) = 2\pi \mu(N_0) + \int_S \mu(M) \frac{1}{r} ds.
\]

IV. Теория потенциала

Здесь \(r \) — расстояние между точками \(M \) и \(N_0 \) поверхности \(S \).

Полагая \(F_1(N_0) = \frac{1}{2\pi} f_1(N_0) \), получим \(\mu(N_0) = F_1(N_0) + \int_S \frac{1}{2\pi} \left(\frac{1}{r} \right) ds \).

Интегральное уравнение (3) называется интегральным уравнением Фредгольма второго рода. К изучению таких уравнений мы вскоре перейдем.

Далее, точно так же, как и в предыдущем случае, для внешней области, ограниченной поверхностью \(S \), т.е. для бесконечной области, граничной которой слушать \(S \), vient к интегральному уравнению Фредгольма второго рода.

В самом деле, если искать решение слоя в виде потенциала двойного слоя из условия \(w_e(N_0) = f_1(N_0), \quad N_0 \in S \), получим (см. теорему 2 лекции 23), аналогично предыдущему, для неизвестной плотности \(\mu(M) \)

\[
w_e(N_0) = -2\pi \mu(N_0) + w(N_0).
\]

Откуда

\[
\mu(N_0) = \int_S \frac{1}{2\pi} \frac{1}{r} ds,
\]

введя обозначение

\[
f_1(N_0) = \Phi_1(N_0), \quad \text{получим}
\]

\[
\mu(N_0) = \Phi_1(N_0) = \int_S K(M,N_0) \mu(N_0) ds.
\]

Это уравнение есть уравнение того же типа и рода, что и предыдущее.

К интегральным уравнениям приводится также внутренняя и внешняя задачи Неймана.

Будем искать решение внутренней задачи Неймана для потенциала двойного слоя

\[
u(x_0,y_0,z_0) = w(x_0,y_0,z_0) = \int_S \frac{1}{r} ds.
\]

Как и выше из формулы (5) (см. лекцию 23) имеем

\[
\frac{\partial v}{\partial n} = \frac{\partial v}{\partial n_0} + 2\pi \mu(N_0) = f_2(N_0),
\]
откуда
\[\mu(N_0) = \frac{1}{2\pi} f_2(N_0) - \frac{1}{2\pi} \int \frac{[\mu(M) \partial}{\partial n_0} \left(\frac{1}{r} \right) ds. \]
Полагая \(\frac{1}{2\pi} f_2(N_0) = F_2(N_0) \), получим для \(\mu(M) \) уравнение
\[\mu(N_0) = F_2(N_0) - \int \frac{[\mu(M) K(M, N_0)]}{S} ds. \]
(5)

Наконец, если искать решение внешней задачи Неймана в виде потенциала простого слоя \(\psi \), будем иметь согласно формулы (5) лекции 23 соотношение
\[\left[\frac{\partial \psi(N_0)}{\partial n_0} \right] = \frac{\partial \psi(N_0)}{\partial n_0} - 2\pi \mu(N_0) = f_2(N_0) \]
или
\[\mu(N_0) = \frac{1}{2\pi} f_2(N_0) + \frac{1}{2\pi} \int \frac{[\mu(M) \partial}{\partial n_0} \left(\frac{1}{r} \right) ds, \]
Полагая
\[-\frac{1}{2\pi} f_2(N_0) = \Phi_2(N_0), \]
получим для неизвестной плотности \(\mu(N_0) \) уравнение
\[\mu(N_0) = \Phi_2(N_0) + \int S \left\{ K(M, N_0) \mu(M) \right\} ds. \]
(6)

Если нам удастся найти такие функции \(\mu(M) \), удовлетворяющие уравнением (3) – (6), то соответствующие задачи математической физики будут решены.

Лекция 25. Уравнения Лапласа и Пуассона на плоскости

Мы разобрали довольно подробно уравнения Лапласа и Пуассона в пространстве. На практике часто бывает, что функция \(\mu \) не зависит от одного из переменных, например \(z \). Тогда уравнения переходят в уравнения с двумя независимыми переменными. Те же самые задачи, которые мы ставили для пространства, мы можем теперь ставить на плоскости \(\delta u \) для уравнения
\[\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \rho(x, y). \]

Рассмотрим некоторые свойства таких двумерных задач, отличающие их от трехмерного случая.

Совершенно так же, как и в пространстве, легко доказать, что функции, гармоническая в некоторой области \(D \) плоскости \(\delta u \), достигает своего максимального и минимального значений на контуре этой области. Отсюда следует единственность решения задачи Дирихле для любой ограниченной области. Однако задача Дирихле для неограниченной области в прямой постановке смысла не имеет. Ставить вопрос об отыскании гармонической функции, равной нулю на бесконечности, здесь не имеет смысла. Дело в том, что решения, обращающиеся в ноль на бесконечности, вообще говоря, не существуют, и вопрос о единственности такого решения лишен содержания.

Нетрудно проверить, что функция
\[\ln \frac{1}{r} = |MM_0| = \sqrt{(x-x_0)^2 + (y-y_0)^2} \]
есть гармоническая функция переменных \(x \) и \(y \).

В самом деле,
\[-\frac{\partial^2 \ln r}{\partial x^2} = -\frac{1}{r^2} - \frac{2(x-x_0)^2}{r^4}, \]
\[-\frac{\partial^2 \ln r}{\partial y^2} = -\frac{1}{r^2} - \frac{2(y-y_0)^2}{r^4}, \]
откуда
\[\Delta \ln \frac{1}{r} = 0, \]
Приведем аналог интегрируемой формулы Грина в пространстве для плоскость. Пусть D — некоторая область на плоскости au, ограниченная контуром C, а n — направление нормали к этому контуру, внешнее по отношению к области D. Приведем рассуждения, подобные тем, которые были проведены для трехмерного случая, получим основную интегральную формулу Грина на плоскости

$$\Omega u(M_0) = \int_C \left[\ln \frac{1}{r} \frac{\partial u(M)}{\partial n} - u(M) \frac{\partial}{\partial n} \left(\ln \frac{1}{r} \right) \right] dI - \int_D u(M) \ln \frac{1}{r} d\,x\,d\,y,$$

где

$$\Omega = \begin{cases} 2\,\pi, & \text{если } M_0 \text{ лежит внутри } D, \\ \pi, & \text{если } M_0 \text{ лежит на границе } C, \\ 0, & \text{если } M_0 \text{ лежит вне } D. \end{cases}$$

Если $u(M)$ — гармоническая внутри D функция и M_0 лежит внутри D, то

$$u(M_0) = \frac{1}{2\,\pi \Omega} \int_C \left[\ln \frac{1}{r} \frac{\partial u(M)}{\partial n} - u(M) \frac{\partial}{\partial n} \left(\ln \frac{1}{r} \right) \right] dI.$$

§1. Основные задачи

Задача о нахождении решения уравнения Пуассона

$$\Delta u = \rho(x, y)$$

на всей плоскости, обращающегося в нуль на бесконечности, для уравнения с двумя переменными, вообще говоря, нерешенной. Заметим, что интеграл

$$\frac{\pi}{2} \int \rho \ln \frac{1}{r} d\,x\,d\,y,$$

если ρ отлично от нуля лишь в конечной области, есть все же частные решения уравнения Пуассона, но, вообще говоря, неограниченно растущие на бесконечности.

IV, Теория потенциала

Задача Дирихле для полуплоскости при некоторых ограничениях на граничную функцию имеет решение в классе функций, обращающихся в нуль на бесконечности. Пусть функция $f_t(x)$ удовлетворяет неравенству

$$|f_t(x)| < \frac{A}{x^\alpha},$$

где $\alpha > 0$.

Решение уравнения

$$\Delta u = 0$$

при условии

$$u = f_t(x) \quad \text{при} \quad y = 0,$$

обращающегося в нуль на бесконечности, имеет вид

$$u(x, y) = \frac{1}{\pi} \int_{-\infty}^{\infty} f_t(x) \frac{\partial}{\partial n} \ln \frac{1}{r} d\,x.$$

Задача Неймана для полуплоскости не только равных нулю на бесконечности, но и даже и просто ограниченных решений не имеет.

Задача Дирихле для круга решается приемом, аналогичным прежнему. Так решение задачи Дирихле для уравнения Лапласа в круге:

$$\Delta u = 0, \quad \rho = \sqrt{x^2 + y^2} < a,$$

$$u|_{\rho=a} = f(\psi)$$

дается формулой

$$u(\rho, \psi) = \frac{1}{2\,\pi} \int_0^\pi f(\psi) \frac{(\rho^2-\rho^2)}{\rho^2-2\,\rho\,\rho\,\cos(\psi-\psi)+\rho^2} d\psi,$$

в том случае когда функция $f(\psi)$ является непрерывной.

Формула (1) называется интегралом Пуассона.

Решение внешней краевой задачи, очевидно, имеет вид

$$u(\rho, \psi) = \frac{1}{2\,\pi} \int_0^\pi f(\psi) \frac{(\rho^2-\rho^2)}{\rho^2-2\,\rho\,\rho\,\cos(\psi-\psi)+\rho^2} d\psi$$

при $\rho > a$ и $u(\rho, \psi) = f(\psi)$ при $\rho = a$.
§2. Логарифмический потенциал

На функции двух переменных можно перенести также понятие о потенциалах.

Интеграл вида

$$\psi = \int \frac{\mu(M) \ln \frac{1}{r}}{r} dI$$

называется логарифмическим потенциалом простого слоя. Это гармоническая функция вне и внутри области D, ограниченной контуrom C. Функция эта непрерывна при переходе через C, а ее нормальная производная терпит разрыв.

Обозначим через n_0 внешнюю нормаль к контуру C в точке N_0. Если $M_0 \in C$, то ясно, что существует производная $\frac{\partial \psi(M_0)}{\partial n_0}$ и

$$\frac{\partial \psi(M_0)}{\partial n_0} = \int \frac{\mu(M) \partial}{\partial n_0} \ln \frac{1}{r} dI.$$ \hspace{1cm} (2)

Оказывается, что интеграл (2) имеет смысл в случае, если точка $M_0(x_0, y_0)$ лежит на границе C. Обозначим через $\left[\frac{\partial \psi}{\partial n_0} \right]_e$ предел интеграла (2) при стремлении точки M_0 в направлении нормали n_0 к точке $N_0 \in C$ изнутри (внешне) области D. Тогда справедливы формулы

$$\left[\frac{\partial \psi}{\partial n_0} \right]_e = \pi \mu(N_0) - \frac{\partial \psi(N_0)}{\partial n_0}, \quad \left[\frac{\partial \psi}{\partial n_0} \right]_o = \pi \mu(N_0) + \frac{\partial \psi(N_0)}{\partial n_0}.$$

Интеграл вида

$$\omega(M_0) = -\frac{\mu(M_0) \ln \frac{1}{r}}{r} dI$$

называется логарифмическим потенциалом двойного слоя. Это гармоническая функция как внутри, так и вне области D, ограниченной контуром C. На контуре C эта функция терпит разрыв.

IV. Теория потенциала

Если точка $M_0(x_0, y_0)$ лежит на контуре ($M_0 = N_0$), который мы предполагаем достаточно гладким, то интеграл (3) имеет смысл. Обозначим через $\omega_e(N_0)$ и $\omega_o(N_0)$ предельы интеграла (3), когда точка M_0 стремится к точке N_0 на контуре C изнутри и извне области D соответственно. Можно показать, что имеют место соотношения

$$\omega_e(N_0) = -\pi \mu(N_0) + \omega_o(N_0), \quad \omega_o(N_0) = -\pi \mu(N_0) + \omega_e(N_0).$$

Аналогично пространственному случаю можно поставить задачу Дирихле и Неймана также и для плоскости. При этом, однако, будут некоторые особенности во внешних задачах.

Во внешней задаче Дирихле вместо обращения u в нуль на бесконечности нужно требовать ограниченноости этой функции в окрестности бесконечно удаленной точки. При этом задача Дирихле получает определенное и единственное решение.

Во внешней задаче Неймана нужно по-прежнему искать решение, равное нулю на бесконечности, но в отличие от прежнего эта задача уже не будет, вообще говоря, иметь решения.

Необходимое и достаточное условие существования такого решения будет

$$\int_C f_2(M) dI = 0,$$

где $f_2(M)$ — значения нормальной производной на контуре.

Можно аналогично, как и в предыдущей лекции, свести задачу Дирихле и Неймана к интегральным уравнениям.

Для плоской задачи интегрирования уравнения Лапласа существует еще один чрезвычайно мощный метод, основанный на применении теории функций комплексного переменного. Мы укажем лишь сущность этого метода, не останавливаясь на нем подробно.
Рассмотрим какую-либо аналитическую функцию $\omega(z) = u + iv$ комплексного переменного $z = x + iy$. Считая независимыми переменными x и y и применяя оператор Лапласа к ω, получим

$$\Delta \omega = \frac{\partial^2 \omega}{\partial x^2} + \frac{\partial^2 \omega}{\partial y^2} = \omega^*(z) + i^2 \omega(z) = 0.$$

Отсюда следует, что функция $\omega(z)$ является гармонической функцией переменных x и y. Следовательно, ее действительная и мнимая части $u(x, y)$ и $v(x, y)$ порознь будут гармоническими в области аналитичности $\omega(z)$.

Введем новое независимое комплексное переменное $\zeta = \xi + i\eta$, положив

$$z = \psi(\zeta),$$

где ψ - какая-нибудь аналитическая функция. Тогда

$$x = x(\xi, \eta), \quad y = y(\xi, \eta).$$

При этом аналитическая функция $\omega(z)$ переходит в аналитическую функцию переменного ζ:

$$\omega^*(\zeta) = \omega(\psi(\zeta)).$$

Следовательно,

$$u^*(\xi, \eta) = u(x(\xi, \eta), y(\xi, \eta)), \quad v^*(\xi, \eta) = v(x(\xi, \eta), y(\xi, \eta))$$

будут снова гармоническими функциями переменных ξ, η.

Как доказывается в курсах теории функций комплексного переменного, формулы (4) осуществляют конформное отображение плоскости x, y на плоскость ξ, η, причем любое конформное отображение может быть получено таким образом. Итак, гармоническая функция переменных x, y в некоторой области остается гармонической, если эту область подвергнуть конформному преобразованию.

Для любой односвязной области D плоскости x, y получаем следующий метод решения задачи Дирихле. Найдем конформное отображение (4), переводящее область D в круг. Как известно, такое отображение существует.

Функция $u^*(\xi, \eta)$ должна быть гармонической в круге функцией, принимающей на границе заданные значения. Такую функцию можно построить при помощи формулы Пуассона, возвращаясь к переменным x, y, получим решение рассматриваемой задачи.

Задачи

1. Найти логарифмический потенциал круга с постоянной плотностью.
2. Найти логарифмический потенциал простого слоя отрезка с постоянной плотностью зарядов.
3. Найти логарифмический потенциал двойного слоя отрезка с постоянной плотностью моментов.
4. С помощью потенциала двойного слоя решить первую краевую задачу для уравнения Лапласа:
 a) вне круга;
 b) в полуплоскости.
V. Интегральные уравнения

Лекция 26. Уравнения Фредгольма и Вольтерра

Мы уже видели в прошлых лекциях, что решения некоторых задач математической физики приводится к решению линейных интегральных уравнений. Ниже мы изложим начальные сведения о таких уравнениях. Для простоты записи будем рассматривать одномерный случай. Все результаты верны и для многомерного.

§1. Классификация интегральных уравнений

Уравнение вида

\[\phi(x) - \lambda \int_a^b K(x,s) \phi(s) \, ds = f(x), \]

где \(\phi(x) \) — исходная функция, \(f(x) \), \(K(x,s) \) — известные функции, \(\lambda \) — числовой параметр, называется интегральным уравнением Фредгольма второго рода. Если \(f(x) = 0 \), уравнение носит название однородным, в противном случае — неоднородным. Функция \(K(x,s) \) называется ядром интегрального уравнения.

Уравнение вида

\[\phi(x) - \lambda \int_a^b \int_a^x K(x,s) \phi(s) \, ds \, ds = f(x), \]

называется интегральным уравнением Булера первого рода, а уравнение

\[\phi(x) - \lambda \int_a^b K(x,s) \phi(s) \, ds = f(x) \]

называется уравнением Вольтерра первого рода.

Заметим, что параметр \(\lambda \) и функции \(\phi(x) \), \(K(x,s) \) и \(f(x) \) могут принимать как действительные, так и комплексные значения.

Характер интегрального уравнения в существенно определяется свойствами его ядра. В пределах часто приходится иметь дело с непрерывным ядром, но встречаются и разрывные ядра.

§2. Метод последовательных приближений. Понятие о решении

Мы докажем существование решения уравнения (1) (при достаточно малых значениях |\(\lambda \)|) методом последовательных приближений.
Для простоты выкладок будем предполагать, что:
1) ядро $K(x,s)$ непрерывно в квадрате $a \leq x, s \leq b$; тогда оно ограничено некоторой константой A, $|K| \leq A$;
2) функция $f(x)$ непрерывна на отрезке $[a, b]$, следовательно, она ограничена на этом отрезке некоторой константой B, $|f| \leq B$. Построим последовательность функций
\[
\varphi_1(x), \varphi_2(x), \ldots, \varphi_n(x), \ldots
\]
по следующему правилу:
\[
\varphi_1(x) = f(x) + \int_a^b K(x,s) \varphi_0(s) \, ds,
\]
где $\varphi_0(x)$ — произвольная фиксированная непрерывная функция,
\[
\varphi_2(x) = f(x) + \int_a^b K(x,s) \varphi_1(s) \, ds,
\]
\[
\vdots
\]
\[
\varphi_n(x) = f(x) + \int_a^b K(x,s) \varphi_{n-1}(s) \, ds,
\]
где
\[
K_1(x,s) = K(x,s), \quad K_2(x,s) = \int_a^b K_1(x,t) K_1(t,s) \, dt.
\]
Аналогично имеем
\[
\varphi_1(x) = f(x) + \int_a^b K_1(x,s) \varphi_0(s) \, ds + \lambda \int_a^b K_2(x,s) \varphi_0(s) \, ds + \ldots,
\]
\[
\varphi_2(x) = f(x) + \int_a^b K(x,s) \varphi_1(s) \, ds + \lambda^2 \int_a^b K_2(x,s) \varphi_1(s) \, ds + \ldots,
\]
\[
\varphi_n(x) = f(x) + \int_a^b K(x,s) \varphi_{n-1}(s) \, ds + \lambda^2 \int_a^b K_2(x,s) \varphi_{n-1}(s) \, ds + \ldots
\]
где
\[
K_n(x,s) = \int_a^b K_1(x,t) K_{n-1}(t,s) \, dt.
\]
Предел функции $\varphi_n(x)$, если он существует, равен сумме ряда
\[
\lim_{{n \to \infty}} \varphi_n(x) = f(x) + \int_a^b K_1(x,s) f(s) \, ds + \cdots + \lambda^n \int_a^b K_n(x,s) f(s) \, ds + \cdots.
\]
Докажем равномерную сходимость этого ряда. Для этого оценим интеграл
\[
\int_a^b |K_n(x,s) f(s) \, ds |
\]
имеем
\[
|K_2(x,s)| \leq \int_a^b |K_1(x,t) K_1(t,s)| \, dt \leq A^2 (b-a),
\]
\[
|K_3(x,s)| \leq \int_a^b |K_1(x,t) K_2(t,s)| \, dt \leq A^3 (b-a)^2,
\]
\[
\vdots
\]
\[
|K_n(x,s)| \leq \int_a^b |K_1(x,t) K_{n-1}(t,s)| \, dt \leq A^n (b-a)^{n-1},
\]
посому
\[
\int_a^b |K_n(x,s) f(s) \, ds | \leq A^n (b-a)^{n-1} \cdot \int_a^b |f(s) \, ds | \leq A^n B (b-a)^n.
\]
198 В. А. Байкон, А. В. Жибер Уравнения математической физики

Следовательно, числового ряда

$$\sum_{n=0}^{\infty} A^n B^n \phi_n^{(b-a)^n} \tag{7}$$

является мажорируемым для ряда (6). Если $\lambda < \frac{1}{A(b-a)}$, то ряд (7) сходится.

Следовательно, при таких λ, ряд (7) сходится, а вместе с ним и последовательность функций $\phi_n(x)$ равномерно сходится к функции $\phi(x)$. Эта функция является решением уравнения (1). В самом деле, переходя в формуле (5) к пределу при $n \to \infty$, получим

$$\phi(x) = \lim_{n \to \infty} \left(\sum_{k=0}^{\infty} A^k \phi_k(x) \right) = \lim_{n \to \infty} \left(\sum_{k=0}^{n} A^k \phi_k(x) \right) = \phi(x).$$

Переход к пределу под знаком интеграла здесь закончен, так как последовательность сходится равномерно.

Заметим, что предел $\lim_{n \to \infty} \phi_n(x) = \phi(x)$ не зависит от выбора функции $\phi_0(x)$ (последовательного приближения). В самом деле, если существует еще одно решение $\psi(x)$ уравнения (1), то, полагая в процедуре построения функций (3)–(5) $\phi_0(x) = \psi(x)$, получим

$$\phi_1(x) = \psi(x), \quad \phi_2(x) = \psi(x), \quad \ldots, \quad \phi_n(x) = \psi(x), \quad \ldots.$$

Эта последовательность имеет пределом функцию $\phi(x)$. Но вместе с тем очевидно:

$$\lim_{n \to \infty} \phi_n(x) = \psi(x).$$

Таким образом, $\phi(x) = \psi(x)$. Теорема доказана.

Поскольку ряд (7) сходится при $\lambda < \frac{1}{A(b-a)}$, то при таких же λ сходится ряд

$$\sum_{n=1}^{\infty} A^n |\phi_n^{(b-a)^n}| \leq |\phi(x)| + \lambda \int_{a}^{b} K(x,s) \phi_0(s) \, ds \leq B + \lambda A B_0(x-a),$$

где

$$\int_{a}^{b} K(x,s) \phi_0(s) \, ds = \int_{a}^{b} K(x,s) \phi_0(s) \, ds \leq B + \lambda A B_0(x-a).$$

V. Интегральные уравнения

Но этот ряд является мажорируемым для ряда

$$\sum_{n=1}^{\infty} \lambda^n \int_{a}^{b} K(x,s) \phi_0(s) \, ds \leq \lambda \int_{a}^{b} K(x,s) \phi_0(s) \, ds \leq B + \lambda A B_0(x-a),$$

Следовательно, ряд (8) сходится равномерно. Поэтому ряд (6) можно записать в виде

$$\phi(x) = \psi(x) + \lambda \int_{a}^{b} K(x,s) \phi_0(s) \, ds$$

или

$$\phi(x) = \psi(x) + \lambda \int_{a}^{b} R(x,s) \, ds,$$

где функция

$$R(x,s) = \int_{a}^{b} K(x,s) \phi_0(s) \, ds$$

известна решением уравнения (1).

§3. Уравнения Вольтерра

Если мы описанные выше процедуру применяем к уравнению Вольтерра (2), то получим последовательность функций:

$$\phi_1(x) = \psi(x) + \lambda \int_{a}^{x} K(x,s) \phi_0(s) \, ds,$$

$$\phi_2(x) = \psi(x) + \lambda \int_{a}^{x} K(x,s) \phi_0(s) \, ds,$$

$$\ldots$$

$$\phi_n(x) = \psi(x) + \lambda \int_{a}^{x} K(x,s) \phi_0(s) \, ds.$$

Это последовательность равномерно сходится на $[a,b]$ при любом значении параметра λ. В самом деле, очевидно, справедливы неравенства:

$$|\phi_1(x)| \leq |\psi(x)| + \lambda \int_{a}^{x} K(x,s) |\phi_0(s)| \, ds \leq B + \lambda A B_0(x-a),$$

$$|\phi_2(x)| \leq |\psi(x)| + \lambda \int_{a}^{x} K(x,s) |\phi_0(s)| \, ds \leq B + \lambda A B_0(x-a),$$

$$\ldots$$

$$|\phi_n(x)| \leq |\psi(x)| + \lambda \int_{a}^{x} K(x,s) |\phi_0(s)| \, ds \leq B + \lambda A B_0(x-a),$$

где

$$\int_{a}^{x} K(x,s) \phi_0(s) \, ds = \int_{a}^{x} K(x,s) \phi_0(s) \, ds \leq B + \lambda A B_0(x-a).$$
где \(|\varphi_0(s)| \leq B_0\),
\[
|\varphi_2(x)| \leq \left| \int f(x) + \left(\sum_{i=1}^{n} \lambda \right) K(x,s) \right| \varphi_1(s) \, ds \leq \n B + |\lambda| A B_0 (s-a)^n \, ds = B + |\lambda| A B (x-a) + |\lambda|^2 A^2 B_0 \frac{(x-a)^2}{2}.
\]

Вообще,
\[
|\varphi_n(x)| \leq B + |\lambda| A B (x-a) + \cdots + |\lambda|^n A^n B_0 \frac{(x-a)^n}{n!}.
\]

Поскольку ряд
\[
\sum_{n=1}^{\infty} B |\lambda|^n A^n \frac{(x-a)^n}{n!}
\]
равномерно сходится на отрезке \([a,b]\), и его частичные суммы являются мажорируемыми для функций \(\varphi_n(x)\), то последовательность \(\{\varphi_n(x)\}\) также сходится равномерно: \(\varphi(x) = \lim_{n \to \infty} \varphi_n(x)\), очевидно, является решением уравнения (2) и притом единственным. Таким образом, справедлива следующая

Теорема 2. Если \(K(x,s) \in C([a,b] \times [a,b])\) и \(f(x) \in C([a,b])\), то последовательность приближения для уравнения Вольтерра (2) сходится при всех значениях \(\lambda\). Предельная функция является единственным решением этого уравнения.

Задачи

1. Пусть \(L - \) интегральный оператор с непрерывным ядром \(K(x,y)\)
\[
Lf = \int_a^b K(x,y) f(y) \, dy.
\]
Доказать, что операторы \(L^p = L^p [L^{p-1}]\), \(p = 2, 3, \ldots\), являются интегральными операторами с непрерывными ядрами \(K_p(x,y)\) и эти ядра удовлетворяют
\[
K_p(x,y) = \int_a^b K(x,s) K_p(s,y) \, ds.
\]

2. Покажите, что резольвента \(R(x,s,\lambda)\) непрерывного ядра \(K(x,s)\) удовлетворяет при \(\lambda < \frac{1}{A (b-a)}\) каждому из уравнений:

а) \(R(x,s,\lambda) = \int_a^b K(x,t) R(t,s,\lambda) \, dt + K(x,s)\);

б) \(R(x,s,\lambda) = \int a^K(t) R(t,s,\lambda) \, dt + K(x,s)\);

в) \(\frac{\partial R(x,s,\lambda)}{\partial \lambda} = \int_a^K(t) R(t,s,\lambda) \, dt\).

3. Покажите, что интегральное уравнение
\[
y^{(n)} + a_1(x) y^{(n-1)} + \cdots + a_n(x) y = F(x)
\]
с непрерывными коэффициентами \(a_i(x), \quad i = 1, 2, \ldots, n\) при начальных условиях \(y(0) = C_0, y'(0) = C_1, \ldots, y^{(n-1)}(0) = C_{n-1}\) равносильно интегральному уравнению
\[
\varphi(x) = \int_a^x \frac{K(x,y) \varphi(y) \, dy + f(x)}{0}
\]
где
\[
K(x,y) = \sum_{m=0}^{n} a_m \frac{(x-y)^m}{(m-1)!},
\]
\[
f(x) = F(x) - C_{n-1} a_1(x) - (C_{n-2} x + C_{n-2}) a_2(x) - \cdots - \left(C_{n-1} \frac{x^{n-1}}{(n-1)!} + \cdots + C_1 x + C_0 \right) a_n(x).
\]

4. Найдите резольвенту интегрального уравнения Вольтерра
\[
\varphi(x) = \int_a^x K(x,y) \varphi(y) \, dy + f(x)
\]
с ядром

а) \(K(x,y) = 1\);

б) \(K(x,y) = x - y\).
Лекция 27. Интегральные уравнения с выраженным ядром.

Теоремы Фредгольма

Мы рассматриваем уравнение Фредгольма второго рода

\[\varphi(x) = \lambda \int_0^b k(x, y) \varphi(y) \, dy + \int_a^b f(x) \, dx. \]

§1. Уравнения с выраженным ядром

Ядро \(K(x, s) \) независимо выраженным, если оно имеет вид

\[K(x, s) = \sum_{k=1}^n \alpha_k(x) b_k(s), \]

где \(\alpha_k(x) \) можно считать линейно независимыми; в противном случае число слагаемых в (2) можно уменьшить.

V. Интегральные уравнения

Точно так же можно считать независимыми и функции \(b_k(s) \).

Интегральное уравнение (1) с выраженным ядром представляется в следующей форме:

\[\varphi(x) = \lambda \sum_{k=1}^n \alpha_k(x) \left[b_k(s) \varphi(s) \right] dS + f(x). \]

Обозначим

\[c_i = \int_a^b b_i(s) \varphi(s) \, dS. \]

Величины \(c_i \) суть постоянные, независимые, так как независима функция \(\varphi(x) \). Из уравнения (3) мы получаем теперь согласно (4)

\[\varphi(x) = \lambda \sum_{i=1}^n c_i \alpha_i(x) + f(x) \]

и дело сводится к определению постоянных \(c_i \). С этой целью поставим выражение (5) в интегральное уравнение (3). После простых преобразований мы получим:

\[\sum_{i=1}^n \alpha_i(x) \left[c_i - \int_a^b b_i(s) \left[f(s) + \lambda \sum_{k=1}^n c_k a_k(s) \right] dS \right] = 0. \]

Так как функции \(a_i(x) \) линейно независимы, то из последнего равенства следует:

\[c_i - \int_a^b b_i(s) \left[f(s) + \lambda \sum_{k=1}^n c_k a_k(s) \right] dS = 0, \]

обозначим еще для краткости

\[\int_a^b b_i(s) f(s) \, dS = f_i b_i(s) a_i(s) \, dS = \alpha_i. \]

Тогда

\[c_i - \lambda \sum_{k=1}^n \alpha_i c_k = f_i, \]

для определения постоянных \(c_i \) мы получим систему линейных алгебраических уравнений. Решив ее, мы тем самым решим и уравнение (3); его резю-
Пусть эти решения будут
\[c_1^{(s)}, c_2^{(s)}, \ldots, c_n^{(s)}, \quad s = 1, 2, \ldots, n - q. \]
Уравнение (7) будет, очевидно, также иметь ровно \(n - q \) линейно независимых решений

\[\varphi_s(x) = \lambda \sum_{k=1}^{n} c_k^{(s)} \varphi_k(x), \quad s = 1, 2, \ldots, n - q. \]

Известно, что в том случае, когда определитель системы равен нулю, необходимое и достаточное условие для разрешимости системы (6).

Рассмотрим систему уравнений, которая задается трансформированной матрицей по отношению к матрице системы (8)

\[\beta_k = \lambda \sum_{c=1}^{n} \alpha_c \beta_k = 0, \quad k = 1, 2, \ldots, n. \]

Определитель системы (9) \(D(\lambda) = 0 \). Как доказывается в курсах алгебры, число линейно независимых решений (9) опять \(n - q \). Пусть эти решения будут

\[\beta_1^{(s)}, \beta_2^{(s)}, \ldots, \beta_n^{(s)}, \quad s = 1, 2, \ldots, n - q. \]

Для разрешимости (6) необходимо и достаточно выполнения равенства

\[\sum_{c=1}^{n} f_c^{(s)} \beta_c = 0, \quad s = 1, 2, \ldots, n - q. \]

Подобно тому как система (6) соответствовала уравнению (1), а система (8) — уравнению (7), можно установить соответствие между системой (9) и уравнением

\[\psi(x) = \lambda \frac{b}{a} K(x,s) \varphi(s) dS, \]

которое будет называться однородным уравнением, сопряженным с уравнением (7).

Решения уравнения (11) имеют вид

\[\psi_s(x) = \sum_{k=1}^{n} \beta_k^{(s)} b_k(x), \]

где \(\beta_k^{(s)} \) — число, удовлетворяющее (9). Отсюда получаем теорему.
Теорема 2. Однородное уравнение (7) и сопряженное с ним уравнение (11) имеют одинаковое число решений, линейно независимых между собой. Это число равно $r = n - q$, где q – ранг матрицы системы (6), а n – число слагаемых в выражении ядра (2).

Пусть f_i является одной из f_i. Будем иметь

$$\int_{a}^{b} f(x) \sum_{i=1}^{n} \beta_{\mu}(x) b_{\nu}(x) dx = 0$$

или согласно (12)

$$\int_{a}^{b} f(x) \psi_{\mu}(x) dx = 0, \quad s = 1, 2, \ldots, n - q$$

Очевидно, что (10) и (13) равносильны.

Таким образом, мы доказали следующую теорему:

Теорема 3. Необходимым и достаточным условием разрешимости уравнения (3) при $D(\lambda) = 0$ является ортогональность его свободного члена $f(x)$ ко всем решениям сопряженного однородного уравнения.

Очевидно, что при этом общее решение уравнения (3) имеет вид

$$\phi(x) = \phi_0(x) + \sum_{k=1}^{\infty} C_k \phi_k(x),$$

где $\phi_0(x)$ – некоторое частное решение, а $\phi_k(x)$, $k = 1, 2, \ldots, n - q$ – частные решения однородного уравнения (7).

Замечание. Теорема 1 по существу следует из второй и третьей. В самом деле, если число линейно независимых решений у сопряженного уравнения и у соответствующего однородного уравнения равно нулю, то условия ортогональности пропадают, и неоднородное уравнение будет однозначно разрешимо.

§2. Теоремы Фредгольма

Однородное уравнение

$$\phi(x) = \lambda \int_{a}^{b} K(x, s) \phi(s) ds$$

при любых значениях параметра λ, очевидно, имеет тривиальное решение $\phi(x) = 0$. Однако при некоторых значениях λ оно может иметь и нетривиальное решение.

Определение. Значение параметра λ, при котором уравнение (7) имеет нетривиальное решение (т.е. не равное тождественно нулю) называется собственным значением уравнения (7) (ядра $K(x, s)$), а соответствующие им решения $\phi(x)$ – собственными функциями уравнения (ядра).

Справедливо утверждение

Лемма 1. Если λ в уравнении (1) не равно собственному значению соответствующего однородного уравнения (14), то уравнение (1) может иметь лишь единственное решение.

Доказательство. Пусть $\phi_1(x)$ и $\phi_2(x)$ – два решения уравнения (1). Тогда справедлива тождества

$$\phi_1(x) = \lambda \int_{a}^{b} K(x, s) \phi_1(s) ds + f(x),$$

$$\phi_2(x) = \lambda \int_{a}^{b} K(x, s) \phi_2(s) ds + f(x),$$

откуда

$$\phi_2(x) - \phi_1(x) = \lambda \int_{a}^{b} K(x, s) (\phi_2(s) - \phi_1(s)) ds.$$
Следовательно, разность \(\phi(x) = \phi_2(x) - \phi_1(x) \) является решением однородного уравнения. Поскольку \(\lambda \) не является собственным значением, то \(\phi(x) = \phi_2(x) - \phi_1(x) = 0 \). Лемма доказана.

Теоремы 1, 2 и 3 (см. §1) оставляются справедливыми не только для уравнений с выраженным ядром (3), но и для более общих уравнений (1). Для более общего случая они называются соответственно 1-й, 2-й, 3-й теоремами Фредгальма.

Мы приведем формулировки теорем Фредгальма, не вдаваясь в их доказательства.

2-я теорема Фредгальма. Число \(q \) линейно независимых решений соответствующего однородного уравнения (14) для уравнения (1) и сопряженного с ним (11) совпадает.

3-я теорема Фредгальма. Необходимое и достаточное условие разрешимости уравнения (1) состоит в том, чтобы свободный член был ограничен всем решениям сопряженного однородного уравнения (11).

1-я теорема Фредгальма. Если уравнение (1) разрешимо при любой функции \(f(x) \) в правой части, то решение его единственное, и, значит, соответствующее однородное уравнение имеет только тривиальное решение. Кроме того, если однородное уравнение имеет только тривиальное решение, то уравнение разрешимо при любой функции \(f(x) \).

Эта теорема, как отмечено выше, есть следствие 2-й и 3-й теорем Фредгальма.

Задачи

1. Решить интегральное уравнение

\[
\phi(x) = \lambda \int_0^\infty K(x,y)\phi(y)dy + f(x)
\]

в случаях:

a) \(K(x,y) = x - 1, f(x) = x \);
b) \(K(x,y) = 2e^{xy}, f(x) = e^x \);
v) \(K(x,y) = x + y - 2xy, f(x) = x + x^2 \).

2. Решить интегральное уравнение

\[
\phi(x) = \lambda \int_0^\infty K(x,y)\phi(y)dy + f(x)
\]

в случаях:

a) \(K(x,y) = \sin(x - 2y), f(x) = \cos 2x \);
б) \(K(x,y) = \sin y + y\cos x, f(x) = 1 - \frac{2x}{\pi} \);
v) \(K(x,y) = \cos^2(x - y), f(x) = 1 + \cos 4x \).

3. Найти все характеристические числа и соответствующие собственные функции следующих интегральных уравнений:

a) \(\phi(x) = \lambda \int_0^\infty \sinh(x + y) + \frac{1}{2} \phi(y)dy \);
б) \(\phi(x) = \lambda \int_0^\infty (x^2)^2 - \frac{2}{45} \phi(y)dy \);
v) \(\phi(x) = \lambda \int_0^\infty \cos^2(x + y) + \frac{1}{2} \phi(y)dy \).

Лекция 28. Интегральные уравнения с симметричными ядрами

В этой лекции мы будем рассматривать уравнения Фредгальма только с симметричными ядрами. Ядро \(K(x,s) \) называется симметричным, если для всех \(x \) и \(s \) из квадрата \(a \leq x, s \leq b \) выполняется тождество

\[
K(x,s) = K(s,x).
\]
Если ядро \(K(x,s) \) симметрично, то, очевидно, и все итерированные ядра \(K_n(x,s) \):

\[
K_n(x,s) = \frac{b}{a} \int K(x,t)K_{n-1}(t,s)dt, \quad n = 2, 3, \ldots
\]

\(K_1(x,s) = K(x,s) \) также симметричны.

Уравнения с симметричными ядрами чаще других встречаются в задачах математической физики. Они обладают целым рядом специфических свойств, главное из которых выглядит

Теорема 1. Всякое непрерывное симметричное ядро, не равное тождественно нулю, имеет по крайней мере одно собственное значение.

Совокупность всех собственных значений уравнения (ядра) будем называть спектром уравнения (ядра).

§ 1. Свойства собственных функций и собственных значений

Очевидно, справедливы следующие два свойства.

Свойство 1. Если \(\varphi(x) \) есть собственная функция, соответствующая собственному значению \(\lambda \), то \(C \varphi(x) \) — где \(C \) — произвольная постоянная, также является собственной функцией, соответствующей тому же \(\lambda \).

Постоянный множитель \(C \) можно выбрать так, чтобы норма собственной функции \(C \varphi(x) \) т.е.

\[
|C \varphi| = \left(\int_a^b c^2 \varphi^2(x)dx \right)^{1/2} = 1.
\]

Свойство 2. Если две собственные функции \(\varphi_1(x) \) и \(\varphi_2(x) \) соответствуют одному и тому же собственному значению \(\lambda \), то, каковы бы ни были посто-

V. Интегральные уравнения

лянные \(C_1 \) и \(C_2 \) функции \(C_1\varphi_1(x) + C_2\varphi_2(x) \) также являются собственными функциями, соответствующими тому же собственному значению \(\lambda \).

Докажем

Свойство 3. Собственные функции \(\varphi_1(x) \) и \(\varphi_2(x) \) соответствующие различным собственным значениям \(\lambda_1 \) и \(\lambda_2 \) ортогональные на отрезке \([a, b]\), т.е.

\[
\int_a^b \varphi_1(x) \varphi_2(x)dx = 0.
\]

Доказательство. Имеем тождества

\[
\frac{1}{\lambda_1} \varphi_1(x) = \frac{b}{a} \int K(x,s) \varphi_1(s)ds,
\]

\[
\frac{1}{\lambda_2} \varphi_2(x) = \frac{b}{a} \int K(x,s) \varphi_2(s)ds.
\]

Первое из них умножим на \(\varphi_2(x) \), второе на \(\varphi_1(x) \) и поочередно вычтем результаты один из другого. Полученное тождество интегрируем по \(x \) по отрезку \([a, b] \):

\[
\left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) \left[\int_a^b \varphi_1(x) \varphi_2(x)dx \right] = \left[\int_a^b K(x,s) \varphi_1(s) \varphi_2(x)dx \right] d s - \left[\int_a^b K(x,s) \varphi_2(s) \varphi_1(x)dx \right] d s - \left[\int_a^b K(x,s) \varphi_2(s) \varphi_1(x)dx \right] d s.
\]

Меняя порядок интегрирования во втором члене правой части равенства и учитывая симметричность ядра, получим

\[
\int_a^b K(x,s) \varphi_1(x)\varphi_2(x)dx = \int_a^b K(x,s) \varphi_1(s)\varphi_2(x)dx.
\]

Следовательно,

\[
\int_a^b \varphi_1(x) \varphi_2(x)dx = 0.
\]

Отсюда и следует ортогональность.
Свойство 4. Все собственные значения интегральных уравнений с симметричными ядрами вещественны.

Доказательство. Предположим, что \(\lambda = \alpha + i \beta \), \(\beta \neq 0 \), есть комплексное собственное значение, а \(\psi(x) = \psi_1(x) + i \psi_2(x) \) — соответствующая ему собственная функция. Тогда
\[
\psi_1(x) + i \psi_2(x) = (\alpha + i \beta) \int_a^b K(x,s) [\psi_1(s) + i \psi_2(s)] ds.
\]
Очевидно следуют тождества
\[
\psi_1(x) = \alpha \int_a^b K(x,s) \psi_1(s) ds - \beta \int_a^b K(x,s) \psi_2(s) ds,
\]
\[
\psi_2(x) = \beta \int_a^b K(x,s) \psi_2(s) ds - \alpha \int_a^b K(x,s) \psi_1(s) ds.
\]
Следовательно,
\[
\psi_1(x) - i \psi_2(x) = (\alpha - i \beta) \int_a^b K(x,s) [\psi_1(s) - i \psi_2(s)] ds.
\]
Таким образом,
\[
\lambda = \alpha - i \beta \quad \text{и} \quad \psi(x) = \psi_1(x) - i \psi_2(x)
\]
также являются соответствующими друг другу собственным значением и собственной функцией. Поскольку \(\lambda \neq \bar{\lambda} \) (ибо \(\beta \neq 0 \)), то по свойству 3 функции \(\psi(x) \) и \(\overline{\psi}(x) \) ортогональны, т.е.,
\[
\int_a^b \psi(x) \overline{\psi}(x) dx = \int_a^b |\psi(x)|^2 dx = 0.
\]

V. Интегральные уравнения

Отсюда видно непрерывность функций \(\psi_1(x) \) и \(\psi_2(x) \) следует, что \(\psi_1(x) = \psi_2(x) = 0 \). А тогда \(\varphi(x) = 0 \), что невозможно. Свойство доказано.

Свойство 5. На каждом конечном отрезке \([a,b]\) содержатся лишь конечное число собственных значений.

Доказательство. Допустим, что на некотором отрезке \([a,b]\) содержится бесконечное множество собственных значений. Выберем из этого множества бесконечную последовательность собственных значений \(\{\lambda_n\} \). Пусть \(\{\varphi_n(x)\} \) — последовательность соответствующих им собственных функций, а ряд
\[
C_1(x) \varphi_1(x) + C_2(x) \varphi_2(x) + \ldots + C_n(x) \varphi_n(x) + \ldots
\]
является рядом Фурье ядра \(K(x,s) \). Поскольку семейство \(\{\varphi_n(x)\} \) является ортогональным, то коэффициенты
\[
C_n(x) = \int_a^b K(x,s) \varphi_n(s) ds
\]
и справедливо неравенство Боссея
\[
\sum_{n=1}^\infty \frac{\varphi_n^2(x)}{\lambda_n} \leq \frac{b}{a} \int_a^b K^2(x,s) ds.
\]
Следовательно, для любого целого \(p > 0 \)
\[
\sum_{n=1}^p \frac{1}{\lambda_n^p} \leq \frac{b}{a} \int_a^b K^2(x,s) ds.
\]
Интегрируя это неравенство по отрезку \([a,b] \), получим
\[
\int_a^b K^2(x,s) ds \leq \int_a^b K^2(x,s) ds dx
\]
(1)
Так как \(\lambda_n \in [a_0, b_0] \), то \(\lambda_n^2 \leq C^2 \), где \(C = \max \left(a_0^2, b_0^2 \right) \). Тогда из (1) получаем
\[
\sum_{n=1}^\infty \frac{1}{\lambda_n^2} \leq \frac{b}{a} \int_a^b K^2(x,s) ds dx
\]
что невозможно, ибо ряд \(\sum_{n=1}^\infty \frac{1}{\lambda_n^2} \) расходящийся.
Из свойства 5 следует, что:
1) все собственные значения можно занумеровать в порядке роста их абсолютных величин, т.е.
 \[|p_1| \leq |p_2| \leq \ldots \leq |p_n| \leq \ldots \]
2) если спектр собственных значений бесконечный, то \(|p_n| \to \infty\) при \(n \to \infty\).

Свойство 6. Каждому собственному значению \(\lambda\) соответствует конечное число \(q\) собственных функций \(\varphi_1(x), \varphi_2(x), \ldots, \varphi_q(x)\).

Доказательство. Допустим, что некоторому \(\lambda\) соответствует бесконечная последовательность собственных функций \(\varphi_1(x), \varphi_2(x), \ldots, \varphi_q(x), \ldots\). Из неравенства Бесселя следует, что для всякого положительного \(p > 0\) выполняется неравенство

\[\sum_{n=1}^{b} \frac{\varphi_n^2(x)}{\lambda^2} \leq \int_a^b K^2(x,s) \, ds. \]

Откуда интегрированием получаем

\[\sum_{n=1}^{b} \frac{1}{\lambda^2} \leq \int_a^b K^2(x,s) \, ds, \]

что невозможно.

§2 Теорема о конечном спектре

Справедливо следующее утверждение.

Теорема 2. Для того чтобы спектр симметрического ядра был конечным, необходимо и достаточно, чтобы ядро было выражено в виде \(K(x,s) = \sum_{i=1}^{n} \frac{1}{\lambda_i} \varphi_i(x) \varphi_i(s)\).

Доказательство. Из изложенного в лекции 27 следует, что произведение симметрического ядра имеет лишь конечный спектр. Верно и обратное: если ядро \(K(x,s)\) имеет конечный спектр, то оно выражено в виде \(\varphi_1(x)\varphi_2(x)\ldots\varphi_q(x)\).

Пусть \(\lambda_1, \lambda_2, \ldots, \lambda_n\) — спектр ядра, а \(\varphi_1(x), \varphi_2(x), \ldots, \varphi_q(x)\) — соответственно собственные функции. Рассмотрим симметрическую непрерывную функцию

\[K^{(n)}(x,s) = K(x,s) - \sum_{i=1}^{n} \frac{1}{\lambda_i} \varphi_i(x) \varphi_i(s). \]

Если \(K^{(n)}(x,s) \neq 0\), то по теореме 1 она имеет собственное значение \(\mu\) и соответствующую собственную функцию \(\psi(x)\):

\[\psi(x) = \mu \int_a^b K^{(n)}(x,s) \psi(s) \, ds. \]

Функция \(\psi(x)\) ортогональна всем собственным функциям \(\varphi_i(x)\) ядра \(K(x,s)\) ибо

\[\int_a^b \psi(x) \varphi_i(x) \, dx = \mu \int_a^b \left[K(x,s) - \sum_{i=1}^{n} \frac{1}{\lambda_i} \varphi_i(x) \varphi_i(s) \right] \varphi_i(s) \, ds = \]

\[= \mu \int_a^b \psi(s) \left[K(x,s) - \frac{1}{\lambda_i} \varphi_i(x) \varphi_i(s) \right] \varphi_i(s) \, ds = \]

\[= \mu \int_a^b \psi(s) \left[\frac{1}{\lambda_i} \varphi_i(s) \right] \, ds = 0. \]

Далее \(\mu\) и \(\psi(x)\) суть собственное значение и собственная функция ядра \(K(x,s)\), так как

\[\int_a^b \mu K(x,s) \psi(s) \, ds = \mu \int_a^b K^{(n)}(x,s) \psi(s) \, ds = \]

\[= \mu \int_a^b \psi(s) \, ds = \psi(x). \]

Поскольку \(\psi(x)\) есть собственная функция ядра \(K(x,s)\), то \(\psi(x)\) должна быть линейной комбинацией функций
В. А. Байкон, А. В. Жибер Уравнения математической физики

Функции \(\psi(x), \phi_1(x), \phi_2(x), \ldots, \phi_n(x) \). Но это невозможно, так как \(\psi(x) \) ортогональна всем этим функциям. Следовательно, \(K_n(x,s) = 0 \) или

\[
K(x,s) = \sum_{i=1}^{n} \frac{1}{\lambda_i} \phi_i(x) \phi_i(s),
\]

т.е. ядро \(K(x,s) \) является выраженным. Теорема доказана.

§ 3 Спектр итерированных (повторных) ядер

Положим \(A \phi = \int K(x,s) \phi(s) \, ds \).

Из определения итерированных ядер следует, что

\[
A^n \phi = A(A^{n-1} \phi) = \int K_n(x,s) \phi(s) \, ds,
\]

Для собственных функций \(\phi_k(x) \) и собственных значений \(\lambda_k \) ядра \(K(x,s) \) справедливы равенства

\[
\lambda_k A \phi_k = \lambda_k A(\lambda_k A \phi_k) = \lambda_k^2 A^2 \phi_k = \ldots
\]

\[
\ldots = \lambda_k^n A^n \phi_k = \lambda_k^n \int K_n(x,s) \phi_k(s) \, ds
\]

из которых следует

Теорема 3. Если \(\phi_k(x) \) и \(\lambda_k \) суть собственные функции и собственные значения ядра \(K(x,s) \), то \(\phi_k(x) \) и \(\lambda_k^2 \) будут собственными функциями и собственным значением ядра \(K_n(x,s) \).

Правдива также

Теорема 4. Если \(\mu \) есть собственное значение ядра \(K_n(x,s) \), то собственным значением ядра \(K(x,s) \) будет, по крайней мере один из вещественных корней \(\mu \)-й степени числа \(\mu \).

V. Интегральные уравнения

Доказательство. Легко показать, что если \(h_1, h_2, \ldots, h_n \) — корни уравнения

\[
h_1^2 + h_2^2 + \ldots + h_n^2 = 0
\]

для \(s = 1, 2, \ldots, n - 1 \).

Пусть теперь \(\psi(x) \) — собственная функция ядра \(K_n(x,s) \), соответствующая собственному значению \(0 \). Определим функцию \(\phi_k(x) \) по формуле

\[
\phi_k(x) = \frac{1}{n} \left[y + h_k A \psi + h_k^2 A^2 \psi + \ldots + h_k^{n-1} A^{n-1} \psi \right]
\]

Суммируя равенства (3) и применяя во внимание (2), получим

\[
\psi(x) = \sum_{k=1}^{n} \phi_k(x)
\]

Даже применим оператор \(A \) к равенству (3) и суммируем результат на \(h_k \), получим

\[
h_k A \phi_k = \frac{1}{n} \left[h_k A \psi + h_k^2 A^2 \psi + \ldots + h_k^{n-1} A^{n-1} \psi \right] + \frac{1}{n} h_k A^n \psi
\]

и откуда

\[
h_k A \phi_k = \phi_k(x) - \frac{1}{n} \psi(x) + \frac{1}{n} h_k A^n \psi = \phi_k(x),
\]

поскольку \(h_k^n \mu = \mu \) и \(\mu A^n \psi = \psi \). Таким образом, не равные тождественно нулевые функции \(\phi_k(x) \) являются собственными функциями ядра \(K(x,s) \), а \(h_k \) — соответствующими им собственными значениями. По свойству 4 ядро \(K(x,s) \) имеет лишь вещественные собственные значения. Следовательно, функции \(\phi_k(x) \), отвечающие комплексным корням \(h_k \), тождественно равны нулю. Теорема доказана.

Лекция 29. Теорема Гильберта—Шмидта

В этой лекции мы докажем одну из фундаментальных теорем теории линейных интегральных уравнений, имеющую многочисленные приложения теорему разложения.
§1. Разложение интегрированных ядер

Напомним (см. предыдущую лекцию), что если $\phi_i(x)$ и λ_{ij} суть собст- венных функции и собственные значения ядра $K(x, s)$, то $\lambda_{ij} \phi_i(x)$ и $\lambda_{ij}^2 \phi_i(s)$ являются собственными функциями и собственными значениями интегрированного ядра $K_n(x, s)$.

Теорема 1. Для всякого $n \geq 3$ справедливо равенство

$$K_n(x, s) = \frac{\sum_{i=m}^{\infty} \phi_i(x) \phi_i(s)}{\lambda_{ij}}$$

(1)

в котором ряд сходится абсолютно и равномерно в промежутке $a \leq x, s \leq b$.

Доказательство. Докажем сначала, что ряд, стоящий в правой части (1), сходится абсолютно и равномерно. Для этого очевидно отрезок ряда

$$\sum_{i=m}^{m+n} \frac{1}{\lambda_{ij}} \left| \phi_i(x) \phi_i(s) \right| \leq \frac{1}{2 |\lambda_{ij}|} \sum_{i=m}^{m+n} \left[\phi_i^2(x) + \phi_i^2(s) \right].$$

(2)

Мы при этом воспользовались неравенством

$$|a \cdot b| \leq \frac{1}{2} (a^2 + b^2)$$

и тем, что $|\lambda_{ij}|$ монотонно стремится к бесконечности при $i \to \infty$. По неравенству Бёзенга

$$\sum_{i=m}^{\infty} \frac{\phi_i^2(s)}{\lambda_{ij}} \leq \frac{b}{a} K^2(x, s) ds \leq M,$$

(3)

где $M = const$. Поэтому из (2) с учетом (3) имеем

$$\sum_{i=m}^{m+n} \frac{1}{|\lambda_{ij}|} \left| \phi_i(x) \phi_i(s) \right| \leq \frac{M}{|\lambda_{ij}|^{n+2}}.$$

(4)

Так как $|\lambda_{ij}| \to \infty$ при $m \to \infty$, то из неравенства (5) по критерию Коши и следует абсолютная и равномерная сходимость ряда (1).

V. Интегральные уравнения

Пусть

$$\Phi(x, s) = \sum_{i=1}^{\infty} \frac{\phi_i(x) \phi_i(s)}{\lambda_{ij}}.$$

Нам надо доказать, что $K_n(x, s) = \Phi(x, s)$. Предположим, что это неверно. Тогда интегральная функция

$$Q(x, s) = K_n(x, s) - \Phi(x, s),$$

как известно, имеет собственное значение μ и собственную функцию $\psi(x)$, т.е.

$$\psi(x) = \int_a^b Q(x, s) \psi(s) ds.$$

Функция $\psi(x)$ ортогональна всем собственным функциям $\phi_i(x)$ ядра $K(x, s)$, так как

$$\int_a^b \psi(x) \phi_i(x) dx = \mu \int_a^b Q(x, s) \phi_i(x) ds,$$

$$= \mu \int_a^b \left(K_n(x, s) - \sum_{i=1}^{\infty} \frac{\phi_i(x) \phi_i(s)}{\lambda_{ij}} \right) \phi_i(x) dx ds =$$

$$= \mu \int_a^b \left(K_n(x, s) \phi_i(x) dx - \frac{\phi_i(s)}{\lambda_{ij}} \right) ds = 0,$$

поскольку $\phi_i(s) \lambda_{ij}^2 K_n(x, s) \phi_i(x) dx$. Функция $\psi(x)$ является собственной функцией ядра $K_n(x, s)$, так как

$$\psi(x) = \mu \int_a^b \left(K_n(x, s) - \sum_{i=1}^{\infty} \frac{\phi_i(x) \phi_i(s)}{\lambda_{ij}} \right) \psi(s) ds = \mu \int_a^b K_n(x, s) \psi(s) ds.$$

Следовательно, $\psi(x)$ должна быть линейной комбинацией функций $\phi_i(x)$. Но это невозможно, так как $\psi(x)$ ортогональна всем функциям $\phi_i(x)$. Таким образом, нельзя предполагать, что $Q(x, s) \neq 0$.

Замечание. Разложение (1) справедливо и для $K_2(x, s)$ $(n = 2)$, а также при некоторых дополнительных условиях и для $K(x, s)$.
§2. Теорема Гильберта — Шмита

Справедливо утверждение

Лемма 1. Для того чтобы непрерывная функция \(Q(x) \) была ортогональной ядром \(K(x,s) \), т.е.

\[
\int_{a}^{b} K(x,s)Q(s)\,ds = 0,
\]

необходимо и достаточно, чтобы она была ортогональной каждой собственной функции ядра, т.е.

\[
\int_{a}^{b} Q(x)\varphi_i(x)\,dx = 0, \quad i=1,2,\ldots.
\]

Доказательство. Имеем

\[
\int_{a}^{b} Q(x)\varphi_i(x)\,dx = \lambda_i \int_{a}^{b} K(x,s)\varphi_i(s)Q(s)\,ds\,dx = \lambda_i \int_{a}^{b} \left[\int_{a}^{b} K(x,s)Q(s)\,ds \right] \varphi_i(s)\,dx = \lambda_i \int_{a}^{b} \varphi_i(s) \left[\int_{a}^{b} K(x,s)Q(s)\,dx \right] \,ds = 0
\]

при условии (5). Итак, достаточность (5) доказана.

Далее рассмотрим интеграл

\[
J = \int_{a}^{b} \int_{a}^{b} K_4(x,s)Q(x)Q(s)\,ds\,dx.
\]

Он равен нулю, так как, используя разложение (1) для \(n = 4 \) и равенства (6), получим

\[
J = \int_{a}^{b} \int_{a}^{b} \varphi_i(x)\varphi_j(s)\frac{1}{\lambda_i^2} Q(x)Q(s)\,ds\,dx = \sum_{i=1}^{n} \frac{1}{\lambda_i^2} \int_{a}^{b} \varphi_i(x)Q(x)\,dx \int_{a}^{b} \varphi_i(s)Q(s)\,ds = 0.
\]

Поскольку

\[
K_4(x,s) = \int_{a}^{b} K_2(x,t)K_2(t,s)\,dt,
\]

то

\[
J = \int_{a}^{b} \int_{a}^{b} K_2(x,t)K_2(t,s)\,dt \int_{a}^{b} Q(x)Q(s)\,ds\,dx = \int_{a}^{b} \int_{a}^{b} K_2(x,t)Q(x)\,dx \int_{a}^{b} K_2(t,s)Q(s)\,ds\,dt = \int_{a}^{b} \int_{a}^{b} K_2(x,t)Q(x)\,dx = 0.
\]

Следовательно

\[
\int_{a}^{b} K_2(x,t)Q(x)\,dx = 0.
\]

Умножая тождество (7) на \(Q(t) \) и интегрируя результат по отрезку \([a,b] \), получим

\[
\int_{a}^{b} \int_{a}^{b} K_2(x,t)Q(x)Q(t)\,ds\,dt = 0.
\]

Заменяя в этом равенстве \(K_2(x,t) \) интегралом \(\int_{a}^{b} K(x,s)K(s,t)\,ds \) и произведения преобразований, аналогичные произведённым выше, получим

\[
\int_{a}^{b} K(x,s)Q(x)\,dx = 0.
\]

Лемма доказана.

Теперь используя лемму 1, доказаем основное утверждение:

Теорема 2 (Теорема Гильберта — Шмита). Если функция \(f(x) \) может быть представлена в форме

\[
f(x) = \int_{a}^{b} K(x,s)h(s)\,ds,
\]

где \(h(s) \) — кусочно-непрерывная на \([a,b]\), то она представляется рядом Фурье по собственным функциям ядра \(K(x,s) \), т.е.

\[
f(x) = \sum_{i=1}^{n} f_i \varphi_i(x),
\]
где

\[f_i = \int_a^b f(x) \varphi_i(x) \, d x, \]

и этот ряд сходится абсолютно и равномерно на отрезке \([a, b]\).

Доказательство. Имеем

\[
 f_i = \int_a^b f(x) \varphi_i(x) \, d x = \int_a^b \varphi_i(x) \left[K(x, s) h(s) \right] d s d x = \int_a^b \frac{b}{a} K(x, s) \varphi_i(x) \, d x \, d s = \frac{b}{a} h(s) \varphi_i(s) \, d s = \frac{b}{a} h_i i \lambda_i.
\]

Следовательно, коэффициенты Фурье \(f_i \) функции \(f(x) \) равны \(\frac{b}{a} h_i i \lambda_i \), где \(h_i \) — коэффициенты Фурье функции \(h(s) \), поэтому вместо ряда (9) можно рассматривать ряд

\[
 f(x) = \sum_{i=1}^{\infty} h_i \varphi_i(x). \tag{10}
\]

Докажем сначала абсолютную и равномерную сходимость ряда (10). По неравенству Коши — Буняковского имеем

\[
 \sum_{i=n}^{\infty} \frac{b}{a} h_i \varphi_i(x) \lesssim \left[\sum_{i=n}^{\infty} \frac{b}{a} \varphi_i^2(x) \right] \frac{1}{\lambda_i} \lesssim \left[\sum_{i=n}^{\infty} \frac{b}{a} \varphi_i^2(x) \right] \frac{1}{\lambda_i}. \tag{11}
\]

По неравенству Бесселя

\[
 \sum_{i=1}^{\infty} \frac{b}{a} h_i^2 \lesssim \left[\int_a^b h^2(s) \, d s \right] \lambda_i \quad \text{и} \quad \sum_{i=1}^{\infty} \frac{b}{a} \varphi_i^2(x) \lesssim \left[K^2(x, t) \right] \lambda_i.
\]

Следовательно, ряд \(\sum_{i=1}^{\infty} \frac{b}{a} h_i^2 \) сходится, поэтому его отрезок \(\sum_{i=n}^{\infty} \frac{b}{a} \varphi_i^2(x) \) может быть сделан меньше \(\frac{e}{M} \) (где \(e \) — произвольное число), если \(n \) взять достаточно большим. Отсюда для достаточно больших \(n \)

\[
 \sum_{i=n}^{\infty} \frac{b}{a} h_i \varphi_i(x) < e \quad \text{для всех} \quad x \in [a, b],
\]

что и означает абсолютную и равномерную сходимость ряда (10).

Далее пусть

\[
 p(x) = \sum_{i=1}^{\infty} \frac{b}{a} h_i \varphi_i(x) - f(x),
\]

функция \(p(x) \) непрерывна на \([a, b]\) и ортогональна всем функциям \(\varphi_i(x) \).

Следовательно, согласно лемме 1, она ортогональна ядру \(K(x, s) \), т.е.

\[
 \int_a^b \frac{b}{a} K(x, s)p(x) \, d x = 0. \tag{11}
\]

Теперь в силу ортогональности функций \(p(x) \) и \(\varphi_i(x) \)

\[
 \int_a^b \frac{b}{a} K^2(x, s) \, d x = \int_a^b \left[\int_a^b \frac{b}{a} \varphi_i(x) - f(x) \right] \, d x = - \int_a^b \frac{b}{a} K(x, s) p(x) \, d x.
\]

Заменив здесь \(f(x) \) по формуле (8) и используя (11), получим

\[
 \int_a^b \frac{b}{a} p(x) \, d x = - \int_a^b \left(\int_a^b \frac{b}{a} \varphi_i(x) - f(x) \right) \, d x = - \int_a^b \frac{b}{a} K(x, s) p(x) \, d x = 0.
\]

Следовательно,

\[
 p(x) = \sum_{i=1}^{\infty} \frac{b}{a} h_i \varphi_i(x) - f(x) = 0.
\]

Теорема доказана.

§3. Решение нелинейного уравнения

Пусть в уравнении

\[
 \varphi(x) = \lambda \left\{ \int_a^b K(x, s) \varphi(s) \, d s + f(x) \right\} \tag{12}
\]

\(\lambda \) не равно ни одному из собственных значений. Тогда по 1-й теореме Фредгольма это уравнение имеет единственное решение, которое можно записать в виде

\[
 \varphi(x) = f(x) + \lambda \psi(x), \tag{13}
\]

где

\[
 \psi(x) = \int_a^b \frac{b}{a} K(x, s) \varphi(s) \, d s.
\]
По теореме Гильберта — Шмидта функция \(\psi(x) \) может быть представлена рядом по собственным функциям ядра \(K(x,s) \):

\[
\psi(x) = \sum_{i=1}^{\infty} c_i \varphi_i(x),
\]

(14)

Подставим в уравнение (12) функцию \(\varphi(x) \), определенную формулами (13), (14), получим

\[
f(x) + \lambda \sum_{i=1}^{\infty} c_i \varphi_i(x) = f(x) + \lambda \int_a^b f(s) \varphi_i(s) \, ds + \lambda \sum_{i=1}^{\infty} c_i \varphi_i(x) \int_a^b K(x,s) \varphi_i(s) \, ds.
\]

или

\[
\sum_{i=1}^{\infty} c_i \varphi_i(x) = \int_a^b K(x,s) f(s) \, ds + \lambda \sum_{i=1}^{\infty} c_i \int_a^b K(x,s) \varphi_i(s) \, ds.
\]

Применяя теорему Гильберта — Шмидта к функции

\[
\int_a^b K(x,s) f(s) \, ds
\]

и заменяя \(\int_a^b K(x,s) \varphi_i(s) \, ds \) через \(\frac{\varphi_i(x)}{\lambda_i} \), получим

\[
\sum_{i=1}^{\infty} c_i \varphi_i(x) = \sum_{i=1}^{\infty} \frac{f_i}{\lambda_i} \varphi_i(x) + \lambda \sum_{i=1}^{\infty} c_i \frac{\varphi_i(x)}{\lambda_i},
\]

откуда

\[
c_i = \frac{f_i}{\lambda_i} + \lambda c_i \quad \text{или} \quad c_i = \frac{f_i}{\lambda_i - \lambda}.
\]

Таким образом, исходное решение уравнения (12) представляется следующим абсолютно и равномерно сходящимся рядом

\[
\varphi(x) = f(x) + \lambda \sum_{i=1}^{\infty} \frac{f_i}{\lambda_i} \varphi_i(x).
\]

Если \(\lambda = \lambda_r \) — равно некоторому собственному значению \(\lambda_r \), которому отвечают собственные функции \(\varphi_r(x), \varphi_{r+1}(x), \ldots, \varphi_{r+q}(x) \), то

\[
\lambda_r = \lambda_{r+1} = \cdots = \lambda_{r+q}.
\]

V. Интегральные уравнения

В этом случае из формулы (15) получаем

\[
f_r = f_{r+1} = \cdots = f_{r+q} = 0
\]

или

\[
b \int_a^b f(x) \varphi_{r+q}(x) \, dx = 0, \quad i = 0, 1, \ldots, q.
\]

При этом коэффициенты \(c_r, c_{r+1}, \ldots, c_{r+q} \) остаются произвольными и решение уравнения (12) имеет вид

\[
\varphi(x) = f(x) + \sum_{i=0}^{q} c_i \varphi_i(x) + \lambda \sum_{i=1}^{\infty} \frac{f_i}{\lambda_i} \varphi_i(x),
\]

где \(\sum_{i=1}^{\infty} \) означает суммирование по всем значениям \(i \), кроме \(r, r+1, \ldots, r+q \).

Задачи

1. Пусть \(K(x,y) \) — симметричное непрерывное ядро, \(K_n(x,y) \) — повторное ядро ядра \(K(x,y) \). Доказать формулы:

а) \(\sum_{m=1}^{\infty} \frac{\varphi_m(x)}{\lambda_m^2} = b \int_a^b K(x,y) \, dy \);

б) \(\sum_{m=1}^{\infty} \frac{1}{\lambda_m^2} = b \int_a^b K(x,y) \, dy \);

в) \((Lf,f) = \sum_{m=1}^{\infty} \frac{(f,\varphi_k)}{\lambda_k} \),

\(L \) — интегральный оператор ядра \(K(x,y) \);

в) \(\sum_{m=1}^{\infty} \frac{1}{\lambda_m^2} = b \int_a^b K_p(x,y) \, dy \);

2. Найти характеристические числа и соответствующие собственные функции интегрального уравнения

\[
\varphi(x) = \lambda \int_a^b K(x,y) \varphi(y) \, dy.
\]
VI. Специальные функции

Лекция 30. Функции Бесселя. Полное разложение переменных в уравнении колебаний круглой мембраны

При решении многих задач математической физики приходится к линейному дифференциальному уравнению

\[\frac{d^2 y}{dx^2} + \frac{1}{x} \frac{dy}{dx} + \left(1 - \frac{\nu^2}{x^2}\right)y = 0. \]

(1)

К такому уравнению мы приходим, например, при решении задач о колебаниях круглой мембраны, об остывании круглого цилиндра методом разложения переменных, если будем пользоваться цилиндрическими (или полярными) координатами. Уравнение (1) носит название уравнения Бесселя. В курсах аналитической теории дифференциальных уравнений и в курсах теории специальных функций устанавливается ряд важных свойств решений этого уравнения, которые мы приведем без полного доказательства.

§1. Функции Бесселя

Так как уравнение (1) имеет особую точку \(x = 0 \), то его частное решение следует искать в виде обобщенного степенного ряда:

\[y(x) = x^\sigma \sum_{k=0}^{\infty} a_k x^k \quad (a_0 \neq 0). \]

(2)

Полагая ряд (2) в уравнение (1), получим

\[(\sigma^2 - \nu^2) a_0 x^\sigma + (\sigma + 1)^2 - \nu^2 \sum_{k=0}^{\infty} \sigma a_k x^{\sigma+k} + \sum_{k=0}^{\infty} (\sigma^2 - \nu^2) a_k + a_{k+2} x^{\sigma+k} = 0. \]
Теперь приравнивая нулю коэффициенты при различных степенях x, будем иметь

$$\sigma^2 - v^2 = 0,$$

$$[(\sigma + 1)^2 - v^2] a_1 = 0,$$

$$[(\sigma + k)^2 - v^2] a_k + a_{k-2} = 0, \quad k = 2, 3, \ldots.$$ \hspace{1cm} (3)

Из первого уравнения (3) следует, что

$$\sigma = \pm v.$$

Далее предполагаем, что

$$(\sigma + k)^2 - v^2 = (\sigma + k + v)(\sigma + k - v) \neq 0,$$

то есть $\sigma + v$ или $\sigma - v$ (и соответственно $-2v$ или $2v$) не равно отрицательному целому числу. Тогда из (3) получаем рекурсивную формулу для определения a_k через a_{k-2}:

$$a_k = \frac{a_{k-2}}{(\sigma + k + v)(\sigma + k - v)}.$$ \hspace{1cm} (4)

Так как, $a_1 = 0$, то из формулы (4) заключаем, что все нечетные коэффициенты равны нулю.

Пусть $\sigma = v$. Из (4) следует, что каждый четный коэффициент может быть выражен через предыдущий:

$$a_{2m} = \frac{a_{2m-2}}{2^m (m + v)m}.$$

Последовательное применение этой формулы позволяет найти a_{2m} через a_0

$$a_{2m} = (-1)^m \frac{a_0}{2^m m! (v+1)! (v+2)! \cdots (v+m)!}.$$

Теперь воспользуемся свойством гамма-функции $\Gamma(s)$:

$$\Gamma(s+1) = s\Gamma(s) = \cdots = s(s-1) \cdots (s-n) \Gamma(s-n),$$

Если s — целое число, то

$$\Gamma(s+1) = s!.$$

VI. Спецільні функції

Коэффициент a_0 до сих пор оставался произвольным. Пусть

$$a_0 = \frac{1}{2^0 \Gamma(v+1)}$$

и, используя отмеченное выше свойство гамма-функции, получим

$$a_{2k} = (-1)^k \frac{1}{2^{2k+1} \Gamma(k+1) \Gamma(k+v+1)}.$$

Впоследствии найденные значения коэффициентов a_{2k+1} и a_{2k} в ряд (2), получим частное решение уравнения (1). Это решение носит название функции Бесселя 1-го рода v-го порядка и обозначается обычно через $J_v(x)$.

Таким образом

$$J_v(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(v+k+1)} \left(\frac{x}{2} \right)^{2k+v}. $$ \hspace{1cm} (5)

Используя, второй корень $\sigma = -v$, можно построить второе частное решение уравнения (1). Оно может быть получено, очевидно, из решения 95 простой заменой v на $-v$, так как уравнение (1) содержит только v^2 и не меняется при замене v на $-v$:

$$J_{-v}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(-v+k+1)} \left(\frac{x}{2} \right)^{2k-v}. $$ \hspace{1cm} (6)

Для целых значений v частные решения (5) и (6) уравнения (1) будут линейно независимы, так как разложение, стоящее в правых частях формул (5) и (6), начинается с разных степеней x.

Для целых значений $v = m$ функции Бесселя порядка m и порядка $-m$ уже не будут независимыми:

$$J_{-m}(x) = (-1)^m J_m(x).$$

Для того чтобы найти общее решение уравнения (1) в этом случае, необходимо построить второе, линейнезависимое от $J_v(x)$ частное решение. Для этого введем новую функцию $Y_v(x)$ по формуле

$$Y_v(x) = J_v(x) \cos \pi v - J_{-v}(x) \frac{\sin \pi v}{\sin \pi v}.$$ \hspace{1cm} (7)
Важную функцию \(Y_n(x) \) называют функцией Бесселя второго рода \(v \)-го порядка. Эта функция является решением уравнения (1) и в том случае, когда \(v \) - целое число, прямым функции \(J_n(x) \) и \(Y_n(x) \) линейно независимы при любом \(x \). Следовательно обобщенное решение уравнения (1) может быть представлено в виде
\[
y = c_1 J_n(x) + c_2 Y_n(x),
\]
где \(c_1 \) и \(c_2 \) произвольные постоянные.

Отметим, что для функций Бесселя первого и второго рода имеют место следующие рекуррентные соотношения:
\[
\frac{dJ_n(x)}{dx} = J_{n+1}(x) - \frac{x}{x} J_n(x), \quad \frac{dJ_{n+1}(x)}{dx} = J_n(x) - \frac{x}{x} J_{n+1}(x),
\]
\[
\frac{dY_n(x)}{dx} = -J_{n+1}(x) + \frac{x}{x} Y_n(x), \quad \frac{dY_{n+1}(x)}{dx} = -Y_n(x) + \frac{x}{x} Y_{n+1}(x).
\]

Далее, используя правило Лопитала при целом положительном \(n \), из (7) получаем, что функция Бесселя второго рода представляется в виде
\[
Y_n(x) = \frac{2}{\pi} \int \frac{J_n(x) b dx}{x} - \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(n-k-1)!}{k!} \left(\frac{x}{2} \right)^{n-k} - \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^k}{k! (k+1)!} \left[\Gamma'(k+1) + \Gamma'(n+k+1) \right] \left(\frac{x}{2} \right)^{n-k}.
\]

§ 2. Полное разделение переменных в уравнении колебаний круглой мембраны

Рассмотрим волновое уравнение на плоскости:
\[
\frac{\partial^2 u}{\partial r^2} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right),
\]

VI. Специальные функции

При изучении круговой колебаний мембраны полезно перейти к полярным координатам \(x = r \cos \phi \), \(y = r \sin \phi \). Тогда волновое уравнение записывается в виде
\[
\frac{1}{a^2} \frac{\partial^2 u}{\partial r^2} - \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \phi^2} = 0.
\]

Будем искать решение этого уравнения при заданных начальных данных
\[
u(r, \phi, 0) = u_0(r, \phi), \quad \frac{\partial u(r, \phi, 0)}{\partial t} = u_1(r, \phi)
\]

и граничном условии
\[
u(1, \phi, t) = 0.
\]

(Закрепленная по краям мембрана радиуса 1.)

Согласно методу Фурье частные решения уравнения (9) ищут в следующей форме
\[
u(r, \phi, t) = \phi(r, \phi) T(t),
\]

Представляя эту функцию в уравнении (9), мы получим уравнение для \(T(t) \)
\[
T''(t) + \lambda T(t) = 0,
\]

т.е.
\[
T(t) = c_1 \cos \sqrt{\lambda} t + c_2 \sin \sqrt{\lambda} t,
\]

и следующую задачу на собственные значения для функции \(\phi(r, \phi) \):
\[
\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 \phi}{\partial \phi^2} + \lambda \phi = 0, \quad 0 < r < 1,
\]

\(\phi(1, \phi) = 0 \).

Мы наслаждаемся функцией \(\phi(r, \phi) \) условие ограниченности в точке \(r = 0 \) и условие периодичности с периодом \(2\pi \) по переменной \(\phi \).

Далее полным
\[
u(r, \phi) = R(r) \Phi(\phi).
\]
Тогда из уравнения (12) получаем

$$\frac{r}{d} \frac{dr}{d\rho} \left(\frac{dR}{dr} \right) + \Phi + \lambda r^2 = 0.$$

Отсюда согласно (13) и наложенных ограничений на функцию \(v(r, \phi)\) приходим к уравнениям

$$\Phi'' + \mu^2 \Phi = 0, \quad \Phi(\phi) = \Phi(\phi + 2\pi),$$

$$\frac{1}{r} \frac{d}{dr} \left(r \frac{dR}{dr} \right) + \left(\lambda - \frac{n^2}{r^2} \right) R = 0, \quad \left| R(0) \right| < \infty.$$

Непривильные периодические решения для \(\Phi(\phi)\) существуют лишь при \(\mu^2 = n^2\) (н - целое число) и имеют вид

$$\Phi_m(\phi) = A_m \cos n \phi + B_m \sin n \phi.$$

Для определения функции \(R(r)\) мы имеем задачу

$$\frac{d^2 R}{dr^2} + \frac{1}{r} \frac{dR}{dr} + \left(\lambda - \frac{n^2}{r^2} \right) R = 0, \quad 0 < r < 1,$$

$$\left| R(0) \right| < \infty.$$

Вводя новую переменную

$$x = \sqrt{n} r$$

и обозначая

$$R(r) = R \left(\frac{x}{\sqrt{n}} \right) = y(x),$$

получим для определения функции \(y(x)\) уравнение Бесселя (1) \(n\)-го порядка

$$\frac{d^2 y}{dx^2} + \frac{1}{x} \frac{dy}{dx} + \left(1 - \frac{n^2}{x^2} \right) y = 0$$

с дополнительными граничными условиями

$$y(x_0) = 0, \quad x_0 = \sqrt{n},$$

$$\left| y(0) \right| < \infty.$$

VI. Специальные функции

Общее решение уравнения (14) имеет вид (см. §1)

$$y(x) = c_1 J_n(x) + c_2 Y_n(x).$$

Из второго условия (15) согласно формуле (8) имеем \(c_2 = 0\), а первое условие дает:

$$J_n(\sqrt{n}) = 0 \quad \text{или} \quad J_n(\sqrt{n}) = 0 \quad (\mu = \sqrt{n}).$$

Это трансцендентное уравнение имеет бесконечное множество вещественных корней \(\mu_m, \quad m = 0, 1, 2, ..., \).

Таким образом, мы имеем последовательность собственных значений

$$\lambda_{m, n} = \mu_m^2, \quad m = 0, 1, 2, ..., \quad n = \pm 1, 2, 3, ..., \quad m = 1, 2, 3, ...,$$

которым принаследжат собственные функции

$$R_{m, n}(r) = J_n(\mu_m r).$$

Таким образом, для собственного значения \(\lambda_{m, n}\) задачи (13) имеем две собственные функции

$$u_{m, n} = J_n(\mu_m^2), \quad v_{m, n} = J_n(\mu_m^2) \sin n \phi.$$

Теперь решение исходной задачи о колебаниях мембраны (9)-(11) согласно методу Фурье можно представить так:

$$u(r, \phi, t) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n, m}(r, \phi) \left(A_{n, m} \cos \mu_m^2 t + B_{n, m} \sin \mu_m^2 t \right) +$$

$$+ \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n, m}(r, \phi) \left(C_{n, m} \cos \mu_m^2 t + D_{n, m} \sin \mu_m^2 t \right).$$

Можно показать, что собственные функции (16), принадлежащие различным собственным значениям, ортогональны с весом \(r\):

$$\int_0^1 r J_n(\mu_m^2) J_n(\mu_n^2) dr = 0.$$

Норма этих функций равна

$$\int_0^1 r J_n^2(\mu_m^2) dr = \frac{1}{2} \left(J_n(\mu_m^2) \right)^2.$$
Коэффициенты A_{nm}, B_{nm}, C_{nm} и D_{nm} ряда (17) определяются из начальных условий (10)

$$u_0(r, \varphi) = \sum_{n,m=0}^{\infty} \left(A_{nm} u_{nm} + C_{nm} a_{nm}^0 \right),$$
$$u_1(r, \varphi) = \sum_{n,m=0}^{\infty} \left(B_{nm} u_{nm} + D_{nm} a_{nm}^0 \right).$$

Теперь, используя соотношения (18), (19) из (20), находим, что

$$A_{nm} = \frac{2^{2n+1} \mu_{k} \pi}{\beta_{nm}} rac{\sinh \beta_{nm} r}{\beta_{nm} r} J_n \left(\beta_{nm} r \right),$$

$$C_{nm} = \frac{2^{2n+1} \mu_{k} \pi}{\beta_{nm}} \frac{\cosh \beta_{nm} r}{\beta_{nm} r} J_n \left(\beta_{nm} r \right),$$

$$B_{nm} = \frac{2^{2n+1} \mu_{k} \pi}{\beta_{nm}} \frac{\sin \beta_{nm} r}{\beta_{nm} r} J_n \left(\beta_{nm} r \right),$$

$$D_{nm} = \frac{2^{2n+1} \mu_{k} \pi}{\beta_{nm}} \frac{\cos \beta_{nm} r}{\beta_{nm} r} J_n \left(\beta_{nm} r \right).$$

Здесь $\beta_{nm} = \sqrt{\frac{\mu_{k}}{R} \left(\beta_{nm} r \right)}.$

Таким образом, решение задачи (9) – (11) выделяется по формулам (17), (21).

Задачи

1. Решить задачу о свободных колебаниях однородной круглой мембраны радиуса R, закрепленной по краю в следующих случаях:

 a) начальное отклонение определяется равенством $u_{t=0} = \Delta(\frac{\mu_{k} r}{R})$, где μ_{k} – положительный корень уравнения $J_0(\mu_{k}) = 0$; начальная скорость равна нулю;

 b) начальное отклонение и начальная скорость зависят только от r:

 $$u_{t=0} = f(r), \quad u_{t=0} = f(r);$$

 c) начальное отклонение имеет форму параметра вращения, а начальная скорость равна нулю.

2. Найти решение смешанной задачи

$$u_{t} = u_{xx} + \frac{1}{x} u_{x} + f(t)J_0(\mu_{k} x),$$

где μ_{k} – положительный корень уравнения $J_0(\mu_{k}) = 0, \quad 0 < x < 1$,

$$u_{x} = u_{x} = u_{t} = 0, \quad |u_{t} x| < \infty,$$

 a) $f(t) = t^2 + 1$;

 b) $f(t) = \sin t + \cos t$.

3. Дан неограниченный круговой цилиндр радиуса R. Найти распределение температуры внутри цилиндра в момент времени t, если:

 a) на поверхности цилиндра поддерживаются все время нулевая температура, а температура внутри цилиндра в начальный момент равна $u_{t=0} = \Delta(\frac{\mu_{k} r}{R})$, где μ_{k} – положительный корень уравнения $J_0(\mu_{k}) = 0$;

 b) поверхность цилиндра поддерживаются при постоянной температуре u_{0}; а начальная температура внутри цилиндра равна нулю;

 в) с поверхности цилиндра происходит лучепреломление в окружающую среду, температура которой равна нулю, а начальная температура равна $u_{t=0} = u_{0}(r)$.
Лекция 31. Многочлены Лежандра. Определение потенциала внутри сферы

Простейшим классом сферических функций являются многочлены Лежандра от \(\cos \theta \). Эти многочлены мы обозначим как \(P_n(\cos \theta) \) и определим их несколько формальным способом — через производную функцию. Последнее позволит нам проще и короче получить их основные свойства.

§ 1 Многочлены Лежандра

Производящая функция

Функция

\[
f(x,t)=\left[1-2xt+t^2\right]^\frac{1}{2}
\]

называется производящей функцией многочленов Лежандра, Разложим эту функцию в степенной ряд по степеням \(t \).

Получим

\[
f(x,t)=P_0(x)+P_1(x)t+...+P_n(x)t^n+...
\]

(1)

Нетрудно проверить, что коэффициенты этого разложения \(P_n(x) \) являются многочленами. Эти многочлены носят название многочленов Лежандра.

Полагая в разложении (1) \(x=1 \), получим

\[
f(1,t)=\frac{1}{1-t}=1+t+...+t^n+...
\]

Следовательно, \(P_n(1)=1 \), \(n=0,1,2,... \). При \(x=-1 \) имеем

\[
f(-1,t)=\frac{1}{1+t}=1-t+...+(-1)^n t^n+...,\]

поэтому \(P_n(-1)=(-1)^n \). Ясно, что

\[
P_n(x)=\frac{1}{n!}\int_{-1}^{1} f(x,t) \frac{\partial^n}{\partial t^n} dt
\]

(2)

С другой стороны, производная \(n \)-го порядка \(\frac{\partial^n f}{\partial t^n} \)

при \(t=0 \) с применением интегральной формулы Коши вычисляется как

\[
\left[\frac{\partial^n}{\partial t^n} f(x,t) \right]_{t=0} = \frac{n!}{2\pi i C} \oint_{z=0} f(z,\xi) \frac{dz}{z^{n+1}}
\]

(3)

где \(C \) — замкнутый контур, охватывающий точку \(\xi = 0 \). Далее получим

\[
\sqrt{1-2x\xi+x^2} = 1 - \xi z
\]

в интеграле (3) и учитывая (2), получаем

\[
P_n(x) = \frac{n!}{2\pi i C_1} \oint_{z=0} \frac{(z^2-1)^n}{(z-x)^{n+1}} \frac{dz}{z}
\]

Здесь \(C_1 \) — замкнутый контур, охватывающий точку \(z = x \). Теперь, используя формулу для \(n \)-й производной интеграла Коши, будем иметь

\[
P_n(x) = \frac{n!}{2^n \pi n!} \frac{d^n}{dx^n} \left[(x^2-1)^n\right]
\]

(4)

Из формулы (4) следует, что \(P_2k(x) \) — четная функция, а \(P_{2k+1}(x) \) — нечетная.

Так для \(n=0,1,2 \) имеем \(P_0(x)=1 \), \(P_1(x)=x \), \(P_2(x)=\frac{3}{2}x^2-\frac{1}{2} \).

Дифференциальное уравнение для многочленов Лежандра

Получим дифференциальное уравнение, решением которого является \(P_n(x) \). Для этого введем функцию \(w=(x^2-1)^n \).

Очевидно, что

\[
(x^2-1)^{\frac{d}{dx}}w = 0
\]

Дифференцируя это тождество \((n+1) \) раз, получим

\[
\left[(x^2-1)^{\frac{d}{dx}}(x^2-1)^{\frac{d}{dx}}+2x\frac{d}{dx}-n(n+1)\right]\frac{d^{n+1}w}{dx^{n+1}} = 0.
\]
Таким образом, функция $\frac{d^n w}{dx^n}$, а следовательно, и $P_n(x)$ (поскольку $P_n(x) = \frac{1}{2^n n!} \frac{d^n w}{dx^n}$), удовлетворяет уравнению

$$\left(1-x^2\right) \frac{d^2 y}{dx^2} - 2x \frac{dy}{dx} + \lambda y = 0, \quad \lambda = n(n+1). \tag{5}$$

Это уравнение называется уравнением Лежандра.

Отметим, что полиномы Лежандра можно построить и иначе: исключив ограниченное на отрезке $[-1, 1]$ решение уравнения (5) в виде степенного ряда $y(x) = C_0 + C_1 x + \ldots + C_n x^n + \ldots$. При $\lambda = n(n+1)$ этот ряд обрывается на члене n-й степени, т.е. при $\lambda = n(n+1)$ решением будет полином n-й степени, который отличается от полинома Лежандра n-й степени лишь постоянным множителем.

Свойство ортогональности

Докажем, что многочлены Лежандра ортогональны на отрезке $[-1, 1]$, т.е.

$$\int_{-1}^{1} P_n(x) P_k(x) dx = 0, \text{ если } n \neq k.$$

Действительно, в силу уравнения (5) имеем два тождества:

$$\frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_n}{dx} \right] + n(n+1)P_n(x) = 0,$$

$$\frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_k}{dx} \right] + k(k+1)P_k(x) = 0.$$

Первое из них умножим на $P_k(x)$, второе – на $P_n(x)$; результаты вычтем один из другого и полученную разность пронумеруем по промежутку $[-1, 1]$. Получим

$$\int_{-1}^{1} \left[P_n \frac{d}{dx} \left(1-x^2\right) \frac{dP_k}{dx} \right] - P_k \frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_n}{dx} \right] \right] dx =$$

$$= k(k+1) - n(n+1) \int_{-1}^{1} P_n(x) P_k(x) dx = 0.$$

или

$$\int_{-1}^{1} \left[\frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_n}{dx} \right] - \frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_k}{dx} \right] \right] dx =$$

$$= (k-n)(k+n+1) \int_{-1}^{1} P_n(x) P_k(x) dx = 0$$

Следовательно

$$\int_{-1}^{1} P_n(x) P_k(x) dx = \frac{1}{(k-n)(k+n+1)} \left(\frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_n}{dx} \right] - \frac{d}{dx} \left[\left(1-x^2\right) \frac{dP_k}{dx} \right] \right) \bigg|_{-1}^{1} = 0$$

при $n \neq k$.

Прежде чем вычислить норму многочлена Лежандра, мы докажем справедливость двух рекуррентных соотношений

$$(n+1)P_{n+1}(x) - (2n+1)x P_n(x) + nP_{n-1}(x) = 0, \tag{6}$$

$$P_n(x) = \frac{1}{2n+1} \frac{d}{dx} \left[nP_{n+1}(x) - P_{n-1}(x) \right]. \tag{7}$$

Для этого пролиферируем по переменным t и x соотношение (1). Получим тождества:

$$\frac{\partial}{\partial t} \frac{(x-t)f(x,t)}{\left(1-2xt+t^2\right)} = P_1 + 2P_2t + \ldots + nP_n t^{n-1} + \ldots,$$

$$\frac{\partial}{\partial x} \frac{tf(x,t)}{\left(1-2xt+t^2\right)} = \frac{dP_0}{dx} + \frac{dP_1}{dx} t + \ldots + \frac{dP_n}{dx} t^n + \ldots.$$

Следовательно, имеем

$$(x+t) \left[P_0 + P_1 t + \ldots + P_n t^n + \ldots \right] = \left(1-2xt+t^2\right) \left[P_1 + 2P_2 t + \ldots + nP_n t^{n-1} + \ldots \right],$$

$$t \left[P_0 + P_1 t + \ldots + P_n t^n + \ldots \right] = \left(1-2xt+t^2\right) \left[\frac{dP_0}{dx} + \frac{dP_1}{dx} t + \ldots + \frac{dP_n}{dx} t^n + \ldots \right].$$

Сравнивая в последних тождествах коэффициенты при одинаковых степенях t, получим равенства (6) и

$$P_{n+1}(x) - (2n+1)x P_n(x) + n P_{n-1}(x) = 0$$

и

$$P_n(x) = \frac{1}{2n+1} \frac{d}{dx} \left[nP_{n+1}(x) - P_{n-1}(x) \right]. \tag{8}$$
Теперь, дифференцируя соотношения (6), получим

\[
(n+1)\frac{dP_{n+1}(x)}{dx} - (2n+1)P_n(x) - (2n+1)x \frac{dP_n(x)}{dx} + n \frac{dP_{n-1}(x)}{dx} = 0.
\]

И, наконец, исключая из этого соотношения и соотношения (8) произведение \(xP_n(x)\), приходим к формуле (7).

Отметим, что с помощью (6) и формул

\[P_0(x) = 1, \quad P_1(x) = x\]

можно определить все многочлены Лежандра, а формулы (7) позволят выразить интеграл \(\int P_n(x)dx\) через многочлены \(P_{n+1}(x)\) и \(P_{n-1}(x)\).

Для вычисления квадрата нормы многочлена Лежандра

\[
\|P_n\|^2 = \frac{1}{2}\int P_n^2(x)dx
\]

один из множителей подинтегральной функции \(P_n(x)\) выразим через \(P_{n-1}(x)\) и \(P_{n-2}(x)\) по формуле (6), заменив в ней \(n\) на \(n-1\). Получим

\[
\|P_n\|^2 = \frac{1}{2} \int P_n \left[\frac{2n-1}{n} x P_{n-1} - \frac{n-1}{n} P_{n-2} \right] dx = \frac{2n-1}{n} \int xP_n P_{n-1} dx.
\]

Мы здесь воспользовались ортогональностью многочленов \(P_n\) и \(P_{n-2}\). Далее в последнем интеграле произведение \(xP_n\) заменим по формуле (6) через \(P_{n+1}\) и \(P_{n-1}\) будем иметь

\[
\|P_n\|^2 = \frac{2n-1}{n} \int P_{n+1} \left\{ \frac{n+1}{2n+1} P_{n+1} + \frac{n}{2n+1} P_n \right\} dx = \frac{2n-1}{2n+1} \int P_{n-1}^2(x) dx
\]

или

\[
\|P_n\|^2 = \frac{2n-1}{2n+1} \|P_{n-1}\|^2, \quad n = 1, 2, \ldots
\]

из (9) получаем, что

\[
\|P_n\|^2 = \frac{1}{2n+1} \|P_0\|^2 = \frac{2}{2n+1}.
\]

VI. Специальные функции

Теорема о разложимости

В этом пункте мы приведем без доказательства теорему о разложимости функции в ряд Фурье по многочленам Лежандра:

Теорема 1. Пусть функция \(f(x)\) кусочно-непрерывна вместе с производной первого порядка \(\frac{d\varphi(x)}{dx}\) на интервале \([-1, 1]\). Тогда в каждой точке непрерывности \(f(x)\) ее ряд Фурье по многочленам Лежандра сходится к этой функции.

§ 2. Потенциал полой сферы

Примем введенные выше многочлены Лежандра для вычисления потенциала внутри полой сферы радиуса \(R\), составленной из двух полусфер, изолированных друг от друга тонкой прокладкой и заряженных до потенциалов \(u_1\) и \(u_2\).

Математическая постановка этой задачи: требуется найти решение \(u(r, \theta)\) уравнения

\[
\Delta u = 0, \quad 0 \leq r < R,
\]

условия, требующие краевым условием:

\[
|u(0, \theta)| < \infty, \quad u(R, \theta) = \begin{cases} u_1, & 0 \leq \theta < \frac{\pi}{2} \\ u_2, & \frac{\pi}{2} < \theta < \pi \end{cases}
\]

Так как потенциал \(u(r, \theta, \phi) = u(r, \theta)\) не зависит от \(\phi\), то уравнение Лапласа (10), записанное в сферических координатах, для него будет иметь вид

\[
\frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) = 0
\]

Сначала найдем решение уравнения (12) вида

\[
u = f(r) \phi(\theta), \quad
\]
удовлетворяющее только условию ограниченностности. Разделяя, переменные получим
\[
\frac{d}{dr} \left(r^2 f'(r) \right) = -\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\phi'(\theta) \sin \theta \right) \frac{\varphi(\theta)}{\varphi(0)} = \lambda.
\]
Следовательно,
\[
\frac{d}{dr} \left(r^2 f'(r) \right) - \lambda f(r) = 0,
\]
\[
\frac{1}{\sin \theta} \frac{d}{d\theta} \left(\phi'(\theta) \sin \theta \right) + \lambda \phi = 0.
\]
В последнем уравнении произведем замену переменной \(\xi = \cos \theta \).
Получим уравнение
\[
(1 - \xi^2) \frac{d^2 \varphi}{d\xi^2} - 2 \xi \frac{d \varphi}{d\xi} + \lambda \varphi = 0,
\]
которое при \(\lambda = n(n+1) \) имеет ограниченное на \([-1, 1]\) решение в виде многочлена Лежандра \(P_n(\xi) \). При таких значениях \(\lambda \) уравнение для \(f(r) \) имеет ограниченное решение вида
\[
f(r) = r^n.
\]
Теперь решение исходной задачи (10), (11) ищем в виде, согласно теореме 1
\[
u(r, \theta) = \sum_{n=0}^{\infty} C_n r^n P_n(\cos \theta),
\]
(13)
Коэффициенты \(C_n \) определяем из второго краевого условия (11), пользуясь свойством ортогональности многочленов Лежандра:
\[
C_n = \frac{2n+1}{2} \int_0^\pi \left[u_1(\tau, \theta) P_n(\cos \theta) \sin \theta \right] d\theta = \frac{2n+1}{2} \left[\int_0^\pi u_1 P_n(\xi) d\xi + \int_0^\pi u_0 P_n(\xi) d\xi \right].
\]
Последние интегралы вычисляем, пользуясь формулами (6) и (7). Получим
\[
C_n = \frac{(u_2 - u_1)(2n+1)}{2n+1} P_n(0),
\]
(14)
Итак, решение задачи (10), (11) вычисляется по формулам (13) и (14).

Задачи

1. Найти функцию \(u \), гармоническую внутри цилиндра радиуса \(R \) с центром в начале координат и такую, что
\[
u|_{r=R} = f(0),
\]
где
a) \(f(0) = \cos \theta \);
b) \(f(0) = \cos^2 \theta \);
c) \(f(0) = \cos 2\theta \);

2. Найти функцию, гармоническую внутри цилиндра радиуса \(R \) и такую, что:
\[
u + u_r |_{r=R} = 1 + \cos^2 \theta.
\]

3. Найти функцию, гармоническую вне цилиндра радиуса \(R \) и такую, что:
a) \(u_r |_{r=R} = \sin^2 \theta \);
b) \(u - u_r |_{r=R} = \sin^2 \theta \);
c) \(u_r |_{r=R} = A \cos \theta \).

4. Найти гармоническую внутри цилиндра сферического слоя \(1 < r < 2 \) функцию такую, что
\[
u|_{r=1} = f_1(\theta), \quad \nu|_{r=2} = f_2(\theta),
\]
если:
a) \(f_1 = \cos^2 \theta, \quad f_2 = \frac{1}{8}(\cos^2 \theta + 1) \);
b) \(f_1 = \cos^2 \theta, \quad f_2 = 4\cos^2 \theta - \frac{4}{3} \);
c) \(f_1 = \frac{1}{2} \cos \theta, \quad f_2 = 1 + \cos 2\theta \).

5. Найти стационарную температуру внутри точек полусферы радиуса \(R \), если сферическая поверхность поддерживается при постоянной температуре \(T_0 \), а основание полусферы — при нулевой температуре.
Лекция 32. Сферические функции. Задача Дирихле для шара

Сферические функции проще всего могут быть введены при решении уравнения Лапласа для шаровой области методом разложения переменных.

§1. Определение сферических функций

Будем искать решения уравнения Лапласа, записанного в сферических переменных \(r, \theta, \phi \)

\[
\Delta u = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial u}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 u}{\partial \phi^2} = 0
\]

(1)

иначе

\[u(r, \theta, \phi) = F(r)Y(\theta, \phi). \]

Тогда для определения \(F(r) \) получим уравнение Эйлера

\[
\frac{d}{dr} \left(r^2 F'(r) \right) - \lambda F(r) = 0,
\]

(2)

а для определения функции \(Y(\theta, \phi) \) — уравнение

\[
\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin \theta} \frac{\partial^2 Y}{\partial \phi^2} + \lambda Y = 0.
\]

(3)

Определение. Ограниченные в области \(0 \leq \theta \leq \pi, \quad 0 \leq \phi \leq 2\pi \) решения уравнения (3), такие что

\[Y(\theta, \phi + 2\pi) = Y(\theta, \phi), \]

называются сферическими функциями.

Если ограниченные решения уравнения (3) искать в классе функций вида

\[Y(\theta, \phi) = \Psi(\theta)\Phi(\phi), \]

\[\Phi(\phi + 2\pi) = \Phi(\phi), \]

то для функций \(\Psi(\theta) \) и \(\Phi(\phi) \) получим уравнения

\[
\frac{1}{\sin \theta} \frac{d}{d \theta} \left(\sin \theta \frac{d \Psi}{d \theta} \right) + \left(\lambda - \mu \frac{\sin \theta}{\sin \theta} \right) \Psi(\theta) = 0,
\]

(4)

\[
\Phi(\phi) + \mu \Phi(\phi) = 0.
\]

(5)

VI. Специальные функции

Из условия периодичности функции \(\Phi(\phi) \) находим \(\mu = \kappa^2 \) (где \(\kappa \) — целое число). Поэтому

\[\Phi(\phi) = A \cos \kappa \phi + B \sin \kappa \phi. \]

В уравнении (4) произведем замену переменной

\[\cos \theta = \xi. \]

Получим уравнение

\[
\left(1 - \xi^2 \right) \frac{d^2 \Psi}{d \xi^2} - 2 \xi \frac{d \Psi}{d \xi} + \left[\lambda - \kappa^2 \right] \Psi = 0, \quad -1 < \xi < 1.
\]

(6)

Определение. Ограниченные на отрезке \([-1, 1]\) решения уравнения (6) называются присоединенными функциями Лежандра.

Для отыскания их произведем замену

\[\Psi = \left(1 - \xi^2 \right)^{\frac{\lambda}{2}} z(\xi). \]

Для функции \(z(\xi) \) получим уравнение

\[
\left(1 - \xi^2 \right) z'' - 2 \xi z' + \left[\lambda - k(k+1) \right] z = 0.
\]

(7)

Отметим, что такое же уравнение мы получим из уравнения Лежандра

\[
\left(1 - \xi^2 \right) z'' - 2 \xi z' + \lambda z = 0,
\]

если продифференцируем его \(k \) раз. Поэтому ограниченным на отрезке \([-1, 1]\) решением уравнения (7) при \(\lambda = n(n+1) \) будет функция

\[z(\xi) = \frac{d^n}{d \xi^n} P_n(\xi). \]

Здесь \(P_n(\xi) \) — полином Лежандра (см. лекцию 31).

Следовательно, ограниченное на \([-1, 1]\) решение уравнения (6) при \(\lambda = n(n+1) \), т.е. присоединенная функция Лежандра \(P_n^k(\xi) \), имеет вид

\[P_n^k(\xi) = \left(1 - \xi^2 \right)^{\frac{k}{2}} \frac{d^k}{d \xi^k} P_n(\xi), \quad 0 \leq k \leq n. \]

(8)
Итак, $\psi = P_n^m(\xi)$, и поэтому сферическими функциями вида

$$\psi(0) \Phi(\phi), \quad \Phi(\phi + 2\pi) = \Phi(\phi)$$

будут следующие функции:

$$y_n^k(0,\phi) = P_n^k(\cos \theta) \sin k \phi, \quad y_n^m(0,\phi) = P_n^m(\cos \theta) \cos k \phi, \quad k = 0, 1, 2, \ldots.$$

Эти функции называются фундаментальными сферическими функциями n-го порядка. Ясно, что функции

$$Y_n^m(0,\phi) = \sum_{k=-n}^{n} C_k Y_n^k(0,\phi)$$

будут также сферическими функциями. Они называются сферическими функциями n-го порядка. При $\lambda = n(n+1)$ уравнение (2) имеет решения

$$F_1(r) = r^n \quad \text{и} \quad F_2(r) = \frac{1}{r^{n+1}}.$$

Следовательно,

$$u_1(r, \theta, \phi) = r^n Y_n^m(0,\phi), \quad u_2(r, \theta, \phi) = \frac{1}{r^{n+1}} Y_n^m(0,\phi)$$

являются гармоническими функциями. Они называются гармоническими функциями n-го порядка.

Таким образом, сферические функции n-го порядка, $Y_n^m(0,\phi)$, являются значениями шаровых функций n-го порядка на единичной сфере.

§ 2. Свойство ортогональности

Используя свойство ортогональности многочленов Лежандра и формулу (8) нетрудно показать, что присоединенные функции Лежандра ортогональны на промежутке $[-1, 1]$

$$\int_{-1}^{1} P_n^k(\xi) P_n^m(\xi) d\xi = 0, \quad \text{при} \ n \neq s.$$ \hspace{1cm} (9)

Квадрат нормы присоединенной функции дается формулой

$$\|P_n^k\|^2 = \int_{-1}^{1} \left|P_n^k(\xi)\right|^2 d\xi = \frac{(n+k)!}{(n-k)!} \cdot \frac{2}{(2n+1)}.$$ \hspace{1cm} (10)

VI. Специальные функции

Сферические функции обладают свойством ортогональности на единичной сфере s:

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_n^m(0,\phi) Y_s^m(0,\phi) \sin \theta \ d\theta \ d\phi = 0,$$

или

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_n^m(0,\phi) Y_s^m(0,\phi) \sin \theta \ d\theta \ d\phi = 0, \quad \text{при} \ (n, k) \neq (s, p).$$ \hspace{1cm} (11)

Для доказательства этого заметим, что свойством ортогональности обладают фундаментальные сферические функции:

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_n^m(\theta,\phi) Y_s^m(\theta,\phi) \sin \theta \ d\theta \ d\phi = 0, \quad \text{при} \ (n, k) \neq (s, p),$$

ибо

$$\int_{0}^{2\pi} \int_{0}^{\pi} Y_n^m(\theta,\phi) Y_s^m(\theta,\phi) \sin \theta \ d\theta \ d\phi = \frac{2\pi}{0} \int_{0}^{2\pi} \cos k \phi \cos p \phi \ d\phi$$

$$\times \left[\frac{1}{2} P_n^k(\xi) P_s^m(\xi) d\xi \right] = 0$$

при $(n, k) \neq (s, p)$. Если $k \neq p$, то первый интеграл правой части равен нулю. Если же $k = p$, то второй интеграл в силу (9) равен нулю.

Из ортогональности фундаментальных сферических функций следует ортогональность (11).

И, наконец, вычислим квадрат нормы

$$\|P_n^k\|^2 = \int_{0}^{2\pi} \int_{0}^{\pi} \left|P_n^k(\phi)\right|^2 \sin \theta \ d\theta \ d\phi = \frac{2\pi}{0} \cos^2 k \phi \ d\phi$$

$$\times \left[\frac{1}{2} P_n^k(\xi) P_s^m(\xi) d\xi \right] = 0$$

Следовательно, учитывая (10), будем иметь

$$\|P_n^k\|^2 = \frac{2\pi}{(2n+1)} \cdot \frac{(n+k)!}{(n-k)!} = \begin{cases} 1, & k \neq 0, \\ 2, & k = 0. \end{cases}$$ \hspace{1cm} (12)

§ 3. Гармонические многочлены

В этом параграфе мы ложем справедливость следующего утверждения:
Теорема 1. Шаровые функции $r^n Y_n(0, \varphi)$ являются однородными гармоническими многочленами n-й степени по переменным x, y, z.

Доказательство. Поскольку

$$Y_n(0, \varphi) = \sum_{k=0}^{n} C_k Y_k(0, \varphi),$$

нам достаточно доказать теорему для функций

$$r^n Y_n(0, \varphi).$$

Для определенности полагаем $k > 0$. Тогда

$$Y_n^k(0, \varphi) = P_n^k(\xi) \cos k \varphi = \left(1 - \xi^2\right)^k \frac{d^k}{d \xi^k} P_n(\xi) \cos k \varphi =$$

$$= \left(1 - \xi^2\right)^k \sum_{q=0}^{k} \frac{\alpha_k}{(k-q)!} \xi^{2q} \cos k \varphi = \left(1 - \xi^2\right)^k \sum_{q=0}^{k} b_q z^{2q} \cos k \varphi,$$

где $\xi = \cos \varphi$. Очевидно, достаточно доказать теорему для функций вида

$$r^n \sin^4(0, \varphi) \cos 2k \varphi.$$

Для таких функций мы имеем

$$r^n \sin^4(0, \varphi) \cos 2k \varphi = r^n \sin^4(0, \varphi) \Re \left(e^{ik \varphi} \right) = r^n \sin^4(0, \varphi) \left(\cos 2k \varphi\right)^{2k} =$$

$$= \Re \left(e^{ik \varphi} \right) \left(x^2 + y^2 + z^2\right)^{2k} z^{2k}.$$

Очевидно, это однородный многочлен n-й степени.

§ 4. Задача Дирихле для шара

Пусть дана сфера радиуса R. Поместием в центр этой сферы начальную сферическую систему координат $(r, 0, \varphi)$ и рассмотрим две задачи Дирихле:

$$\Delta u = 0 \text{ при } r < R, \quad u|_{r=R} = f(0, \varphi) \text{ (внутренняя задача)},$$

$$\Delta u = 0 \text{ при } r > R, \quad u|_{r=R} = f(0, \varphi) \text{ (внешняя задача)}. \quad (13)$$

VI. Специальные функции

где $f = f(0, \varphi)$ – заданная функция на поверхности шара. Предполагается возможность разложения функции $f(0, \varphi)$ в ряд по сферическим функциям (возможность такого разложения для дважды непрерывно дифференцируемой функции можно обосновать), допускающей точное интегрирование, получим

$$f(0, \varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(A_{nm} \cos m \varphi + B_{nm} \sin m \varphi\right) P_n^m(\cos \varphi),$$

где A_{nm} и B_{nm} – коэффициенты Фурье, определяемые формулами

$$A_{mn} \left|Y_n^m(\varphi)\right|^2 = \frac{3 \pi}{2} \int_0^{2\pi} f(0, \varphi) P_n^m(\cos \varphi) \cos m \varphi \sin \varphi \, d \varphi \, d \varphi,$$

$$B_{nm} \left|Y_n^m(\varphi)\right|^2 = \frac{3 \pi}{2} \int_0^{2\pi} f(0, \varphi) P_n^m(\cos \varphi) \sin m \varphi \sin \varphi \, d \varphi \, d \varphi. \quad (16)$$

Здесь значение нормы $\left|Y_n^m(\varphi)\right|$ определяется из (12).

Формулу (15) перепишем в виде

$$f(0, \varphi) = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \left(A_{nm} \cos m \varphi + B_{nm} \sin m \varphi\right) P_n^m(\cos \varphi). \quad (17)$$

Далее общее решение уравнения Лапласа для внутренней краевой задачи (13) можно представить в виде

$$u(r, 0, \varphi) = \sum_{n=0}^{\infty} \left(\frac{r}{R}\right)^n Y_n(0, \varphi). \quad (18)$$

Пользуясь граничным условием при $r = R$ и учитывая разложение для $f(0, \varphi)$, находим

$$\bar{Y}_n(0, \varphi) = Y_n(0, \varphi). \quad (19)$$

Таким образом, решение исходной задачи (13) лается формулами (18), (19), (17) и (16).

Аналогично находим решение внешней задачи (14):

$$u(r, 0, \varphi) = \sum_{n=0}^{\infty} \left(\frac{r}{R}\right)^{n+1} Y_n(0, \varphi).$$
Задачи

1. Найти функцию, гармоническую внутри единичной сферы и такую, что:
 a) \(u \bigg|_{r=a} = \cos \left(2\varphi + \frac{\pi}{3} \right) \sin^2 \theta; \)
 b) \(u \bigg|_{r=a} = \sin \theta \left(\sin \varphi + \sin \theta \right). \)

2. Найти функцию, гармоническую вне единичной сферы и такую, что:
 a) \(u \bigg|_{r=a} = \sin \left(\frac{\pi}{4} - \varphi \right) \sin \theta; \)
 b) \(u \bigg|_{r=a} = \cos^2 \theta \sin \theta \sin \left(\varphi + \frac{\pi}{3} \right). \)

3. Найти функцию, гармоническую внутри сферического слоя \(1 < r < 2 \) и такую, что \(u \bigg|_{r=a} = f_1 (\theta, \varphi), \quad u \bigg|_{r=b} = f_2 (\theta, \varphi), \) где:
 a) \(f_1 = \sin \theta \sin \varphi, \quad f_2 = 0; \)
 b) \(f_1 = 3 \sin 2\varphi \sin^2 \theta, \quad f_2 = 3 \cos \theta; \)
 c) \(f_1 = 7 \sin \theta \cos \varphi, \quad f_2 = 7 \cos \theta. \)

Литература

1. Владимиров В.С. Уравнения математической физики. Изд. 2-е, Наука, 1971.
3. Кошляков Н.С., Глингер Э.Б., Смирнов М.М. Уравнения в частных производных математической физики. Высшая школа, 1970.
5. Курант Р., Гельфанд Д. Методы математической физики. Т. I и II, Гостехиздат, 1951.
8. Петровский И.Г. Лекции об уравнениях с частными производными. Изд. 3-е, Физматгиз, 1961.
9. Петровский И.Г. Лекции по теории интегральных уравнений. Изд. 3-е, Наука, 1965.
11. Арсенин В.Я. Математическая физика. Основные уравнения и специальные функции. Наука, 1966.
13. Тихонов А.Н., Самарский А.А. Уравнения математической физики.
15. Жибер А.В., Соколов В.В. Метод каскадного интегрирования Лагранжа и управления, интегрируемое по Дарбу. Уфа: БГУ, 1996.
Байков Виталий Анварович
Жибер Анатолий Васильевич

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Дизайнер М. В. Ботя
Технический редактор А. В. Широков
Компьютерная верстка Л. И. Вахуленко
Корректор М. А. Ляхкина

Полиграфи́я и пе́чать 07.02.03, Формат 60 × 84⅓,
Печать офсетная. Усл. печ. л. 14,65. Уч.-изд. л. 14,34.
Гарнитура Та́ймс. Бумага офсетная №1. Заказ №

АИО «Институт компьютерных исследований»
420034, г. Ижевск, ул. Университетская, 1.
Лицензия на издательскую деятельность ЛУ №04 от 03.04.00.

http://red.ru Бюро: borisov@red.ru